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a b s t r a c t 

Cryo-electron tomography (cryo-ET) is an imaging technique that allows us to three-dimensionally visu- 

alize both the structural details of macro-molecular assemblies under near-native conditions and its cel- 

lular context. Electrons strongly interact with biological samples, limiting electron dose. The latter limits 

the signal-to-noise ratio and hence resolution of an individual tomogram to about 50 (5 nm). Biolog- 

ical molecules can be obtained by averaging volumes, each depicting copies of the molecule, allowing 

for resolutions beyond 4 (0.4 nm). To this end, the ability to localize and classify components is crucial, 

but challenging due to the low signal-to-noise ratio. Computational innovation is key to mine biological 

information from cryo-electron tomography. 

To promote such innovation, we provide a novel simulated dataset to benchmark different methods 

of localization and classification of biological macromolecules in cryo-electron tomograms. Our publicly 

available dataset contains ten tomographic reconstructions of simulated cell-like volumes. Each volume 

contains twelve different types of complexes, varying in size, function and structure. 

In this paper, we have evaluated seven different methods of finding and classifying proteins. Six 

research groups present results obtained with learning-based methods and trained on the simulated 

dataset, as well as a baseline template matching, a traditional method widely used in cryo-ET research. 

We find that method performance correlates with particle size, especially noticeable for template match- 

ing which performance degrades rapidly as the size decreases. We learn that neural networks can achieve 

significantly better localization and classification performance, in particular convolutional networks with 

focus on high-resolution details such as those based on U-Net architecture. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

There is a resolution gap in knowledge of cellular life between

he molecular level (obtained by techniques such as X-ray crys-

allography and cryo-electron microscopy single particle analysis)

nd the cellular level (typically obtained by light microscopy tech-
∗ Corresponding author. 
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iques) [1] . Cryo-electron tomography (Cryo-ET) has the potential

o bridge this gap by simultaneously three-dimensionally visualiz-

ng the cellular context and the structural details of macromolecu-

ar assemblies [2] . This technique may offer insights into key cel-

ular process, improve our understanding of essential life processes

nd the modes of action of drugs. 

Cryo-ET is an application of transmission electron cryomi-

roscopy, in which samples are imaged as they are sequentially

ilted, typically every 1 to 3 degrees from about −60 ◦ to +60 ◦. The

esulting “tilt-series” of 2D projections are then combined in a 3D

https://doi.org/10.1016/j.cag.2020.07.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.07.010&domain=pdf
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Fig. 1. The overall process of cryo-electron tomography from data collection to re- 

construction and subtomogram averaging. 
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reconstruction. In cryo-ET samples are vitrified in their fully hy-

drated state by rapid cooling and imaged under cryogenic condi-

tions. Rapid cooling allows imaging without dehydration or chem-

ical fixation, which often disrupts and distorts biological samples

[3] . 

Electron microscopes electrons strongly interact with biologi-

cal samples, limiting signal-to-noise and as a result the resolu-

tion of individual tomograms to about 50 (5 nm), enough for the

cellular context, but not for identifying structure of biomolecules

in the sample. A common approach to increase resolution of the

biomolecule of interest is to align and average copies of the same

particle, introducing the challenge of correctly localizing and iden-

tifying those particles in low-resolution tomograms ( Fig. 1 ). 

The core problem for this challenge is low signal-to-noise ra-

tio of cryo-electron tomograms, often reaching extremely low val-

ues, closely followed by an incomplete reconstruction due to the

limited tilt-series angles. Moreover, signal-to-noise in tomograms

is strongly frequency-dependent. Multiplied by the large amount

of volumetric data obtained during each imaging session, manual

segmentation is rarely feasible and often provide subjective results.

Instead, automated approaches are typically employed. 

Particles of known structures can be found in the tomogram by

template matching [4] , a process of cross-correlating the template
ver tomogram to find peak locations and angles (i.e. location and

ngles where the template matches the most). 

For particles with unknown structures, reference-free methods

ust be used. The most common approach is based on applying

ifference of Gaussian (DoG) [5] : a band-pass filter that removes

oisy high frequency components and homogeneous low frequency

reas, obtaining edges of structures. Based on the edges, a subto-

ogram containing the particle can be extracted, aligned, averaged

nd refined with other copies of the particle present in the tomo-

ram, allowing to obtain final, high-resolution structure of the par-

icle. 

In recent years, machine learning has seen successful appli-

ation to cryo-ET. Classical support vector machines have been

sed for both detection and classification [6] . With ever increas-

ng amounts of data captured by cryo-EM and -ET methods [7] ,

eep learning methods are gaining popularity. Supervised meth-

ds were proposed for localization [8] , classification [9] , end-to-

nd segmentation [10] and joint localization and classification [11] ,

roviding faster and often more accurate results than template

atching [12] . Moreover, methods based on clustering of rep-

esentational features [13] , segmentation by manually designed

ules [14] and geometric matching [15] provide unsupervised and

eakly-supervised alternatives, reducing the dependency on anno-

ated data. 

Each of the mentioned methods is validated on different tasks

nd different datasets, making it difficult to compare or draw con-

lusive results about their relative performance. With this paper,

e aim to support researchers involved in developing new meth-

ds for localization and detection of biomolecular structures in

ryo-electron tomograms. More specifically our contributions are

s follows: 

• We release a new, publicly available, fully-annotated simulated

dataset that resembles experimentally obtained cryo-electron

tomograms. 
• We benchmark and conduct evaluation of six proposed

learning-based methods against a strong, heavily-used baseline

template matching. 
• We experimentally confirm correlation between classification

performance and molecular weight of a particle, highlighting

the significant advantage of learning-based methods for such

targets over template matching. 

. Benchmark 

We propose a task of localization and classification of particles

n the cryo-electron tomogram volume. A benchmark is conducted

n a simulated cryo-electron tomogram populated with randomly

ositioned and oriented copies of structurally well-defined molec-

lar complexes. In total, the volume contained 2782 particles of

2 different classes ( Table 1 ). To facilitate application of learning-

ased methods, we also provide nine tomograms with similar pro-

ein distribution and ground truth data that was used for the sim-

lation. 

.1. Dataset 

Our dataset generation starts with creating the original den-

ity maps (grandmodels). First, to evaluate localization and clas-

ification for various size and shape proteins we chose 12 different

roteins of known structure ( Table 1 , Fig. 2 ). To characterize their

hape, we calculated sphericity, � , a measure of how much the

olume resembles a sphere: 

= 

π1 / 3 × (6 V ) 2 / 3 
(1)
A 
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Table 1 

Macromolecular complexes that are present in the dataset, sorted by their molecular weight. 

PDB Name Mol. weight ( kDa ) Volume (nm 

3 ) Area (nm 

2 ) Sphericity Eff. radius ( nm x) 

1s3x Hsp70 ATPase 42.75 104.1 122 0.877 2.56 

3qm1 LJ0536 S106A 62.62 139.1 144.9 0.896 2.88 

3gl1 Ssb1, Hsp70 84.61 207 202.6 0.835 3.065 

3h84 GET3 158.08 375.3 399 0.631 2.822 

2cg9 Hsp90-Sba1 188.73 394.2 380.5 0.683 3.108 

3d2f Sse1p, Hsp70 236.11 521.9 497.9 0.63 3.145 

1u6g Cand1-Cul1-Roc1 238.82 498.5 488 0.623 3.065 

3cf3 P97/vcp 541.74 1123 805.7 0.648 4.181 

1bxn Rubisco 559.96 978.9 614.4 0.776 4.78 

1qvr ClpB 593.36 1255 1159 0.485 3.248 

4cr2 26S proteasome 1309.28 3085 1971 0.52 4.696 

4d8q TRiC/CCT 1952.74 2152 1331 0.606 4.85 

Fig. 2. 3D view of the macromolecular complexes that are present in the dataset. 

Sorted by their molecular weight, left to right, top to bottom: 1s3x , 3qm1 , 3gl1 ; 
3h84 , 2cg9 , 3d2f ; 1u6g , 3cf3 , 1bxn ; 1qvr , 4cr2 , 4d8q . Scalebar is 10 nm. 
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Fig. 3. Central slice of tomogram #1 in the generated dataset: (a) ground truth 

volume of the sample that was used for reconstruction, (b) class mask, where each 

voxel is annotated by class, (c) tomographic reconstruction 
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2 NYU/ACF Scientific Visualization, Library of 3-D Molecular Structures: http: 

//www.nyu.edu/pages/mathmol/library/ 
3 Voltools: CUDA-accelerated NumPy 3D affine transformations, https://github. 

com/the-lay/voltools 
nd effective radius, the radius of a sphere with the same surface

rea to volume ratio as the volume of interest: 

 e f f = 

3 V 

A 

(2) 

here V is the volume and A is the surface area. 

Next, we have generated their electron density maps at 3 res-

lution with UCSF Chimera [16] and then resampled to 10 resolu-

ion. Between 2400 and 2800 protein density volumes were placed

n the “grandmodel” (ground truth sample volume) at random lo-

ations and in random SO (3) orientations. The proteins were placed

ithout overlapping each other but without limitations of how

lose to each other they can be, for a more realistic molecularly

rowded environment ( Fig. 3 a). For each protein volume we saved

he class, the center coordinates and the Euler angles of its orien-

ation (in ZXZ angle rotation notation). Moreover, we have saved

arious other ground truth artifacts: class masks ( Fig. 3 b), occu-
ancy maps (mapping from each voxel to corresponding particle),

nd their bounding boxes. 

For ice simulation, we calculate the average charge density of

mbedding amorphous ice from a molecular water model 2 and

btain 0.15 V/nm 

3 . We then embed macromolecular complexes in

n ice layer of 200 nm and to encompass random variation in ice

ensity, we add a random noise with σ = 0 . 01 . Using our GPU

ffine transformation volumetric framework 3 , each grandmodel

as rotated over 40 evenly spaced tilt angles ranging from −60 ◦

o +60 ◦ with cubic b-spline interpolation [17] . 

After rotation we added random structural noise, with standard

eviation σ = 0 . 04 , selected by comparison with experimental im-

ges. The structural noise varied between rotations, which mod-

lled the sample deterioration due to the electron beam damage.

http://www.nyu.edu/pages/mathmol/library/
https://github.com/the-lay/voltools
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Fig. 4. Central slices of test tomograms in SHREC 2019 (left) and SHREC 2020 

(right). In the previous benchmark largest classes particles are visible by eye with- 

out any processing. 
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To calculate the projection image for each rotation angle we im-

plemented the multislice method [18] . This method models the de-

focus gradient through the ice layer by propagating the electron

wave through slices of the model. We set the size of these slices

to 5 nm . After calculating the wave propagation through the sam-

ple we obtain the exit wave in the image plane. To get the final

projection image we multiplied the exit wave by the microscopes

contrast transfer function (CTF) using a defocus of 3 micrometer,

an acceleration voltage of 300 kV, amplitude contrast of 8%, and

a Gaussian CTF decay of 0 . 4 −1 . Finally we applied CTF dependent

noise and background noise with a signal-to-noise ratio of 0.004

to model the noise added by the detectors measurement. The final

images were 512 x 512 pixels with a pixel size of 1 nm. We did a

weighted back-projection reconstruction to obtain the tomograms

of 512 x 512 x 512 with a sampling of 1 nm / v oxel. 

2.2. Evaluation 

The main goal of the benchmark is to localize and classify bi-

ological particles in the tomographic reconstructions. The perfor-

mance of the submissions has been evaluated solely on the test

tomogram, the only tomogram for which ground truth is not avail-

able until after performing the test. 

During evaluation, we parsed the submitted result and com-

puted some commonly adopted performance metrics for classifi-

cation and localization. The metrics are precision ( Eq. 3 ): percent-

age of results which are relevant; recall ( Eq. 4 ): percentage of total

relevant results correctly classified; F1 score ( Eq. 5 ): harmonic av-

erage of the precision and recall; false negative rate also known as

miss rate ( Eq. 6 ): percentage of results which yield negative test

outcomes. We also record how far the predicted center was from

the ground truth center and how many results refer to the same

particles. 

Precision = 

true positive 

true positive + false positive 
(3)

Recall = 

true positive 

true positive + false negative 
(4)

F 1 score = 2 · precision · recall 

precision + recall 
(5)

Miss rate = 1 − recall (6)

2.3. Comparison to an earlier benchmarks 

Localization and classification in cryo-ET presents an open

problem with major challenges due to the nature of imaging pro-

cess and biological sample size ( Section 1 ). Previous version of our

benchmark [12] has already attempted to establish a comparison of

the methods on a simulated, publicly available dataset, and high-

light the most interesting research directions. 

Since then, the dataset generation method has been consider-

ably expanded. Multiple problems were addressed, most important

of which is defective particle rotation that produced chopped par-

ticles with unrealistic, hard edges. The problem is particularly no-

ticeable for smaller particles, where the cropping makes the num-

ber of available voxels for classification even smaller. Moreover, we

have added following improvements: 

• Instead of simple 2D projections, we now use multislice wave

propagation algorithm [18] to better simulate electron micro-

scope behavior. 
• We now allow crowded simulations, where particles can be in

direct contact with each other, instead of bounding box space

limited particles. 
• Noise model is now more precise and includes variations in ice

thickness and detector measurements. 
• We are able to provide more dataset generation artifacts, in-

cluding class masks (voxel to class mapping) and occupancy

masks (voxel to particle mapping). This makes it easier for par-

ticipants to benchmark their methods and reduces the need to

generate their own training data. 

Another change compared to the previous dataset is the differ-

nce in the signal-to-noise ratio: 0.02 in 2019 vs. 0.004 in 2020

 Fig. 4 ). Lower signal-to-noise ratio leads to a more challenging,

ut more realistic dataset, and allows to highlight methods that

ould generalize to experimental data the most. 

. Participants and methods 

Six international research groups joined in the experimental

omparison, applying seven different methods, obtaining eight out-

ut results. 

.1. Classification in cryo-electron tomograms with 3D MS-D network 

By: Yu Hao, Xiaohua Wan, Xuefeng Cui, Fa Zhang 

We designed a deep-learning based method to localize and

lassify the particles. We use 3D segmentation network to segment

he tomogram. Then, the location and classification of particles are

alculated by clustering algorithm. 

First, the tomogram is cropped into cubic volumes with

 4 x 6 4 x 6 4 voxels. Then, our network conducts a voxel-wise classi-

cation on each cubic volume. Here, the voxels are classified from

 to 13. 

An example of a six layers 3D MS-D network with the dilation

ate ∈ [1, 3] is shown in Fig. 5 . 3D dilated convolution is intro-

uced as our basic operation to reduce the number of trainable

arameters, and the dense connection is applied to reuse all pre-

eding feature maps. Our network has 64 dilated layers with dila-

ion rate ∈ [1, 16]. It is implemented in PyTorch with CUDA acceler-

tion and trained on 8 sets of tomograms. The model was trained

or 200 epochs (spanning one week), in bathes of 125, using Adam

19] optimizer with learning rate of 0.0 0 01 on five NVIDIA GeForce

TX 2080 Ti. The total inference time for a tomogram is 5 min. 

We use mean-shift clustering to determine the central position

f particles. In the segmented tomogram, each cluster can be re-

arded as a particle. To improve the localization, the centroids of

D connected components are utilized as initial seeds to generate

ore precise clusters. In each cluster, the label that occurs most

requently is the classification result. 



I. Gubins, M.L. Chaillet and G. van der Schot et al. / Computers & Graphics 91 (2020) 279–289 283 

Fig. 5. 3D MS-D: Architecture of the network. 

Fig. 6. Top: CNN architecture used in DeepFinder. All convolutional layers are followed by a ReLU activation function, except the last layer which uses a soft-max function. 

The up-sampling is achieved with up-convolutions (also called “backward-convolution”). Combining feature maps from different scales is performed by concatenation along 

channel dimension. Bottom: workflow depicting how macromolecule coordinates are obtained from the segmentations generated by the CNN. A clustering algorithm (mean- 

shift) is applied on the segmentation map to differentiate individual macromolecules. 
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4 DeepFinder: https://gitlab.inria.fr/serpico/deep-finder . 
.2. DeepFinder: Deep learning improves macromolecules localization 

nd identification in 3D cellular cryo-electron tomograms 

By: Emmanuel Moebel 

DeepFinder [20] is a computational tool for multiple macro-

olecular species localization, based on supervised deep learn-

ng. This two-step procedure ( Fig. 6 ) first produces a segmenta-

ion map where a class label is assigned to each voxel. The classes

an represent different molecular species (e.g. ribosomes, ATPase),

tates of a molecular species (e.g. binding states, functional states)

r cellular structures (e.g. membranes, microtubules). In the sec-

nd step, the segmentation map is used to extract the positions

f macromolecules. To perform image segmentation, we use a 3D

NN whose architecture and training procedure have been adapted

or large datasets with unbalanced classes. The analysis of the

btained segmentation maps is achieved by clustering the voxels

ith the same label class, using the mean-shift algorithm. Hence,

he detected clusters correspond to individual macromolecules and

heir positions can then be derived. 

The 3D CNN architecture is trained with Adam [19] optimizer,

sing 0.0 0 01 as learning rate, 0.9 as exponential decay rate for

he first moment estimate and 0.999 for the second moment es-

imate. A Dice loss [21] is used to estimate the network param-

ters. The training took 50 h on an Nvidia M40 GPU. For large

nd medium macromolecules, presented scores are reached after

2 h; the additional time is necessary for having better perfor-

ance with small macromolecules. The segmentation and cluster-

ng of a 512 x 512 x 200 tomogram takes 20 min. 

With feasibility in mind, we developed training strategies to as-

ist the user in producing segmentation maps (needed for training

he CNN) from tomogram annotations consisting of the spatial co-

rdinates of macromolecules. DeepFinder is an open-source python
ackage 4 , with a graphical interface aimed towards non-computer

cientist users. 

.3. Semantic segmentation using 3D ResNet with consensus checking

By: Xiao Wang, Daisuke Kihara 

The method is based on 3D semantic segmentation of the to-

ogram data using deep learning. Given a voxel (cropped 3D re-

ion) from the tomogram, the proposed 3D-ResNet takes the voxel

s input and outputs the 13 probability scores for 12 proteins and

ackground. The size of each 3D input slice was selected to be

2 x 32 x 32. To achieve better performance, we used ResNet of 20

ayers [22,23] . 

In order to train the proposed deep learning model, we first

ample negative examples from the provided training tomogram

ata by extracting voxels with the center that is not closer than

6 grid units to any proteins. For each positive voxels (voxels that

ave a target protein at the center) and negative voxels, we ran-

omly flipped and rotated before using it for training. We had in

otal 23,350 positive voxels and 90 0 0 negative voxels. In the train-

ng process, we used the Adam optimizer [19] with an initial learn-

ng rate of 0.002. The training took 5 h on one NVIDIA GeForce GTX

080Ti. 

In the prediction, we use a stride of 2 to select a center point

or an input voxel. When a protein label is assigned to the cen-

er of a voxel, we check labels assigned to points within the box

f the size of the protein to examine the consistency of the label

ssignments. The box size of each target protein was provided by

he organizers. We removed the prediction for the center point if

https://www.gitlab.inria.fr/serpico/deep-finder
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Fig. 7. YOPO: Flowchart of macromolecule detection. 

Fig. 8. Dn3DUnet: Cryo-electron volume particle detection and classification 

pipeline. 
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its predicted label was different from the majority of the assigned

labels in the box. We did not apply this majority checking proto-

col for small proteins (i.e. 1s3x, 3qm1, 3gl1). For each voxel with

a predicted label, we counted the number of points with the same

label in the protein box (majority count). Then, we clustered those

points with the same label and computed the mean of their co-

ordinates as the position of the protein. Finally, for each of the

12 target proteins, predicted voxel positions of the target protein

were sorted by the majority count and the top N predictions was

selected for submission, where N was decided based on the class

ratio of the 12 proteins in the training set. The whole inference

process takes 2 h on one tomograms. 

3.4. YOPO: one-step object detection for cryo-ET macromolecule 

localization and classification 

By: Xiangrui Zeng, Min Xu 

We formulate a novel one-step object detection framework

specifically designed for cryo-ET data ( Fig. 7 ). Previous deep-

learning-based works on detecting particles in cryo-electron tomo-

grams are either two-step classification (extract potential structural

regions as subtomograms and then perform classification) or seg-

mentation methods. 

Considering two important properties of subtomogram data: (1)

the high-level structural details of a particle determine its func-

tion and identity and (2) the particle is of random orientation and

displacement inside a subtomogram, we designed a convolutional

neural network named YOPO (You Only Pool Once), which con-

tains only one pooling layer (a global pooling layer) to retain dis-

criminative high-level structural details and achieve the maximal

transformation-invariance. The flowchart of macromolecule local-

ization and classification using YOPO is illustrated in Fig. 7 ). In the
raining stage, only particle location ground truth was used to train

he YOPO network to predict the PDB ID of a subtomogram. In the

esting stage, the trained YOPO network was applied on the tomo-

ram level to directly predict the location and PDB ID of detected

acromolecules. 

From each training tomogram, we extract subtomograms of size

4 3 according to the ground truth particle location file. An addi-

ional 20 0 0 0 subtomograms were extracted at random locations

rom the background. Therefore, there are K = 13 classes in total

ncluding the background class. Subtomograms from tomogram 0

o 7 were used as training data and subtomograms from tomo-

ram 8 as validation data. The training took 8 hours on one NVIDIA

eForce Titan X GPU. The trained model predicted at every location

y applying the learned model parameters on the whole testing to-

ogram. Locations with high confidence (probability > 0.99) to be

ne of the structural classes were kept. We then filtered the loca-

ions to ensure that the minimum distance between two detections

as greater than 14 voxels. 

As a one-step object detection method, the classification and

ocalization tasks are unified in an end-to-end fashion. YOPO is

n efficient cryo-ET macromolecule detection (localization + detec-

ion) framework: (1) the only ground truth information used for

raining is the particle locations and classes in ground truth parti-

le location file; (2) YOPO performs prediction on a subtomogram

evel at every location, which is similar to the traditional template

atching approach. However, the whole prediction on one tomo-

ram took only about 40 min using one GPU instance. 

.5. Cryo-electron tomogram particle localization and classification 

sing 2D denoising network and 3D U-net pipeline 

By: Nguyen P. Nguyen, Tommi White, Filiz Bunyak 

In order to denoise the input tomograms and to improve the

etection performance, we used DnCNN [24] , a feed-forward de-

oising convolutional neural network utilizing residual learning

trategies. The DnCNN network consists of 20 convolutional lay-

rs. The network is designed to predict residual image that is the

ifference between the noisy input image and the latent clean im-

ge. The network is trained using 2D XY slices from the tomogram

olumes with Adam optimizer and initial learning rate of 0.0025.

ata slices were split by ratio 0.8: 0.1: 0.1 for training, validation

nd test sets. We denoised the tomogram volumes slice by slice.

he denoising step improved the average peak signal to noise ratio

PSNR) of the 3D volumes from 6 to 22, and the average Structural

imilarity (SSIM) indices from 0.02 to 0.83 compared to the noisy

nput volumes. The training of the denoising network took 2 h and

8 min. 

The denoised tomogram volumes were fed to a modified 3D U-

et [25] network, where we replaced the regular cross-entropy loss

unction with the general dice loss function described in [21,26] .

he network was retrained to perform semantic segmentation of

he 3D tomograms patches into 13 classes (one background class

nd 12 classes of particles). The training was performed with Adam

ptimizer and initial learning rate of 0.001. The training of the seg-

entation network took 12 h and 22 min. The test volumes were

artitioned into non-overlapping 3D patches of size 104 3 voxels

nd fed to the 3D U-net. 

Connected component analysis was performed to identify indi-

idual particle centroids and volumes. A post-processing step was

sed to filter-out spurious detections based on detection size. De-

ected particles with centroids within 5 voxels from the corre-

ponding ground truth centroids were considered as detected. De-

ections having the same class labels as the corresponding ground

ruth particles were considered as correct classification. The result

n average is obtained in 101 s (25 s for denoising, 38 s for seg-

entation, 38 s for localization). 
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Fig. 9. UMC: Overview of U-net Multi-task Cascade architecture. Each decoder 

block accepts skip connections from encoder and previous decoders at the same 

depth level. 
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Table 2 

Distribution of proteins in the test tomogram. 

PDB Quantity 

1s3x 233 

3qm1 241 

3gl1 229 

3h84 240 

2cg9 228 

3d2f 214 

1u6g 217 

3cf3 238 

1bxn 245 

1qvr 226 

4cr2 231 

4d8q 240 
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.6. Deeply cascaded U-net for multi-task cryo-electron tomography 

rocessing 

By: Ilja Gubins, Remco C. Veltkamp, Friedrich Förster 

We used U-net Multi-task Cascade (UMC), a novel CNN archi-

ecture for multi-task learning ( Fig. 9 ). Inspired by U-net architec-

ure [25] , we extend it by an additional skip connection from each

ecoder block. Such outgoing connections allow us add multiple

ecoding pathways and connect them, forming deep cascades. Ac-

ordingly, UMC can be seen as a special case of a multi-task net-

ork cascade [27] where each cascade stage is a decoding path-

ay of U-Net. We hypothesize that connectivity between decod-

ng pathways, facilitates inductive transfer between early and late

tages of cascade. Moreover, the explicit parameter sharing acts as

 form or regularization and reduces the risk of overfitting. 

For cryo-ET volumes, we decided to use UMC with two out-

ut paths, one for denoising and the second for segmentation. Our

ypothesis is that explicitly supervised denoising of reconstruction

an help segmentation to produce better output. We use UMC with

epth of 5 and following number of filters at each level: 16, 32, 64,

28, 256, resulting in 8.82 M of parameters. For denoising, we use

ean squared error minimization objective between input recon-

truction and provided ground truth grandmodel volume. For seg-

entation, we employ Tversky loss function [28] with α = 0 . 7 and

= 0 . 3 , targetting original provided class mask. 

While developing, we used tomograms 0 to 7 for training and

omogram 8 for validation, but for the final model training we used

ll 9 available tomograms. We split each tomogram into patches of

4 3 voxels with 75% overlap and employ random horizontal flips

or data augmentation. The model was trained for 25 epochs, in

atches of 24, using Adam [19] optimizer with learning rate of

.001. The training took 16 hours on a Tesla P100 GPU (Google Co-

ab). 

Using trained model, we segmentated the test tomogram. Then,

e found connected components and filtered out components that
ave less than 10 voxels or have centroids less than 5 voxels away

rom another connected component. For a final predicted class of

 particle, we took the most common occurring class in the con-

ected component. The total inference time is 40 min. 

.7. Template matching 

By: Gijs van der Schot, Ilja Gubins 

We used the cryo-ET analysis framework PyTom [29] to con-

uct template matching using each of the twelve protein electron

ensity maps as templates. The templates were modulated in the

requency domain using a standard ctf curve at 3 um defocus. Fre-

uencies beyond the first ctf-zero were set to 0. Spherical tem-

late masks with Gaussian smoothed edges based on the thresh-

lded electron density were used for normalization for the cross-

orrelation value. We selected the top 20 0 0 candidates with the

ighest cross-correlation score for each class and then used the

andidate lists with the two following approaches: 

1. Thresholded, where we take top N candidates per class going

from the biggest class to the smallest one by one. 

2. Filtered, where we take top N candidates per class as in the

previous method, but we additionally filter out candidates that

would overlap with already selected particles. To test for over-

lap, we calculate the distance between center of an existing

particle to the center of the candidate and calculate whether

the distance is smaller than the sum of their radii. 

The exact number of particles in the test tomogram is unknown

t the test time, only that it is a random number between 2400

nd 2800 particles. Based on average of 2600 particles and 12 pro-

ein classes, we have selected N = 217 . Template matching for 12

rotein classes takes 27 h 24 min on 16-core CPU (2 h 17 min per

lass) or 1 h 24 min on one NVIDIA GeForce GTX 1080 Ti (6 min

2 s per class). 

. Results 

We have evaluated different metrics ( Section 2.2 ) that allows

omparison of localization ( Table 3 ) and classification ( Table 4 )

erformance of the methods. For more convenient referencing, we

ave assigned following short names to the methods: 

1. 3D MS-D ( Section 3.1 ) 

2. DeepFinder ( Section 3.2 ) 

3. 3D ResNet ( Section 3.3 ) 

4. YOPO ( Section 3.4 ) 

5. Dn3DUnet ( Section 3.5 ) 

6. UMC ( Section 3.6 ) 

7. TM-T and TM-F ( Section 3.7 ) 

The test tomogram has 2782 particles of the same 12 classes

nd same distribution as the training data ( Table 2 ). To have a
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Table 3 

Results of localization evaluation. RR : results reported; TP : true positive, unique particles found; FP : false positive, reported non-existant particles; FN : false negative, unique 

particles not found; MH : multiple hits: unique particles that had more than one result; RO : results outside of volume; AD : average euclidean distance from predicted particle 

center; Recall : uniquely selected true locations divided by actual number of particles in the test tomogram; Precision : uniquely selected true locations divided by RR; Miss 

rate : percentage of results which yield negative results; F1 Score : harmonic average of the precision and recall. The best results in each column are highlighted. 

Submission RR TP FP FN MH RO AD Recall Precision Miss rate F1 Score 

3D MS-D 2663 2523 139 259 0 2.05 0.906 0.947 0.094 0.926 

DeepFinder 2594 2485 107 297 2 0 2.166 0.893 0.957 0.107 0.924 

3D ResNet 2864 1983 611 799 246 0 3.501 0.712 0.692 0.288 0.702 

YOPO 2821 2543 240 239 37 0 2.104 0.914 0.901 0.086 0.907 

Dn3DUnet 2598 2340 146 442 112 0 2.807 0.841 0.9 0.159 0.869 

UMC 2781 2642 68 140 68 0 1.873 0.949 0.95 0.051 0.949 

TM-T 2604 1898 20 884 412 0 1.528 0.682 0.728 0.318 0.704 

TM-F 2604 2267 331 515 6 0 1.767 0.814 0.87 0.185 0.841 

Table 4 

Results of classification evaluation for all classes. The values correspond to F1 score achieved by methods on specific classes. The best results in each column are highlighted. 

Submission 1s3x 3qm1 3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 4d8q 

3D MS-D 0.192 0.408 0.437 0.416 0.368 0.461 0.492 0.719 0.948 0.851 0.942 0.964 

DeepFinder 0.61 0.729 0.8 0.911 0.783 0.848 0.866 0.939 1 0.984 0.993 0.993 

3D ResNet 0.193 0.185 0.405 0.407 0.334 0.445 0.491 0.628 0.906 0.719 0.868 0.817 

YOPO 0.558 0.741 0.67 0.834 0.696 0.682 0.795 0.896 0.987 0.83 0.923 0.993 

Dn3DUnet 0.529 0.577 0.569 0.674 0.332 0.523 0.462 0.676 0.925 0.684 0.907 0.974 

UMC 0.661 0.827 0.839 0.947 0.855 0.873 0.899 0.981 0.997 0.98 1 0.997 

TM-T 0.2 0.102 0.248 0.727 0.555 0.869 0.835 0.88 0.934 0.97 0.968 0.945 

TM-F 0.319 0.219 0.207 0.66 0.589 0.808 0.815 0.945 0.939 0.966 0.968 0.945 

Table 5 

Grouping of macromolecular complexes by their molecular weight in kDa 

Group Weight Proteins 

Small < 200 1s3x, 3qm1, 3gl1, 3h84, 2cg9 

Medium 200 - 600 3d2f, 1u6g, 3cf3, 1bxn, 1qvr 

Large 600 4cr2, 4d8q 

Table 6 

F1 scores of each submission for size group defined in Table 5 . The best results in 

each column are highlighted. 

Submission Small Medium Large 

3D MS-D 0.364 0.694 0.953 

DeepFinder 0.767 0.927 0.993 

3D ResNet 0.305 0.638 0.843 

YOPO 0.7 0.838 0.958 

Dn3DUnet 0.536 0.654 0.941 

UMC 0.826 0.946 0.999 

TM-T 0.366 0.898 0.957 

TM-F 0.399 0.895 0.957 

Fig. 10. Cumulative classification F1 scores of methods. 

 

 

 

Table 7 

Reported training and inference stages timings. Template matching results (last two 

rows) are reported for both CPU and GPU processing, for all 12 classes. 

Method Training stage Inference stage 

3D MS-D 168 h 5 m 

DeepFinder 50 h 20 m 

3D ResNet 5 h 2 h 

YOPO 8 h 40 m 

Dn3DUnet 15 h 10 m 1 m 41 s 

UMC 16 h 42 m 

TM-T/TM-F GPU N/A 27 h 24 m 

TM-T/TM-F CPU N/A 1 h 24 m 
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more detailed classification evaluation, we compare results with

cumulative F1 score ( Fig. 10 ), as well as group proteins by their

molecular weight ( Table 5 ) and average F1 scores for an additional

metric correlated with particle sizes ( Table 6 ). 
. Discussion 

Overall, the benchmark allows us to compare baseline and up-

oming methods, as well as highlight current challenges in the

ovel cryo-ET localization and classification approaches. 

Comparison with template matching . All but the template match-

ng are learning-based methods using 3D convolutional neural net-

orks. The results ( Tables 3, 4 ) show that learning-based meth-

ds can achieve higher performance than the traditional baseline

emplate matching, heavily used in cryo-ET research this day. Com-

ared to template matching, learning-based methods have the ad-

antage of being significantly more robust to noise perturbations

han cross-correlation. Another significant advantage is computa-

ional time ( Table 7 ). The table highlights the range of possible

raining and inference timings of the methods. All learning-based

ethods require significantly less time than the traditional CPU-

ased template matching, often even including the training stage.

dvanced GPU template matching shows significant speedup com-

ared to CPU time, still takes longer than almost all learning-based

ethods. 

Method performance correlates with size . Results ( Table 6, Fig. 12 )

how that there is a correlation between macromolecular com-

lex size and classification performance for all methods. For a

etter overview, we have plot method classification performance

s. molecular weight ( Fig. 11 ). The performance of all methods is

onsistent, with similar performance dips and spikes (i.e. 1bxn
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Fig. 11. Method classification performance plot against particle molecular weight. X-axis in the right plot is in logarithmic scale. 

Fig. 12. Classification confusion matrices of the compared methods. The particles are ordered by molecular weight. The colorbar indicates the number of correct classifica- 

tions. 
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t 560 kDa and 2cg9 at 188 kDa ). The results suggest that tem-

late matching provides comparable results for finding large and

edium particles, but rapidly falls behind as the size decreases.

his shows potential of learning-based methods for smaller parti-

les. 

Neural network architectures . Smaller particles were found es-

ecially well by UMC ( Section 3.6 , and is closely follower by

eepFinder ( Section 3.2 ). Both methods are variations of U-Net

etwork [25] architecture and use similar overlap-based loss func-

ions, however UMC has noticeably higher number of parameters

more filters and higher depth) and also uses additional supervi-

ion for denoising. One of the main features of U-Net architec-

ure are skip connections that give the network higher control

ver feature map combination, preservation of information despite

f downsampling between network levels and subsequently leads

o a higher resolution, and it was first used for biomedical se-

antic segmentation, where high accuracy is critical. Dn3DUnet
 Section 3.5 ) also uses U-Net for segmentation, however there is a

re-segmentation denoising done with a separate DnCNN [24] net-

ork. Using not connected networks might induce loss of informa-

ion between pipeline stages and that might explain lower perfor-

ance compared to other U-Net inspired methods. 

Other methods also draw inspiration from neural network ar-

hitectures designed for image processing. 3D MS-D ( Section 3.1 )

sing a densely connected convolutional network [30] and 3D

esNet ( Section 3.3 ) using a residual network [22] conducted

emantic segmentation of the tomograms. Alternatively, YOPO

 Section 3.4 ) does not rely on semantic segmentation and still

chieves top-3 performance. 

Supervised training . All of the learning-based methods featured

n the paper are supervised, requiring a training dataset with data

istribution closely related to the data the method will be used

n. For cryo-ET, this is a highly limiting factor that can prevent

he wide adoption of deep learning, especially with semantic seg-
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Table 8 

Localization results of template matching done on SHREC 2019 and SHREC 2020 datasets. RR : results reported; TP : true positive, unique particles found; FP : false positive, 

reported non-existant particles; FN : false negative, unique particles not found; MH : multiple hits: unique particles that had more than one result; RO : results outside of 

volume; AD : average euclidean distance from predicted particle center; Recall : uniquely selected true locations divided by actual number of particles in the test tomogram; 

Precision : uniquely selected true locations divided by RR; Miss rate : percentage of results which yield negative results; F1 Score : harmonic average of the precision and recall. 

Submission RR TP FP FN MH RO AD Recall Precision Miss rate F1 Score 

TM-T-2020 2604 1261 140 1521 475 0 1.934 0.453 0.484 0.546 0.468 

TM-F-2020 2604 1787 813 995 4 0 2.433 0.642 0.686 0.357 0.663 

TM-T-2019 2496 982 113 1558 559 0 2.975 0.386 0.393 0.613 0.389 

TM-F-2019 1987 1664 291 876 31 0 2.9 0.655 0.837 0.344 0.735 

Table 9 

Classification results of template matching done on SHREC 2019 and SHREC 2020 datasets. The values correspond to F1 score achieved by methods on specific classes. 

Submission 3qm1 1s3x 3h84 3gl1 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 4d8q 

TM-T-2020 0.046 0.128 0.34 0.064 0.178 0.429 0.28 0.579 0.683 0.583 0.937 0.94 

TM-F-2020 0.064 0.169 0.364 0.053 0.207 0.492 0.34 0.653 0.696 0.611 0.91 0.945 

TM-T-2019 0.083 0.038 0.038 0.075 0.109 0.251 0.035 0.234 0.676 0.107 0.679 0.82 

TM-F-2019 0.188 0.07 0.14 0.158 0.133 0.426 0.191 0.21 0.308 0.149 0.704 0.668 
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mentation models that require voxel-level annotations. DeepFinder

provides users with a GUI to generate such annotations. However,

various approaches try to use labels are less difficult to obtain. For

example, YOPO requires only coordinates and the class of a par-

ticle location, making it significantly more accessible for cryo-ET

researchers. 

Results compared to an earlier benchmark . One of the compared

methods, DeepFinder, was also benchmarked on an earlier ver-

sion of the benchmark. Previously, it has obtained localization F1

score of 0.791 and average classification F1 score of 0.565. Com-

pared with this year performance (0.924 on localization and 0.871

on classification), the significant improvement can suggest that the

new dataset is less challenging and therefore less realistic. 

We have decided to conduct a baseline template matching us-

ing the same approach as described in Section 3.7 . The results

( Tables 8 , 9 ) show that localization in 2019 is less challenging

while classification is noticeably harder. This is consistent with

both higher signal-to-noise ratio (making it easier to find parti-

cles, Fig. 4 ) and the previously mentioned in Section 2.3 rotation

bug (making it harder to classify found particles). Different signal-

to-noise ratios make it hard to compare relative difficulty of the

datasets. However there is no doubt that the current version of

the benchmark is more realistic due to fixed bugs and improved

simulation. 

Future work . Our dataset and benchmark provides cryo-ET re-

searchers with a baseline and highlights potential research direc-

tions. However, additional work can be done to make the compar-

ison between algorithms stronger. First and most importantly, the

simulator has not been quantitatively validated with experimental

data, leading to the question of how well the simulation captures

realistic data. Next, the results show that learning-based meth-

ods achieve better performance than traditional template match-

ing. At the same time, validation of the template matching itself

is not trivial, but can be done with our simulated dataset. Such

inspection can provide an insight on strengths and weaknesses of

the most widely used method in cryo-ET. Finally, the benchmark

should reflect the performance on the experimental data, so the

simulation process can be further improved to improve transfer to

the experimental domain, for example with defocus gradient and

motion blur. 
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