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Abstract: Deep learning has achieved great success on robotic vision tasks. However, when com-
pared with other vision-based tasks, it is difficult to collect a representative and sufficiently large
training set for six-dimensional (6D) object pose estimation, due to the inherent difficulty of data
collection. In this paper, we propose the RobotP dataset consisting of commonly used objects for
benchmarking in 6D object pose estimation. To create the dataset, we apply a 3D reconstruction
pipeline to produce high-quality depth images, ground truth poses, and 3D models for well-selected
objects. Subsequently, based on the generated data, we produce object segmentation masks and
two-dimensional (2D) bounding boxes automatically. To further enrich the data, we synthesize a
large number of photo-realistic color-and-depth image pairs with ground truth 6D poses. Our dataset
is freely distributed to research groups by the Shape Retrieval Challenge benchmark on 6D pose
estimation. Based on our benchmark, different learning-based approaches are trained and tested by
the unified dataset. The evaluation results indicate that there is considerable room for improvement
in 6D object pose estimation, particularly for objects with dark colors, and photo-realistic images are
helpful in increasing the performance of pose estimation algorithms.

Keywords: benchmark dataset; 6D pose estimation; sensors; 3D reconstruction

1. Introduction

Six-dimensioal (6D) pose estimation is crucial for many vision-based applications,
such as visual navigation, robot manipulation, and virtual reality [1–4]. The awareness
of the three-dimensional (3D) rotation and 3D translation matrices of objects in a scene is
referred to as 6D, where the D stands for degrees of freedom pose. However, estimating
object poses is challenging, for objects in the real world have various shapes, sizes, and
textures. On the other hand, even though increasing algorithms aiming to estimate the
6D object pose have been published, different pose estimation methods have different
strengths and weaknesses, and it is unclear how well they perform, due to the lack of
benchmarks with high-quality datasets.

While it is possible to obtain the 6D pose by handcrafted feature-based methods [5,6],
these approaches fail to predict poses for texture-less or reflective objects, as they are easily
affected by sensor noise, changing lighting conditions, and occlusion. With the advent of
cheap RGB-D sensors, the precision of 6D object pose estimation is improved significantly [3].
Nonetheless, it remains a challenge, as the heavy dependence on handcrafted features and
fixed matching process has limited the empirical performance of these methods.

Recent studies [7–11] show that learning-based methods are able to produce results
that are comparable to or even better than classical state-of-the-art methods. Instead of
relying on handcrafted features, they learn more robust features and semantic cues by
applying deep learning models. More specifically, learning-based approaches often use
Convolutional Neural Network (CNN) based architectures to extract visual and geometric
features from RGB-D images and fuse these features together. Subsequently, the fused
features are used to directly predict the 6D object pose. Their performance [1,12,13] has
been reported on the LineMOD [14] and YCB-Video [9] datasets. However, current datasets
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that are designed for pose estimation have several limitations: (1) the objects are often
located in the center of the image plane and the captured images have limited viewpoints
and low resolution; and, (2) generating datasets has a high cost (time and money) that is
associated with ground truth annotation.

To address these challenges, we organize the Shape Retrieval Challenge benchmark
on 6D pose estimation and create a new benchmark dataset that is representative enough
for the pose estimation problem and also contains a considerable amount of variability
for training and testing learning-based 6D object pose estimation algorithms, as shown in
Figure 1.

Figure 1. Scene examples and visualization of estimated poses by the approach that was proposed from our benchmark.

Generating 6D object pose estimation dataset presents specific challenges. The first
challenge is selecting and modeling objects that are suitable for benchmarking 6D object
pose estimation performance. Research groups often select objects based on the aims they
plan to achieve [15]. Consequently, the selected objects perhaps do not cover various
pose estimation challenges, and not be available to other researchers (e.g., they are only
available in certain regions). To address these problems, we take several practical issues
into consideration when selecting objects, such as the size, cost, and characteristic of the
object. In order to generate high-quality 3D models, we first use a well-chosen 3D camera
to collect RGB-D images and then propose generating the 3D model for each object by an
image-based 3D reconstruction approach.

The second challenge is to provide high-quality RGB-D images, ground truth poses,
segmentation masks, and 2D bounding boxes for each object. 3D cameras allow easy 3D
acquisition of objects, but have key limitations. For example, the captured depth images
often have missing data and they do not align well with their corresponding color images.
Even though depth recovery algorithms [16,17] provide aligned depth images, they fail
in occlusion regions when the camera is near the object. In contrast, multi-view stereo
(MVS) can achieve better results for these regions. Taking advantage of these two kinds of
depth images, we propose a novel depth generation approach to create high-quality depth
images by aligning and fusing them.

The Structure from Motion (SfM) [18], which is based on feature matching to estimate
6D poses, is often used to generate ground truth poses. A fundamental limitation of SfM is
that it is unable to provide accurate poses when the change between two cameras becomes
larger. In order to address this problem, a pose refinement approach combining local
and global pose optimization is introduced. Besides, object mask and 2D bounding box
annotation is a time-consuming and expensive process, as humans often generate the
annotation [19]. Instead of relying on humans, we propose a novel method to generate
accurate segmentation masks and 2D bounding boxes automatically and cost-effectively.

The third challenge is generating large numbers of scene images that were captured in
a variety of viewpoints. Collecting real-world data is a tedious and labor intensive process.
When compared with datasets that were produced by real-world data, synthesizing such
a dataset requires less hardware, time, and human labor, while it is more likely to result
in better quality. Taking advantage of image based rendering that can provide the free-
viewpoint and realistic imagery of real scenes, we generate a large number of reasonable
and photo-realistic images with ground truth 6D poses. Even though we use synthesized
images, they are still useful, as the synthesized images are photo-realistic, which are able
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to bridge the reality gap that allows models trained with synthetic data to the real world
without domain adaption.

Our main contributions are summarized, as follows:

• A representative dataset providing high-quality RGB-D images, ground truth poses,
object segmentation masks, 2D bounding boxes, and 3D models for different objects,
which covers a wide range of pose estimation challenges.

• A novel pose refinement approach that uses a local-to-global optimization strategy to
achieve the improved accuracy of each pose and global pose alignment.

• A novel depth generation algorithm producing high-quality depth images, which
is able to accurately align the depth image to its corresponding color image and fill
missing depth information.

• Careful merging of multi-modal sensor data for object reconstruction, followed by
an algorithm to produce the segmentation mask and 2D bounding box for each
object automatically.

• A training dataset is generated by a free-viewpoint image based rendering approach
in a simulated environment. It provides a large amount of high-resolution and photo-
realistic color-and-depth image pairs that have plausible physical locations, lighting
conditions, and scales.

• The Shape Retrieval Challenge benchmark on 6D object pose estimation. The bench-
mark allows for evaluating and comparing pose estimation algorithms under the
same standard. The evaluation results indicate that there is considerable room for
improvement in 6D object pose estimation, particularly for objects that have dark
colors or reflective characteristics, and knowledge that is learned from photo-realistic
images can be successfully transferred to real-world data without domain constraints.

2. Related Work

Prior works collect plenty of datasets for vision-based applications, such as object
detection [20] and image classification [21–23], as well as for benchmarking in 3D shape
retrieval [24,25]. However, few datasets are available for 6D object pose estimation which
plays an important role in robotic grasping and manipulation. The LineMOD dataset [14]
and KIT Object Models Database [26] are the earliest 3D datasets for 6D object pose
evaluation. The LineMOD dataset contains 13 texture-less objects of varying shapes and
sizes, and the objects are captured under different lighting conditions. However, the
captured images in it have limited viewpoints. The KIT Object Models Database consists of
2D images and 3D mesh models of over 100 objects which are obtained semi-automatically.
Even though the number of objects in this dataset is large, the objects are not easily
accessible to other researchers, due to regional product differences. Later, the Linemod-
Occluded dataset [27] is proposed to address occlusion problem, which is a subset of
the LINEMOD dataset. The RGB-D images provided by this dataset contain multiple
annotated objects that are heavily occluded. The IC-MI dataset [28] is introduced to further
investigate the performance of pose estimation in heavily cluttered and occluded scenes.
It has two texture-less and four textured household objects and its testing images have
multiple objects containing heavy 2D and 3D clutters, and foreground occlusion. The
IC-BIN dataset [29] provides 3D models and RGB-D images of two objects from IC-MI. It
is designed for a bin-picking scenario, which also contains objects in the heavy occlusion
condition. A characteristic of this dataset is that it includes multiple instances of the same
object. However, clutters and occlusion in this dataset are moderate, which makes it not
particularly challenging.

Rutgers APC dataset [30] is specifically designed for solving warehouse pick-and-
place tasks. It consists of 24 different objects that are placed on a cluttered warehouse shelf
from the Amazon Picking Challenge 2015 [31]. The T-LESS [32] and ITODD [15] datasets
focus on industry-relevant objects. The objects in the T-LESS dataset have no significant
texture and discriminative color or reflectance properties. They exhibit symmetries and
mutual similarities in shape and/or size. Similarly, ITODD dataset [15] contains 28 objects
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with 3D models, which are captured in realistic industrial setups. When compared to the T-
LESS dataset [32] , it features objects with a special focus on planarity, size, and complexity.
The main disadvantages of these datasets are that the objects are often located in the
center of the image plane, which limits the richness of viewpoints, and data annotation for
these datasets is tedious and labor-intensive. In contrast, our dataset contains high-quality
RGB-D images that are captured from a variety of viewpoints and labeled automatically.

With the development of data-driven methods designed for robotics applications [33],
the importance of synthetic data has been highlighted. Recent works [8,9,34–36] combine
real and synthetic data to generate 3D object datasets, which render 3D object models on
real backgrounds in order to produce synthesized images. YCB-Video [9] dataset is the
mostly used 3D object datasets for 6D object pose estimation. It contains 21 objects with
different shapes and textures. Apart from the captured images, synthesized images are also
provided, which are produced by projecting 3D models to arbitrary backgrounds. While
the backgrounds are realistic, the synthesized images are not reasonable (e.g., objects are
often flying in midair [35]). Unlike the YCB-Video dataset, objects in the TYO-L dataset [37]
are captured on a table-top setup, with four different table cloths and five different lighting
conditions. The objects in this dataset are rendered with fixed lighting conditions and
a black background to generate the synthetic training images. Unlike these methods,
we are able to mimic the physical behavior of the camera and provide reasonable and
photo-realistic images by image based rendering in a simulation environment.

Our dataset could be considered to be between LineMOD and YCB-Video datasets.
It contains high-resolution RGB-D images, high-quality annotations, and a large number
of photo-realistic synthesized images. In contrast to the recent work of Hodan et al. [37],
which combines eight different datasets for benchmarking 6D object pose estimation, we
particularly focus on the domain adaption for photo-realistic synthetic data. Table 1 sum-
marizes the object datasets that have been proposed for the 6D object pose estimation task.
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Table 1. Object datasets used for six-dimensional (6D) object pose estimation.

Dataset Year 3D Synthetic Data Scenario Novel Available Data

Linemod [14] 2012 Yes No Household Yes RGB-D images, 3D models, object masks and bounding boxes
KIT [26] 2012 Yes No Household No 2D images and 3D models

Linemod-Occluded [27] 2014 Yes No Household Yes RGB-D images, 3D models, object masks and bounding boxes
IC-MI [28] 2014 Yes No Household Yes RGB images and 3D models
IC-BIN [29] 2016 Yes No Household Yes RGB-D images and 3D models

Rutgers APC [30] 2016 Yes No Household Yes RGB-D images and 3D models
T-LESS [32] 2017 Yes No Industry No RGB-D images and 3D models
ITODD [15] 2017 Yes No Industry No Gray images and 3D models
TYO-L [37] 2018 Yes Yes Household No RGB-D images, 3D models, and object masks

YCB-Video [9] 2018 Yes Yes Household No RGB-D images, 3D models, object masks and bounding boxes
HomebrewedDB [34] 2019 Yes Yes Household and Industry No RGB-D images and 3D models

RobotP (ours) 2020 Yes Yes Household Yes RGB-D images, 3D models, object masks and bounding boxes
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3. The RobotP Dataset

Our goal is to build a benchmarking dataset that allows for evaluating and comparing
the performance of different 6D pose object pose estimation methods under the same
standard. We aim to cover as many pose estimation challenges as possible, including
occlusion, poor lighting conditions, and varying viewpoints, shapes, and textures, with a
special focus on the effect of training images.

The dataset generation works, as follows: we first select eight representative and daily
used objects with the consideration of many practical issues (Section 3.1). Subsequently,
we collect real-world data for these objects by a well-chosen 3D camera under different
scenarios (Section 3.2). Next, from the collected data, we estimate ground truth 6D poses
for these objects (Section 3.3) and generate high-quality depth images (Section 3.4). After
that, we reconstruct textured 3D models and, based on the 3D models, we generate object
masks and two-dimensional (2D) bounding boxes automatically (Section 3.5). Furthermore,
to augment the collected data, we synthesize a large number of photo-realistic images with
ground truth 6D poses (Section 3.6).

3.1. Object Selection

The first step of generating the RobotP dataset is to choose objects that are frequently
used in daily life. A large number of objects in a 3D dataset is necessary for addressing pose
estimation challenges. However, the quantity of the objects is not sufficient for building
a representative 3D dataset. To make our dataset more general, when selecting objects,
several issues have been considered:

1. In order to cover as many aspects of pose estimation challenges as possible, the
selected objects should be representative enough for the pose estimation problem. For
example, objects with few textures are added to the dataset, as it is a challenge for pose
estimation approaches to estimate 6D poses for texture-less objects is representative
enough for the pose estimation problem

2. We aim to provide a 3D dataset allowing for easily carrying, shipping, and storing,
which is helpful to carry out robotic manipulation experiments in the real world. Thus,
the portability of the object is taken into consideration.

3. To make the dataset easily reproducible, we choose the popular consumer products,
which are low price and easy to buy as our target objects.

With consideration of these practical issues, we finally select eight representative
objects to create our dataset, as shown in Figure 2.

Figure 2. Daily used objects in our dataset.

3.2. Collecting Scene Data

The second step is to collect a set of color-and-depth image pairs that are able to
represent the selected objects. Instead of using capture rigs, we use a hand-held 3D camera
to collect data, for it has the close resemblance to regular cameras, and it has the ability
to introduce more variation to camera poses. To choose the 3D camera, three main issues
should be considered:

• The resolution of the captured image should be as high as possible. This is because,
with high resolution images, we are able to obtain richer information about the
captured object.
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• The range of the 3D camera should be long enough, which allows for us to capture
images with a variety of view positions; The frame rate of the 3D camera should be
high, which is able to promise better tracking of capture processes.

• The 3D camera should be portable and low-cost, allowing large groups of inexperi-
enced users to collect data.

There are three main types of 3D cameras: time-of-flight, structured-light, and depth-
from-stereo 3D cameras, as shown in Figure 3. A detailed summary of the available
consumer 3D cameras can be found in [38]. After analyzing the practical issues that are
mentioned above, we choose Intel RealSense D415 camera that is based on depth from
stereo to generate depth images as our target camera (the camera on the right in Figure 3).
It provides more accurate depth perception and longer range, and it uses an infrared
projector to improve the depth perception ability for texture-less scenes. Table 2 describes
its basic features.

Figure 3. Different three-dimensional (3D) cameras. Left: time-of-flight camera. Middle: structured-light camera. Right:
depth-from-stereo camera.

Table 2. The basic parameters of the Intel RealSense D415 camera.

Camera Baseline Depth FOV
HD (Degree)

IR
Projector FOV

Color
Camera FOV

Z-Accuracy (or
Absolute Error)

Module
Dimensions (mm)

D415 55 mm H: 65 ± 2/V: 40
± 1/D: 72 ± 2 H: 67/V: 41/D: 75 H: 69 ± 1/V: 42

± 1/D: 77 ± 1 <2% X = 83.7/Y = 10/
Z = 4.7

We acquire RGB-D videos by the Intel RealSense D415 camera that is connected to
a laptop that allows recording RGB-D videos for several hours. Depth and color frames
are captured with a resolution of 1280× 720. For camera calibration, we use its default
parameters, as Intel has its own calibration system that has advances over the free calibration
software. It has the ability to calibrate both extrinsic and intrinsic parameters, and calibrate
multiple cameras simultaneously. Apart from calibration, we use the Intel “High Density”
setting for depth calculation. This is because it provides us with better quality depth
images containing few holes and allows us to capture as much data as possible in all of the
depth ranges.

3.3. Ground Truth Pose Estimation

Unlike previous approaches requiring estimating a markerboard pose to obtain ground
truth poses, we directly estimate camera poses by Structure from Motion (SfM) [18]. How-
ever, the estimated camera pose is more likely to have errors because of the inherent
limitation of SfM, when the change between two input images becomes larger or the im-
ages do not have enough features. In order to improve the accuracy of estimated poses, we
perform pose refinement that combines local and global pose refinement steps. Instead of
refining all camera poses simultaneously, we first divide poses into groups and then refine
poses in each group. After that, we choose a key pose from each group and then refine
these key poses globally. Our aim is to respect the local details and also be compatible with
global consistency. Figure 4 describes the pipeline of pose estimation.
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RGB images

…

Global pose refinement
Initial pose estimation 

(SfM) Local pose refinement Final poses

Figure 4. The pipeline of the pose estimation process. The input are RGB images and the initial poses of these images are
estimated by Structure from Motion (SfM). After that, the initial poses are refined locally and globally.

In the pose refinement process, poses are first grouped based on their similarities
among each other. The similarity is measured by comparing the angle and distance between
two poses. We randomly define one pose as our key pose and then calculate the angle and
distance between the key and other poses. We first rank the poses based on the distances
that they have with the key pose. Next, we check if their corresponding angles are bigger
than the field of view of the camera. If so, we then delete the pose from the rank. After
that, we choose up to ten top poses as a local group. Subsequently, the other groups are
obtained by the same pipeline from the remaining poses. Figure 5 shows the clustered
groups that are used for pose refinement.

Figure 5. The local pose groups. They are clustered based on angle and distance similarities.

We use bundle adjustment to refine camera poses in the local group with the consider-
ation of its neighbors. Bundle adjustment [39] method is often used in 3D reconstruction as
the joint non-linear refinement of camera parameters and feature points. We choose the key
pose’s corresponding image as the key image, and then we detect feature points between
the key image and other poses’ corresponding images. For each image, scale-invariant
feature transform (SIFT) features are detected and matched. The reason to use SIFT feature
is that it is robust for the major variation, such as image translation, scaling, and rotation.
Next, we project these feature points into the 3D world space. Lastly, we apply local bundle
adjustment to refine camera poses with these 3D points. To account for potential outliers,
the Huber function is used as the robust loss function in local bundle adjustment, and we
use Ceres Solver library to solve the optimization function. The cost function for grouped
images is defined as:

1
2

m

∑
i=1

n

∑
j=1
||ei,j||2 =

1
2

m

∑
i=1

n

∑
j=1
|| f (Pj, xi)− Xj||2, (1)

where ei,j is the reprojection error and Pj is the projection matrix. Assume that n 3D points
are seen in m views, function f projects point xi in the image plane to 3D world space, and
Xj is the reference point in the world space.

After the local pose refinement, we build a feature group by computing the features from
key images for global pose refinement. However, the feature group may contain multiple
instances of the same real-world point that are found in separate pairwise image matches. To
address this issue, we only add features which have been used in local pose optimization
process to the feature group. We then compute the 3D positions of these features based on the
optimized poses. Once the feature points and their corresponding 3D points are obtained, we
use the same loss function as local pose optimization to refine these global poses.
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3.4. Depth Generation

Color images have been successfully used by deep learning for many robotic vision
tasks, such as object recognition and scene understanding. However, grasping objects
with the exact physical dimensions is a very hard problem that requires not only RGB
data, but also extra information. Depth images can provide such a brand-new channel of
information and are essential elements in the datasets designed for 6D pose estimation.
However, captured depth images often suffer from missing information and misalignment
between color-and-depth image pairs due to the inherent limitation of depth cameras. The
Intel RealSense D415 camera also has the same limitation. Even though the alignment and
hole filling methods from Intel are applied, the quality of the captured depth image is still
low, especially when the camera is near the object (see Figure 6). Therefore, new algorithms
are required to improve the quality of captured depth images.

(a) (b)
Figure 6. (a) The captured depth image: the red rectangle shows left invalid depth band. (b) Misalignment of color-
and-depth image pairs: the images are generated when the distance between the object and camera is near, showing
large misalignment.

Depth and Color Image Alignment

Because the Intel RealSense D415 camera is based on depth from stereo to calculate
depth values, it uses the left sensor as the reference for stereo matching. This leads to a
non-overlap region in the field of view of left and right sensors, where no depth information
is available at the left edge of the image (see Figure 6a).

Based on the stereo vision, the depth field of view (DFOV) at any distance (Z) can be
defined by [40]:

DFOV =
HFOV

2
+ tan−1(tan

HFOV
2

− B
Z
), (2)

where HFOV is the horizontal field of view of left sensor on the depth module and B is the
baseline between the left and right sensors.

We can see that, when the distance between the scene and the depth sensor decreases,
the invalid depth band increases, which results in the increase of the invalid depth in
the overall depth image. Besides, if the distance between the object and the depth sensor
decreases, the misalignment between the color and depth image also increases, as shown
in Figure 6b.

In previous works, a new depth image is created, which has the same size as the
color image but the content being depth data calculated in the color sensor coordinate
system, in orde to align the depth image to its corresponding color image. In other words,
to create such a depth image, the projected depth data is determined by transforming the
original depth data to the color sensor coordinate system based on the transformation
matrix between the color and depth sensors. However, it is difficult to obtain the correct
transformation matrix, as the depth and color images are defined in different spaces and
have different characteristics.
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To solve this problem, we first create an estimated depth image for each color image
by MVS from COLMAP [41]. The estimated depth image has better alignment with the
color image (see Figure 7), as it is estimated with the consideration of photometric priors
and global geometric consistency. Subsequently, we align the captured depth images to
estimated depth images to achieve better alignment between color-and-depth image pairs.
For the captured and estimated depth images have the same characteristics, it is easier for
us to align the captured depth image to the estimated depth image.

Figure 7. The depth images are estimated by COLMAP, showing better alignment.

In order to find correspondences between captured and estimated depth images, we
compare depth values and normals between them. We should make sure the estimated
and captured depth images have the same scene scale in order to compare depth values.
However, a fundamental limitation of the estimated depth image is that we do not know
the scale of the scene. We use linear regression in a random sample consensus (RANSAC)
loop to find the metric scaling factor. After obtaining the scaling factor, we use it to scale
the estimated depth image to the captured depth image.

We convert the depth image to a point cloud by camera intrinsic matrix to estimate
normals. Subsequently, we compute the surface normal at each point in the point cloud.
Determining the normal to a point on the surface can be considered as estimating the
normal of a plane tangent to the surface. Thus, this problem becomes a least-square plane
fitting estimation problem [42]. Let x be a point and ~n be a normal vector. The plane
is represented as π(x,~n). The distance from a point qi in a point set Q to the plane π is
defined by di = (qi − x) ·~n. Because the values of x and~n fit the least-square sense, di = 0.
Subsequently, we define x as the centroid of Q:

x =
1
k

k

∑
i=1

qi, (3)

where k is the number of points in Q. Therefore, the solution for estimating the normal~n is
reduced to analyze the eigenvectors and eigenvalues of a covariance matrix C created from
Q. More specifically, the covariance matrix C is expressed as:

C =
1
k

k

∑
i=1

αi(qi − x)(qi − x)T , C · ~vj = β j · ~vj, j ∈ {0, 1, 2}, (4)

where αi is a possible weight for point qi, ~vj is the j-th eigenvector of the covariance matrix,
and β j is the j-th eigenvalue. The normal~n can be computed based on (4).

Our aim is to produce better aligned color-and-depth pairs for objects not the overall
scene, as the generated dataset is used for object pose estimation. We first extract a patch
Pac containing a target object in the captured depth image Dc. Afterwards, we define an
offset map whose size is the same as Pac but the content being index differences between
Pac and its corresponding patch in the estimated depth image De. In ideal conditions, the
values in the offset map should be zeros.
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The matching process, which is based on PatchMatch [43], is implemented by first
initializing the offset map with random values. Subsequently, we extract a patch Qbe that
is based on the offset map as the corresponding patch for Pac. The pixel p(x, y) in Pac is
transformed to pixel q(x′, y′) in Qbe by:

q(x′, y′) = p(x + xo f f , y + yo f f ), (5)

where (xo f f , yo f f ) is the index offsets for each pixel in Pac.
After that, we perform an iterative process which allows good index offsets propagat-

ing to its neighbors to update the offset map. The iteration starts with the top left pixel and
then an odd iteration starting with the opposite direction. We first calculate the depth dif-
ferences ddi between pixel ai ∈ Pac and pixel bi ∈ Qbe, and the angles between normals ~nai

and ~nbi
. If the angle is smaller than a predefined threshold, then ddi is saved. Subsequently,

if ddi is smaller than its neighbors, we replace the offsets of ai’s neighbors with ai’s offset.
After every iteration, we calculate the sum ci of ddi. We stop propagation when the change
of ci is negligible. Finally, we map the captured depth image to the estimated depth image
based on the offset map. Algorithm 1 summarizes the depth alignment process.

Algorithm 1 Overview of depth alignment procedure.

Input: Captured depth image Dc, estimated depth image De;
Output: aligned depth map Dc1 for Dc;

1: Run RANSAC to find the metric scaling factor.
2: Extract patch Pac in Dc.
3: Calculate scaled depth values and normals of Pac.
4: Initialize offset map O.
5: Find a patch Qbe in De based on O.
6: for ai ∈ Pac and bi ∈ Qbe do
7: Calculate depth difference ddi and normal angle angi between ai and bi.

8: Run PatchMatch propagation to update offset map O.

9: Mapping Dc to Dc1 based on O.

3.4.1. Depth Fusion

Even though the captured depth image is aligned to its corresponding color image, the
invalid depth band still exists. Apart from that, it has missing information and noise, espe-
cially when reflective or transparent objects are captured. On the other hand, the estimated
depth image generated by MVS not only has better alignment with its corresponding color
image, but it also provides useful depth information in regions where the depth camera
has poor performance. However, the estimated depth image is not able to provide reliable
depth information for texture-less or occluded objects, due to the inherent limitations of
MVS. Thus, the quality of the estimated depth image is not sufficient for our dataset either.

Because the characteristics of the captured and estimated depth images are comple-
mentary, we fuse the captured and estimated depth images together to create a fused depth
image. The fused depth image takes advantage of both real captured and estimated depth
images, resulting in the improved quality. We generate the fused depth image D f by the
maximum likelihood estimation:

D f = argmax
d

((RePe)(RcPc)), (6)

where d is the depth value, Re is a reliability map and Pe is a probability map produced
from the estimated depth image, and Rc is a reliability map and Pc is a probability map
that is produced from the captured depth image.
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The reliability map Rc for the captured depth image is computed according to the
variation between the depth value and camera’s range. The reliability rc of each depth
value d is calculated by

rc =

 MaxD2 − d2

MaxD2 −MinD2 , MinD < d < MaxD

0, otherwise
, (7)

where MaxD and MinD are the minimum and maximum distances that the depth camera
is able to measure. From (7), we can see that when the distance between the camera and
the scene increases, the precision decreases. After calculating the reliability for each pixel,
we obtain the reliability map Rc.

We take the depth image generation into consideration in order to obtain the reliability
map Re for the estimated depth image. The estimated depth image is generated based on
COLMAP, which runs in two stages: photometric and geometric. The photometric stage
only optimizes photometric consistency during depth estimation. In the geometric stage, a
joint optimization, including geometric and photometric consistency, is performed, which
can make sure the estimated depth maps agree with each other in space. We obtain the
reliability re of each depth value by comparing the depth values dp and dg computed from
photometric and geometric stages, respectively:

re =


δ− |dg − dp|

dg
, dg < |dg − dp|

0, otherwise
, (8)

where δ is the maximum accepted depth difference that is set to be 50 in our experiments.
When the depth value calculated based on geometric consistency has a large difference
when compared with the depth value calculated based on photometric consistency, we
consider this value is unreliable.

One of the main limitations of the reliability map is that it does not take the idea
that spatial neighboring pixels are able to be modeled by similar planes into account. We
introduce the probability map in order to solve this problem. To calculate the probability of
a depth value in the captured or estimated depth image, we define a (5× 5) support region
S centered at the pixel i whose depth value is di. For each pixel j ∈ S, if j is far from i, then
it is reasonable to associate a low contribution to j when calculating the probability for di.
Following this intuition, the probability pdi

is estimated by

pdi
= ∑

j∈S
e
−

∆i,j
γ1 · e−

∆π
i,j

γ2 , (9)

where ∆i,j is the euclidean distance between i and j, ∆π
i,j calculated by (4) accounts for the

distance from j to the plane π, and γ1 and γ2 control the behavior of the distribution. We
empirically set γ1 and γ2 to be 4 and 1, respectively. We produce the probability maps Pe
and Pc after calculating the probability for every depth value in the estimated and captured
depth images, respectively.

Finally, with the reliability and probability maps, we generate high-quality fused
depth images that are based on (6).

3.5. 3D Modeling

We use COLMAP, which is based on a collection of RGB images for 3D modeling, to
generate the 3D point cloud for each object. However, it fails on some objects with fewer
features, such as transparent or texture-less objects. To obtain more accurate 3D point
clouds, we use depth images that were generated in Section 3.4 to refine the initial model,
as they provide reliable depth information in regions with missing features.
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To refine the initial point cloud, we project a pixel in the color image to its neighboring
images to check whether it is visible in them. If it is visible in more than five images, we
project this pixel to the world coordinate system to get the 3D point which is added to the
initial 3D point cloud. Then we check if there are many similar 3D points around it. If
so, we will not add this point into the 3D point cloud, for we only save key points in our
3D point cloud. After all of the pixels in the image are projected, we remove outliers that
are often caused by measurement errors, boundaries of occlusion, or surface reflectance
by the StatisticalOutlierRemoval filter from Point Cloud Library (PCL) [44]. This filter
performs a statistical analysis on the neighboring points of each point. Supposing that the
filtered point cloud is Gaussian distribution, all points whose mean distances are outside
an interval defined by the global distance mean and standard deviation can be considered
as outliers and trimmed from the point cloud. We repeat the previous steps until all of the
images are projected.

Mask and bounding box generation. Apart from 3D models, we also provide masks
and corresponding 2D bounding boxes for the objects in our dataset. Our goal is to generate
accurate segmentation masks and 2D bounding boxes automatically and cost-effectively.
In order to achieve our goal, we take three practical issues into consideration:

• Quality. Each mask and its corresponding bounding box need to be tight. For example,
the bounding box should be the minimum bounding box that fully encloses all visible
parts of the object. In order to estimate the 6D object pose, the first step is to detect the
target object. The quality of masks and bounding boxes influences the performance of
object detection algorithms, which affects the accuracy of the estimated pose.

• Coverage. Each object instance needs to have a segmentation mask and a 2D bounding
box that should only contain the object other than the background. For learning-based
object detection and recognition approaches, they need to know exactly which part is
the target object in a whole image.

• Cost. The designed algorithm should not only provide high-quality masks and 2D
bounding boxes, but also have the minimum cost, as data annotation is a labor
intensive and time-consuming process.

We take advantage of the generated 3D point cloud and 6D poses to address these
issues. To produce the segmentation mask, we project the point cloud into each image
plane while using the estimated 6D pose and camera intrinsic matrix. In this way, our
goal can be achieved easily. After that, we obtain the 2D bounding box by detecting the
minimum area of the mask.

3.6. Photo-Realistic Rendering

In this section, we provide a detailed description of how we generate photo-realistic
color-and-depth image pairs that are based on extremely realistic movements of a cam-
era. Previous works often generate the trajectory of camera poses by the simultaneous
localization and mapping (SLAM) system that is operated by a person to collect hand-held
motions. After that, these poses are inserted into the scenes to synthesize new images.
However, this approach’s dependence on humans to collect trajectories limits the potential
scale of the dataset. Other methods synthesize images by just randomly projecting 3D
objects into an arbitrary scene. However, the images that are generated by random poses
are unrealistic when compared to real-world scenes. For example, the projected objects are
often flying in midair or out of context [35].

Our aim is to overcome the limitations of captured datasets [9,14] and build a 3D
dataset containing high-quality images generated from rich viewpoints and scales. Inspired
by the low cost of producing large-scale synthetic datasets with accurate ground truth
information, as well as the recent success of synthetic data used for training 6D pose esti-
mation approaches, we use our 3D photo-realistic environment simulator [45] to generate
a large number of photo-realistic color-and-depth image pairs with ground truth 6D poses
for our dataset (see Figure 8).
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Figure 8. Snapshots from our simulator showing a robot synthesizing data. Green points and red
lines are positions and view directions of input cameras, black lines are the view directions of the
virtual camera, and the long line is the whole trajectory of the virtual camera.

Unlike previous methods, our trajectory generation process is automated and control-
lable, which is able to avoid unreasonable images and human labor. We first import the
robot model that is equipped with cameras into our environment simulator. Subsequently,
we move the robot to positions where the camera can capture the target object. At the same
time, we record these sparse positions as our initial poses, which can be obtained by the tf
package from Robot Operating System (ROS). For each pose, we randomly rotate or move
the camera along its axes to obtain new poses. To make the target object visible, we set the
maximum rotation angle to be less than 30 degree and the movement distance to be less
than 0.2m. In this way, we are able to generate infinitely many reliable camera poses.

Our poses have three main advantages. Firstly, our poses are random, but always
tracking the target object, rather than moving along a wall. Secondly, they contain a variety
of movements, like that of a person collecting data. FInally, they also have limited rotational
freedom that emphasizes yaw and pitch rather than roll, which is less important in 6D
object pose estimation.

Based on the generated poses, the view synthesis module of our simulator that is
based on image based rendering to synthesize images is used to produce photo-realistic
color-and-depth image pairs. Even though we set the rotation and movement threshold
to avoid synthesizing images without the target object, there are still some such images.
During offline processing, we project the 3D model of the target object to synthesized
images in order to check whether these images contain the target object. If not, we delete
the images. In this way, we are able to make sure that all of the synthesized images satisfy
our requirements.

3.7. Content

Based on the pipeline that is described above, we generate the RobotP dataset con-
taining eight rich-texture, low-texture, and reflective objects recorded on two table layouts.
The RobotP dataset consists of two subsets: one is a training dataset containing 3200
synthesized photo-realistic color-and-depth image pairs and the other is a testing dataset
containing 1000 captured and synthesized color-and-depth image pairs. More specifically,
we provide the following data:

• 6D poses for each object.
• Color and depth images with the resolution of 1280× 720 in PNG.
• Segmentation binary masks and 2D bounding boxes for the objects.
• 3D point clouds with RGB color and normals for the objects.
• Calibration information for each image.
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4. Experimental Results
4.1. Evaluation of Dataset Generation Approaches

We test our approaches on two scenarios (table1, table2) used for dataset generation,
which contain a variety of objects with different sizes, shapes, textures, and occlusion.

The effect of pose refinement. We use reprojection errors to measure the accuracy of
the estimated 6D pose. The reprojection error is calculated by first projecting 2D correspon-
dences in an image to its matching image plane and then computing the pairwise distances
in the image space. Figure 9 shows the reprojection errors that are calculated over 100 image
pairs for different objects. We can see that, as compared with the state-of-the-art SfM [18]
method, the refined poses that are produced by our approach have lower reprojection
errors throughout all of the testing image pairs, which verifies the effectiveness of our pose
refinement step.

Effect of depth alignment and fusion approaches. Figure 10 shows the depth align-
ment results for different color-and-depth image pairs. It can be seen that our alignment
approach effectively aligns the depth image to its corresponding color image.

The main advantage of our depth fusion algorithm is its robustness towards texture-
less regions. Because there is no ground truth for quantitative comparison, we provide
visual comparison results, as shown in Figure 11. We can see that the performance of
COLMAP degrades significantly when there is a texture-less region in the image. In
contrast, our method has better performance in these regions.
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Figure 9. Reprojection error comparison with and without pose refinement for different objects.

Figure 9. Reprojection error comparison with and without pose refinement for different objects.
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(a) Table1

(b) Table2
Figure 10. Examples of depth alignment results on table1 and table2 scenarios. The first column is the aligned depth image,
the second column is the matching between captured depth and color images, and the third column is the matching between
aligned depth and color images. The black color is the missing information.

(a) Table1

(b) Table2
Figure 11. The depth fusion results on table1 and table2 scenarios. The first column are color images, and the second column
are the estimated depth images by COLMAP and the third column are the depth images generated by our approach.

Point clouds of objects. We use point clouds to represent the objects in our dataset.
The modeling results are shown in Figure 12. As we can see, when compared with
COLMAP, our approach generates more detailed point clouds, especially for texture-less
objects. For example, for the texture-less banana, our method can capture high-frequency
geometric features, while the reconstruction quality of COLMAP drops significantly.
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(a) (b)

(a) Banana

(a) (b)

(b) Cookie_box

(a) (b)

(c) Pasta_box

(a) (b)

(d) Vacuum_cup
Figure 12. Examples of three-dimensional (3D) point clouds for the objects in our dataset. The point clouds shown in figures
(a) and (b) are generated by COLMAP and our approach, respectively.

Segmentation masks and 2D bounding boxes of objects. Based on the 3D point
clouds, we generate the object mask and 2D bounding box automatically. Figure 13 shows
the example results of object masks and their corresponding bounding boxes. It can be
seen that the generated bounding boxes tight and stably concentrate on the objects, which
demonstrates that our method produces highly accurate object masks and bounding boxes.

(a) Banana

(b) Biscuit_box
Figure 13. Examples of segmentation masks and bounding boxes for different objects.

Evaluation of synthesized images. We create two subsets with 100 images from our
initially captured dataset in order to quantitatively evaluate our approach. The Dense set is
generated with densely captured images, while the Sparse set contains sparsely captured
images. We randomly choose an image from the subset as our ground truth image and
then use the other images in the subset to synthesize the chosen image. We compare our
method with state-of-the-art learning-based algorithms. The peak signal-to-noise ratio
(PSNR) is used to evaluate image quality, where a higher PSNR value means a better image
quality. Table 3 summarizes the quantitative evaluation results.
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Table 3. Quantitative evaluation of the synthesized images in terms of peak signal-to-noise ratio
(PSNR) (dB).

SM [46] LLFF [47] NeRF [48] Ours

Dense 20.11 22.93 33.25 30.17
Sparse 11.47 14.04 21.67 27.09

As we can see, even though the result of NeRF [48] is better when compared to other
methods on Dense set, our method achieves the best performance on Sparse set. It indicates
that our method is more robust to the dataset which is captured sparsely. Figure 14 shows
some examples of synthesized images.

Figure 14. Examples of synthesized color-and-depth image pairs.

4.2. 6D Object Pose Estimation Challenge

Based on our dataset, we organize the Shape Retrieval Challenge benchmark on 6D
object pose estimation. We test three learning-based algorithms, including DenseFusion,
ASS3D, and GraphFusion, in our dataset. A more detailed description of these methods
can be found in [49].

Overall performance. The performance of 6D object pose estimation is evaluated by
ADD(-S) [9] which are the average distance metric (ADD) and the average closest point
distance (ADD-S), and the area under ADD curve (AUC). A predicted pose is considered
to be correct if ADD(-S) calculated with this pose is less than 10% of a model diameter, as
mentioned in [9]. Tables 4–6 show the overall performance of proposed approaches.

Furthermore, in Figure 15, we also visualize the comparison results. It can be seen
that DenseFusion, ASS3D, and GraphFusion provide more accurate 6D poses for colorful
objects, while these approaches are less robust against dark color or reflective objects.
For example, the performance of DenseFusion from the colorful biscuit box to reflective
vacuum cup drops significantly ( 91% to 61% in terms of ADD). Similarly, the pose accuracy
of GraphFusion from the gingerbread box with bright red color to the cookie box with a
dark blue color has a large decrease, from 95% to 75%, in terms of ADD-S.

Effect of training images. In order to investigate the effectiveness of using photo-
realistic images as training images, we use DenseFusion, ASS3D, and GraphFusion for the
performance evaluation. All of the models are trained on synthesized images, and then
tested on real captured and synthesized images that are never seen during training. Table 7
shows the comparison results.
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(a) DenseFusion

(b) ASS3D

(c) GraphFusion

Figure 15. Examples of accuracy performance. Each 3D model is projected to the image plane with the estimated 6D pose.

It is noteworthy that knowledge learned from photo-realistic images can be success-
fully transferred to real-world data without domain constraints. For example, GraphFusion
that is trained on synthetic data can provide accurate 6D poses for both real captured and
synthesized images in terms of biscuit box (92% and 93%), respectively. This is a useful
finding, as synthesizing photo-realistic images needs less hardware and does not require
any human effort to capture and annotate training images.

Time efficiency. We compare the time efficiency among DenseFusion, ASS3D, and
GraphFusion in Table 8. As can be seen, ASS3D runs the fastest among these methods.
In particular, ASS3D runs four times faster than GraphFusion. This is mainly because
ASS3D estimates the object pose in a single and consecutive network, which is helpful for
improving the prediction speed.
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Table 4. Quantitative evaluation of the 6D pose in terms of average distance metric (ADD).

Banana Biscuit_Box Chips_Can Cookie_Box Gingerbread_Box Milk_Box Pasta_Box Vacuum_Cup MEAN

DenseFusion 0.86 0.91 0.56 0.62 0.87 0.50 0.77 0.61 0.71
ASS3D 0.70 0.78 0.75 0.49 0.63 0.58 0.63 0.65 0.65

GraphFusion 0.83 0.93 0.69 0.61 0.90 0.66 0.84 0.63 0.76

Table 5. Quantitative evaluation of the 6D pose in terms of average closest point distance (ADD-S).

Banana Biscuit_Box Chips_Can Cookie_Box Gingerbread_Box Milk_Box Pasta_Box Vacuum_Cup MEAN

DenseFusion 0.86 0.95 0.94 0.74 0.94 0.81 0.91 0.90 0.88
ASS3D 0.75 0.88 0.85 0.66 0.86 0.62 0.72 0.75 0.76

GraphFusion 0.87 0.96 0.97 0.75 0.95 0.77 0.96 0.97 0.90

Table 6. The 6D pose estimation accuracy in terms of the area under ADD curve (AUC).

Banana Biscuit_Box Chips_Can Cookie_Box Gingerbread_Box Milk_Box Pasta_Box Vacuum_Cup MEAN

DenseFusion 0.77 0.77 0.74 0.67 0.76 0.66 0.74 0.71 0.72
ASS3D 0.66 0.74 0.72 0.56 0.71 0.51 0.61 0.64 0.64

GraphFusion 0.75 0.79 0.76 0.66 0.78 0.67 0.77 0.74 0.74

Table 7. The 6D pose estimation accuracy in terms of ADD using different input images.

Real Synthetic

DenseFusin ASS3D GraphFusion DenseFusin ASS3D GraphFusion

banana 0.85 0.70 0.84 0.86 0.70 0.82
biscuit_box 0.91 0.77 0.92 0.91 0.78 0.93
chips_can 0.55 0.75 0.69 0.57 0.74 0.69
cookie_box 0.61 0.48 0.60 0.63 0.49 0.61
gingerbread_box 0.88 0.63 0.91 0.87 0.63 0.90
milk_box 0.51 0.57 0.68 0.49 0.58 0.66
pasta_box 0.78 0.61 0.83 0.76 0.64 0.84
vacuum_cup 0.59 0.65 0.64 0.62 0.64 0.63
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Table 8. Comparison of the computational run time among different approaches (second per frame).

Banana Biscuit_Box Chips_Can Cookie_Box Gingerbread_Box Milk_Box Pasta_Box Vacuum_Cup MEAN

DenseFusion 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
ASS3D 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
GraphFusion 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
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5. Conclusions and Future Work

In this paper, we have presented the RobotP dataset, a benchmark dataset containing
high-resolution color and depth images, ground truth 6D poses, segmentation masks, 2D
bounding boxes, and 3D models for 6D object pose estimation. In order to build the dataset,
we choose eight representative objects with the consideration of many practical issues,
including cost, sizes, shapes, textures, and portability. Subsequently, we use a well-chosen
3D camera to collect data for these objects. A pose refinement approach combining local
and global optimization is introduced to generate accurate ground truth 6D poses. We
generate new depth images by aligning and fusing estimated depth images generated by
MVS and the depth camera to further improve the quality of captured depth images. Based
on the fused depth images, we produce accurate 3D models, and then we use these models
to generate segmentation masks and 2D bounding boxes automatically. Besides, taking
advantage of image based rendering, we synthesize a large number of photo-realistic
color-and-depth image pairs with ground truth 6D poses.

Our dataset is freely distributed to research groups through the 6D object pose estimate
challenge that was organized by us. It is designed to serve as a widely used benchmark
dataset for robotic grasping and manipulation tasks. Our benchmark allows for evaluat-
ing and comparing pose estimation algorithms under the same standard, and it has the
potential to further enrich and boost the research of 6D object pose estimation and its
applications. Apart from that, our dataset can be used for other robot vision tasks, such as
object detection, semantic segmentation, and depth estimation.

Future work. We also note some limitations of our dataset, which we hope to improve
in the future. Firstly, the synthetic dataset needs to be expanded by adding more challeng-
ing objects, such as reflective and texture-less objects, and challenging conditions, such as
heavy occlusion and varying lighting conditions. We plan to make object models easily
integrated into a variety of robot simulation packages. When these modes are imported
into a simulation environment, a variety of motion planners and optimizers can use these
models as either collision or manipulation objects. Apart from that, we plan to add 4D/5D
models [50–52] to our dataset, as 4D/5D models will benefit indoor and outdoor dynamic
scene reconstruction, which plays an important role on vision-based applications, e.g.,
navigational systems managing moving objects.
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