
Computers & Graphics 93 (2020) 13–24

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on 3DOR 2020

SHREC 2020: 3D point cloud semantic segmentation for street scenes

Tao Ku

a , ∗, Remco C. Veltkamp

a , Bas Boom

b , David Duque-Arias c , Santiago Velasco-Forero

c ,
Jean-Emmanuel Deschaud

d , Francois Goulette

d , Beatriz Marcotegui c , Sebastián Ortega

d ,
Agustín Trujillo

d , José Pablo Suárez

d , José Miguel Santana

d , Cristian Ramírez

d ,
Kiran Akadas e , Shankar Gangisetty

e

a Department of Information and Computing Sciences, Utrecht University, Utrecht 3584CC, the Netherlands
b Cyclomedia Technology, the Netherlands
c Mines ParisTech, PSL Research University, 60 Blvd Saint Michel, Paris 75272, France
d Centro de Tecnologías de la Imagen (CTIM) – Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain
e KLE Technological University, Hubballi 580031, India

a r t i c l e i n f o

Article history:

Received 15 May 2020

Revised 31 July 2020

Accepted 27 September 2020

Available online 2 October 2020

Keywords:

SHREC 2020

3D point cloud

Semantic segmentation

Benchmark

a b s t r a c t

Scene understanding of large-scale 3D point clouds of an outer space is still a challenging task. Compared

with simulated 3D point clouds, the raw data from LiDAR scanners consist of tremendous points returned

from all possible reflective objects and they are usually non-uniformly distributed. Therefore, its cost-

effective to develop a solution for learning from raw large-scale 3D point clouds. In this track, we provide

large-scale 3D point clouds of street scenes for the semantic segmentation task. The data set consists of

80 samples with 60 for training and 20 for testing. Each sample with over 2 million points represents a

street scene and includes a couple of objects. There are five meaningful classes: building, car, ground, pole

and vegetation. We aim at localizing and segmenting semantic objects from these large-scale 3D point

clouds. Four groups contributed their results with different methods. The results show that learning-

based methods are the trend and one of them achieves the best performance on both Overall Accuracy

and mean Intersection over Union. Next to the learning-based methods, the combination of hand-crafted

detectors are also reliable and rank second among comparison algorithms.

© 2020 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

a

o

d

a

c

s

b

D

e

p

s

j

S

s

i

T

s

p

A

t

e

f

h

0

. Introduction

With the application of LiDAR sensors in many areas, such as

utonomous driving and augmented reality, efficient understanding

f large-scale 3D point clouds is a challenging task. Many LiDAR

atasets [1–4] have been released as benchmarks for various 3D

pplications. Thee benchmarks usually provide cleaned 3D point

louds with well-annoated labels ignoring the problems of noises,

ampling pattern difference and weak reflective strength. However,
∗ Corresponding author.

E-mail addresses: t.ku@uu.nl (T. Ku), r.c.veltkamp@uu.nl (R.C. Veltkamp),

boom@cyclomedia.com (B. Boom), david.duque@mines-paristech.fr (D.

uque-Arias), santiago.velasco@mines-paristech.fr (S. Velasco-Forero), jean-

mmanuel.deschaud@mines-paristech.fr (J.-E. Deschaud), francois.goulette@mines-

aristech.fr (F. Goulette), beatriz.marcotegui@mines-paristech.fr (B. Marcotegui),

ebastian.ortegatrujillo@gmail.com (S. Ortega), agustin.trujillo@ulpgc.es (A. Trujillo),

osepablo.suarez@ulpgc.es (J.P. Suárez), josemiguelsantananunez@gmail.com (J.M.

antana), tenmacrs@gmail.com (C. Ramírez), akadask@gmail.com (K. Akadas),

hankar@kletech.ac.in (S. Gangisetty).

c

b

[

c

T

b

t

s

f

a

ttps://doi.org/10.1016/j.cag.2020.09.006

097-8493/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article u
t is still difficult to develop an effective and efficient solution.

here are two main reasons: One is that the raw data from LiDAR

canners consist of a tremendous amount points returned from all

ossible reflective objects, which brings in heavy computation cost.

nother reason is that the points are usually non-uniformly dis-

ributed, unstructured and unordered, which means that it is not

asy to apply mature 2D deep convolutional networks.

Since the input point clouds are orderless and usually sparse,

eature learning methods for point clouds can be divided into three

ategories in terms of the format of input point clouds: projection

ased, voxel based and point-set based. Projection-based methods

5,6] try to solve 3D problems via 2D approaches. Thus, 3D point

louds are projected to 2D images through different view-points.

hen, common 2D CNNs are capable to deal with 3D tasks. Voxel

ased methods [7,8] usually map raw points to voxel representa-

ions first, then 3D CNNs are adopted to extract features. However,

uch methods do not naturally capture the inherent structure in-

ormation of 3D point clouds. Therefore, point-set based methods

re proposed to learn representative features directly from point
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.cag.2020.09.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.09.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:t.ku@uu.nl
mailto:r.c.veltkamp@uu.nl
mailto:bboom@cyclomedia.com
mailto:david.duque@mines-paristech.fr
mailto:santiago.velasco@mines-paristech.fr
mailto:jean-emmanuel.deschaud@mines-paristech.fr
mailto:francois.goulette@mines-paristech.fr
mailto:beatriz.marcotegui@mines-paristech.fr
mailto:sebastian.ortegatrujillo@gmail.com
mailto:agustin.trujillo@ulpgc.es
mailto:josepablo.suarez@ulpgc.es
mailto:josemiguelsantananunez@gmail.com
mailto:tenmacrs@gmail.com
mailto:akadask@gmail.com
mailto:shankar@kletech.ac.in
https://doi.org/10.1016/j.cag.2020.09.006
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Table 1

Summary of train and test datasets of our Street3D benchmark.

Split Num. of Samples Num. of Per-sample Points Total Points Class Ratio

Undefined Building Car Ground Pole Vegetation

Train 60 2.40M–4.67M 217M 8.37% 17.05% 2.82% 54.65% 0.47% 16.64%

Test 20 2.30M–4.50M 72.8M 6.08% 22.07% 2.19% 53.96% 0.78% 14.92%

Table 2

Comparison of some outdoor 3D LiDAR datasets. For LiDAR type, TLS means Terrestrial Laser Scanning, MLS stands for Mobile Laser Scanning and ALS, Aerial Laser Scanning.

Name LiDAR Type Num. of Points Num. of Scans Num. of Classes Annotation

Semantic3D [1] TLS 1660M 30 8 point-wise

KITTI [2] MLS 1799M 14,999 3 bounding box

Paris-Lille-3D [3] MLS 143M 7 50 (training) and 10 (test) point-wise

DublinCity [4] ALS 260M 1 3 (coarse) and 8 (refined) point-wise

Street3D (Ours) MLS 290M 80 5 point-wise

c

t

[

3

p

i

p

C

e

p

i

2

2

c

[

d

H

h

T

s

o

i

t

m

a

1

7

D

l

h

1

d

(

g

t

d

t

5

m

i

2

w

u

p

g

t

w

t

p

t

f

o

[

m

i

f

d

t

S

d

a

2

i

(

w

I

I

w

p

n

3

l

m

oordinates. PointNet [9] is the pioneer learning point-wise fea-

ures for 3D classification and segmentation tasks. Further work

10–12] have shown their power in processing and learning from

D point clouds. However, due to the limited main memory and

ossible information loss from downsampling large point clouds,

t’s still hard for these learning-based methods to train on large

oint clouds without downsampling.

In this Shape Retrieval Challenge (SHREC) track on 3D Point

loud Semantic Segmentation for Street Scenes, we compare differ-

nt frameworks to segment semantic objects from large-scale 3D

oint clouds. Both hand-crafted and learning-based methods are

ncluded for evaluation. The contributions are summaried as:

• We provide a large-scale 3D street-scene point cloud dataset for

3D semantic segmentation.
• We evaluate different algorithms on the dataset and help find-

ing solutions for large-scale 3D point cloud processing.
• The results show that point-set based end-to-end learning

methods can outperform hand-crafted methods.

. Street3D benchmark

.1. Related work

In recent years, several annotated datsets for outdoor 3D point

loud semantic segmentation have been published. Semantic3D

1] , recorded with a terrestrial laser scanner (TLS), is a large out-

oor 3D LiDAR dataset with over a billion points and 8 class labels.

owever, it has only 30 samples for training and testing, and the

uge amount of points per sample (because of high precision of

LS) leads to heavy memory usage when training without down-

ampling. KITTI [2] offers nearly 15 thousands of scans of outdoor

bjects, but has only three classes (car, pedestrian and cyclist) and

s labelled with bounding boxes instead of being point-wise anno-

ated. It concerns more on 3D object detection instead of 3D se-

antic segmentation in large-scale scenarios. Paris-Lille-3D [3] is

nother worth noting 3D LiDAR dataset with 50 classes from which

0 classes are used for testing. It has over 143 million points with

 different scans and is recorded by a mobile laser scanner (MLS).

ublinCity [4] provide a manual annotation of over 260 million

aser scanning points with 13 hierachical classes in one scene. It

as 3 coarse level classes (building, ground and vegetation) and

0 refined classes (e.g. door, tree and sidewalk). It is one of the

ensest urban LiDAR dataset recorded with an aerial laser scanner

ALS). These datasets have either the problem of huge size of a sin-

le scan (Semantic3D and DublinCity) or few scans for training and

esting (Paris-Lille-3D and DublinCity).

In contrast to these datasets, our Street3D dataset provides less

ense but more scenes for outdoor 3D semantic segmentation
14
asks. It consists of a large amount of well annoated points with

 classes and 80 different street scenes. The size of each scene

akes a trade-off between precision and productivity. A compar-

son is summaried in Table 2 .

.2. Dataset

The point cloud data is provided by Cyclomedia Technology,

here we selected 80 3D point cloud for street scene and man-

ally labelled them. The point clouds are recorded using both a

anoramic image capturing device that capture every 5 meter to-

ether with a Velodyne HDL-32 Lidar sensor that performs con-

inues capturing on the car. The recorded pointcloud is meshed,

here for each pixel in the panoramic images, we compute the in-

ersection (by ray tracing) with the dense mesh from the original

ointcloud. The point of intersection provides us both color from

he panoramic images capturing device together with position in-

ormation.

Each point cloud represents a street scene and contains a group

f objects. We used the open source software Cloud Compare

13] to manually label point clouds. Objects are labelled into 5

eaningful classes and an extra ‘undefined’ class. They are: ‘Build-

ng’, ‘Car’, ‘Ground’, ‘Pole’ and ‘Vegetation’. Only the five meaning-

ul classes will be evaluated. The 80 3D point clouds are randomly

ivided into train and test sets with 60 for training and 20 for

esting. For each point cloud, there are over two million points.

ummary information of the dataset is in Table 1 . Examples of the

ataset are visualized in Fig. 1 . The dataset is made publicly avail-

ble at https://kutao207.github.io .

.3. Evaluation

We adopt the evaluation criteria that have been widely applied

n 3D semantic segmentation tasks, that is the Overall Accuracy

OA) and mean Intersection over Union (mIoU).

Generally, OA reports the percent of points in the data set

hich are correctly classified, and mIoU is the average of per-class

oU. The IoU of class i is defined as:

oU i =

TP i

GT i + Pred i − TP i

(1)

here TP i , GT i , Pred i denote the correctly classified number of

oints, the ground truth point number, and the predicted point

umber for class i , respectively.

. Methods

In this part, we introduce four novel methods as well as a base-

ine method – PointNet ++ for our 3D point cloud semantic seg-

entation task. The architectures of these four novel methods are

https://kutao207.github.io

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 1. Examples of the Street3D datasets. The bottom right strings are the filename of each scene.

Fig. 2. Multi-stage architecture of the vehicle-borne point cloud segmentation process.

Fig. 3. Minimum height clusters and sensor position (left figure, sensor in red) vs final ground cells (right). (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

v

w

p

f

3

g

u

m

b

f

d

3

A

t

p

p

b

T

e

S

p

a

C

3

g

t

t

s

d

T

c

i

I

s

c

o

i

a

a

3

t

o

s

t

n

r

aried. P4UCC is a non-learning framework of a four-staged pipline

hich aims to classify the 5 classes progressively. Spherical DZNet

rojects 3D point clouds to 2D images and train a CNN model

or semantic segmentation. Then the results are back-projected to

D world and interpolated for 3D point clouds. ResGANet adopts

raphs to encode the geometric information of 3D point clouds and

se a residual graph attentional network to train an end-to-end

odel to predict point cloud semantic labels. GRandD-Net com-

ines multi-scale features and Unet architecture to build a power-

ul model for the 3D point cloud semantic segmentation task. More

etails are described as follows.

.1. P4UCC: Progressive 4-staged Urban Cloud Classifier

This method is contributed by authors Sebastián Ortega,

gustín Trujillo, José Pablo Suárez, José Miguel Santana, and Cris-

ian Ramírez. Our proposal is a four-staged pipeline that aims to

rogressively classify ground, car, pole, building, and vegetation

oints in vehicle-borne point clouds. Its general architecture can

e seen in Fig. 2 . Each stage aims to identify only a certain class.

he first one is dedicated to ground point detection and also gen-

rates pixel-wise features which are useful for subsequent stages.

tage 2 looks for the detection of car points, Stage 3 filters pole

oints and Stage 4 splits the remaining points between building

nd vegetation classes. The code is available at https://github.com/

hanoOT/P4UCC .
15
.1.1. Ground detector

Ground detection starts by dividing the cloud horizontally in a

rid with squared cells of 1 m

2 . Pixel features are computed using

he points in each cell: minimum height, H [14] ; point accumula-

ion, A ; and geometric features such as omnivariance, O ; and eigen-

um, E [15] . Minimum height is used to select the ground candi-

ates: all points in the cloud with height lower than H i j + 0 . 25 .

hose points are then grouped using a hierarchical approach, eu-

lidean distance and cutoff of 0.5 m. Cluster centroids and their

nclination angles with respect to the LiDAR sensor are computed.

n case the sensor position is not known, the mean of point po-

itions of the maximum A ij can be used as approximation. This

an be seen in Fig. 3 . The point clusters deemed ground are the

nes with an inclination angle lower than the one of the vehicle

n which the sensor is mounted. For the SHREC benchmark, it was

pproximated to 1.5 ◦. The cluster with the largest point size is also

dded.

.1.2. Car detector

Points from cells with E ij < 1.25 are considered for car detec-

ion. These points are grouped using the same hierarchical clusters

f Stage 1. A cell descriptor is calculated as �X

∗�Y . A planarity de-

criptor [16] is also calculated per cluster. A cluster is considered

o represent a car when its area is shorter than 40 m

2 and the pla-

arity is greater than 0.2. Examples of this can be seen in Fig. 4 ,

ight.

https://github.com/ChanoOT/P4UCC

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 4. Examples of pole (left, green) and car (right, green) clusters in two clouds. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Fig. 5. Final result in 5D4KVPG4 cloud. Building, pole, vegetation, car and ground are represented with red, blue, green, magenta and yellow colors, respectively. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Workflow of automatic point cloud segmentation.

3

a

m

c

t

0

a

T

3

f

e

a

w

t

3

t

a

p

p

c

w

t

t

i

c

q

(

i

(

s

3

m

fi

[

s

3

a

e

t

m

p

O

I

c

e

c

T

a

p

’

c

b

d

d

a

c

a

.1.3. Pole detector

Points from cells with O ij < 2 are considered for pole detection

nd clustered. Curvature change [15] , dominant component, mini-

um relative height and deviation of the XY component values are

omputed per cluster. Point clusters are classified as poles when

he dominant component is Z , the curvature change is lower than

.01, the relative minimum height is lower than 1 and the devi-

tion of the values is lower than 1 in both X and Y components.

his can also be seen in Fig. 4 (left).

.1.4. Building detector

The remaining points are grouped as well. A recursive algorithm

or extraction of vertical planes based in MLESAC [17] is applied to

ach cluster. Clusters with a majority of points in a vertical plane

nd with �Z > 2 . 5 m are considered to represent buildings. Other-

ise, they are classified as vegetation. This leads to the final result

hat can be seen in Fig. 5 .

.2. Spherical DZNet

This method is contributed by authors David Duque-Arias, San-

iago Velasco-Forero, Jean-Emmanuel Deschaud, Francois Goulette

nd Beatriz Marcotegui. We propose an automatic algorithm for

oint cloud segmentation using only geometrical data [x , y , z]. The

roposed methodology is based on 2D projections. The main pro-

ess relies on a spherical projection from the sensor point of view

hile bird eye view (BEV) projection is used for ground detec-

ion. The FAISS library [18] is used in order to reduce computa-

ional cost at several steps in the process. The proposed algorithm

s presented in Fig. 6 and it is mainly divided into four steps: (1)

oarse ground detection from Bird-Eye View (BEV) by means of

uasi-flat zones; (2) spherical projections and feature extraction;

3) train Deep Learning model with 2D images; (4) postprocess-

ng and backprojection 2D predictions to 3D using a kNN classfier
16
with k = 3). The code is available at https://github.com/daduquea/

phericalDZ .

.2.1. Coarse ground detection

High class imbalance is a typical issue in point cloud seg-

entation. In order to reduce it, ground points are identified

rst. A simple quasi-flat zones algorithm from the BEV projection

19] is used for this purpose, assuming that ground elevation varies

moothly.

.2.2. Segmentation in 2D projections

In the spherical projection, each point cloud is represented by

n image of 1024 × 64 pixels corresponding to the azimuthal and

levation angles, respectively. A set of five features is selected in

his study: z coordinate, depth (distance to sensor) and the nor-

al vector in 3D coordinates denoted by (N x , N y , N z). A very sim-

le normal estimation based on depth image gradient [20] is used.

nly points that have not been classified as ground are projected.

f several 3D points fall in the same projected pixel, the classi-

al approach to project the closest 3D point to the scanner at

ach pixel of the 2D image is used. Spherical projection has been

hosen because the dataset is acquired with a terrestrial scanner.

he scanner position is not given. We estimate it from the BEV

s the barycentre of the empty space surrounded by the highest

oint density. Fig. 7 shows ground truth and computed features of

5D4KVPBP’ from train set after ground extraction.

We trained a Deep Learning model using a variation of Unet ar-

hitecture [21] as presented in Fig. 8 . This choice was motivated

y its capability to include input features at different steps of the

ecoding stage of the network. Specifically, the original input is

irectly concatenated to the features computed by the network

s a shortcut connection, as is shown in Fig. 8 . Including short-

uts in the model has demonstrated several advantages in im-

ge segmentation tasks [22] such as increasing convergence speed

https://github.com/daduquea/sphericalDZ

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 7. Crops of spherical projections of point cloud.

Fig. 8. Proposed Network architecture. Yellow boxes represent Conv2D layers of 5x5 with strides (1,2), red boxes Conv2D of 1x1 followed by a dropout of 0.1. Blue color

means Upsampling2D layer. Violet arrows illustrate concatenation operator. Note: Original input is directly concatenated to the features computed by the network. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a

(

h

t

s

d

w

2

w

3

p

d

p

t

t

s

s

w

l

o

3

V

t

s

t

w

m

nd stabilizing weight updates. Two strategies have been tested:

1) predict labels using trained model (The code is available at

ttps://github.com/daduquea/sphericalDZ); (2) remove last layer of

he model and predict labels using kNN classifier. Results were

lightly better and faster in the second case.

As the model is trained in 2D, it is required to backproject pre-

icted labels to point clouds. In a similar way as proposed by [23] ,

e perform kNN to label every 3D point that is not projected in

D image. We experimentally found that best results are obtained

ith k equal to three.

.2.3. Postprocessing

In order to improve the classification of some points, we pro-

ose an automatic postprocessing step to correct some of the pre-

icted labels using mathematical morphology. We performed the

ostprocessing in three steps:

Poles : Poles are thin structures in front of other larger struc-

ures. Thus, they appear as regional minima in the depth projec-
17
ion. Those minima are added to the detected poles. Then, only

tructures with a geodesic elongation [24] larger than 20 are pre-

erved.

Building : In the BEV, structures higher than 2.5 meters and

ith an elongation larger than 20 are considered as buildings.

Small regions : Regions classified as vegetation or building, with

ess than 100 pixels in the spherical view are given the class label

f the large surrounding neighbors.

.3. ResGANet: residual graph attentional networks

This method is contributed by authors Tao Ku, Remco C.

eltkamp and Bas Boom. We introduce the Residual Graph At-

entional Networks (ResGANet) for the 3D point cloud semantic

egmentation task. The ResGANet takes the semantic segmentation

ask as a supervised learning task. We use the 60 point clouds

ith semantic labels in training dataset to train and validate our

odel. As shown in Fig. 9 , the whole pipeline is composed of

https://github.com/daduquea/sphericalDZ

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 9. Pipeline of the proposed ResGANet method.

Fig. 10. Overall architecture of the proposed Residual Graph Attention Networks (ResGANet). ResGANet consists four main components: graph construction, residual graph

module, attention module and graph pooling. The number after ResGCM and ATM denotes the filter number while the number after graph pooling means the pooling stride.

t

b

R

i

a

a

o

a

3

s

v

s

f

c

3

r

f

v

a

c

c

n

t

g

k

C

n

f

A

w

i

n

f

n

b

m

t

c

Y

w

p

a

Y

w

c

o

p

t

[

t

c

T

K

s

n

i

T

t

i

g

t

p

hree parts: preprocessing, model training and evaluation, and

ackprojection. As our model training is based on the proposed

esidual Graph Attentional Networks (ResGANet) and the input is

n a fixed point number, we need to have a voxel subsampling first

nd then sampling the point cloud to a fixed size. After training

nd evaluation, we also need to back-project the valuation results

n downsampled point clouds to the original ones. The code is

vailable at https://github.com/keruast/ResGANet .

.3.1. Preprocessing

In this part, we downsample the large 3D point clouds to

maller sizes. We apply a voxel subsampling method [12] with

oxel size set to 0.1m so that dense areas can be forced to be

parse while still contain enough information. Then, we adopt a

arthest point sampling [9] algorithm to sample the reduced point

louds to a fixed point number 8096.

.3.2. ResGANet architecture

Our propose Residual Graph Attentional Networks to learn rep-

esentative features directly from point coordinates. It consists of

our main parts, namely, Graph Construction, Residual Graph Con-

olution Module, Graph Pooling and Attentional Module. The over-

ll architecture is shown in Fig. 10 .

Graph construction . The graph construction module aims at

reating graph representations over point clouds. Given a 3D point

loud with N points, matrix X ∈ R

N×3 denotes the input coordi-

ates. Though there are many methods to construct a graph, in

his paper, we define a graph using k-nearest neighbor (kNN) al-

orithms. Namely, for each point in a point cloud, we query the

 nearest neighbors and connect the point with these neighbors.

onsidering that our graph is undirected, but kNN searching can-

ot ensure the graph is symmetrical, we define the adjacency as

ollows,

 (i, j) =

δ j (i) + δi (j)

2

exp

−β|| x i −x j || 2 (2)

here δi (j) is an indicator function indicating whether node j is

n the k -nearest neighbors of node i . If node j is in the k -nearest
18
eighbors of node i , δi (j) = 1 , otherwise, δi (j) = 0 . x i denotes the

eature vector of node i . In our approach, we set the kNN query

umber as 16 throughout our experiments.

Residual graph convolution module . Similar to the residual

lock in ResNet [25] , we define our residual graph convolution

odule by two graph convolution units and a skip connection from

he input to the output addition. We adopt the graph convolution

oncept in [26] as

 = A X W (3)

here X ∈ R

N×C is the input features, Y ∈ R

N×D is the filtered out-

ut, W ∈ R

C×D is the weight matrix. Notice that the A also encodes

 (K + 1) -scalar weight variables.

Further, the residual block is defined as

 res = G (G (X, A, d) , A, d) + X (4)

here X denotes the feature input, A is the corresponding adja-

ency matrix and d is the degree which denotes the highest power

f the dajacency matrix. G(·) is the graph convolution function.

Graph pooling . We use kNN max pooling to define our graph

ooling. Given the point cloud coordinates X 0 ∈ R

N 0 ×3 , in order

o preserve the structure of point clouds, farthest point sampling

9] is used to iteratively choose the desired N 1 points. Based on

hat, we obtain the reduced point coordinates X 1 ∈ R

N 1 ×3 and the

orresponding index in X 0 . Suppose the input feature is F 0 ∈ R

N 0 ×D .

hen, for each point in the reduced points, kNN is used to find the

 nearest features in F 0 such that we obtain a feature matrix of

ize N 1 × K × D . Finally, max pooling operation is applied to get the

ew feature of each selected point. An illustration of graph pooling

s shown in Fig. 11 .

Note that graph pooling changes the point cloud structure.

hus, the adjacency matrix in afterwards graph convolutions needs

o be updated by pooled points’ coordinates.

Attentional module . As attention has been successfully applied

n many areas, the proposed graph attention module focuses on

athering information from important points. That is, the atten-

ion module tries to model point relations by finding out the im-

ortance of one point over all other points, and strengthening the

https://github.com/keruast/ResGANet

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 11. The illustration of graph pooling. The goal is pooling input N 0 × 3 points with N 1 × D feature to N 1 × 3 points with N 1 × D feature. Each point in the figure represents

a feature vector. The red ones denotes points chosen by farthest point sampling algorithm while blue ones denotes rest unchosen points. Each green circle after step 2

indicates the kNN search results. Final dark red ones are max pooling output for each chosen point feature together with their K-nearest point features. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

f

t

c

a

o

o

p

t

i

w

w

w

p

c

Y

w

b

3

p

i

d

p

3

C

S

m

R

p

o

a

m

a

3

d

[

n

j

a

3

b

p

i

N

o

s

t

w

T

d

w

s

e

3

T

n

f

c

E

i

s

c

t

t

e

m

l

e

i

r

D

t

w

e

t

c

g

f

N

s

v

f

p

l

i

eature of strong points while suppressing weak point representa-

ions.

The attention module has three branches. Two branches are to

alculate pairwise similarity, then the similarity output is fed into

 sigmoid function to generate the attention matrix. Each element

f the matrix indicates the relative influence one point has on an-

ther point compared to all other points. Instead of directly ap-

lying pairwise vector production, we first use two graph convolu-

ion layers to dynamically learning different representations of the

dentical input feature. Then, in case of rapid gradient descending,

e use a residual-like operation by adding the attention output

ith the original input feature to get the final output. In this way,

e re-balance the features of different points by considering each

oint’s influence on others.

Given a feature matrix of X with N points, our attention output

an be modeled as:

 att = sigmoid

(
f 1 (X) f T 2 (X) √

D

)
f 0 (X) + X (5)

here f 0 (·), f 1 (·) and f 2 (·) are feature extractors, and D is the num-

er of feature channels.

.3.3. Interpolation

In this part, we need to backward project the downsampled

redicted labels to the raw point clouds. We use kNN to do the

nterpolation. Give the downsampled point coordinates with pre-

icted labels and raw point coordinates, we determine the raw per-

oint label with k = 3 for the kNN search.

.4. GRanD-Net: Grid subsampling, RandLA-Net and Dilated

onvolutions

This method is contributed by authors Kiran Akadas and

hankar Gangisetty. We propose a deep-learning based 3D se-

antic segmentation of point clouds inspired from the works of

andLA-Net [12] known as GRanD-Net shown in Fig. 12 . We im-

rove the RandLA-Net [12] by considering point features in terms

f (x , y , z) coordinates, subsample using Grid subsampling and

dopting dilated convolutions [27] to gain better efficiency for se-

antic segmentation of large-scale 3D point clouds. The code is

vailable at https://github.com/KiranAkadas/GRanDNet .

.4.1. Data preparation

To efficiently process data of such large-scale 3D scenes, we

own-sample the point clouds using grid subsampling of KPConv

11] with a fixed grid size 0.06m. In order to get back the origi-

al number of semantic labels from the predictions, we index pro-

ections for up-sampling the point clouds. The training dataset is

ugmented by scaling and rotation.
19
.4.2. Data loading

To load the data in batches, we generate the data flow for each

atch. For a given batch size n and the steps in each epoch s , (n × s)

oint clouds are reserved for each epoch. To avoid ordered learn-

ng by the GRanD-Net model, we feed the data randomly. The k-

earest Neighbours (kNN) algorithm is used with a pre-defined set

f k neighbours being selected of all the sub-sampled points. If the

ampled points are less than the given predefined k points, we pick

he points with replacement. To prepare a batch of point clouds,

e generate the neighbour indices for every point in a point cloud.

hese are used to get the relative point features. We then ran-

omly sample 25% of points to be reduced in the next phase

hile down-sampling and simultaneously track the indices for up-

ampling. The pooling indices are obtained using kNN search for

very sampled point.

.4.3. Training

We train the sampled point clouds over several batches of data.

he loaded point clouds of dimensions (N , d in), where N is the

umber of points in the point cloud and d in is the number of

eatures associated with each point in the point cloud, are pro-

essed using the dilated residual blocks (DRBs) shown in Fig. 12 .

ach of the DRB includes multiple units of local spatial encod-

ng and attentive pooling stacks. The DRBs are connected through

kip-connections as proposed in RandLA-Net [12] . Unlike normal

onvolutions used in RandLA-Net, we use dilated/atrous convolu-

ions [27] to implement the DRB in order to increase the recep-

ivity of the filters without affecting the resolution and gain better

fficiency shown in Fig. 13 . The dilated convolutions incorporate

ulti-scale features, essential for semantic segmentation. These di-

ated convolutions make our proposed GRanD-Net faster and more

fficient since we are increasing the area of filter coverage without

ncreasing the parameters and affecting the feature learning, thus

educing the number of convolutions. The local spatial encoding in

RB uses the centre points and their kNN neighbours to encode

he point cloud using relative positional information. At each step,

e apply random sampling with DRB using the points we loaded

arlier to reduce the size of input point cloud to 25%. The atten-

ive pooling is used as a replacement to max-pooling in order to

ompute the attention score for every feature which is further ag-

regated to avoid loss of information and learn important local in-

ormation. We use GeLU [28] as the activation layer in our GRanD-

et model for better learning of non-linear features. GeLU prevents

trong negative activations which may affect the model. The cur-

ature and non-monotonicity of GeLU is used to learn complex

unctions much better compared to ReLU and leaky ReLU. The out-

ut of the stacked DRBs is up-sampled and passed through multi-

ayer perceptrons (MLP) followed by fully connected layers shown

n Fig. 12 . The use of skip-connections and MLP while up-sampling

https://github.com/KiranAkadas/GRanDNet

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 12. The proposed architecture of GRanD-Net. The abbreviations followed in the architecture are DRB: Dilated residual block, RS: Random sampling, US: Up-sampling,

FC: Fully connected layer, DP: Dropout.

Fig. 13. Convolutions: (left) 3 × 3 regular convolution mostly used in CNNs. (right) 3 × 3 dilated convolution with d = 2 covering an area of 5 × 5 is used in GRanD-Net

resulting in lesser strides and parameters.

e

i

l

a

i

t

b

d

d

3

t

c

1

o

g

w

m

p

p

m

i

t

a

3

e

t

b

v

4

4

(

a

a

i

P

o

m

S

a

p

a

w

nsures that the labelling is accurate. Our approach follows an all-

nclusive up-sampling approach that refines labels gradually un-

ike simple interpolation, which would result in a single label for

 group of points ignoring the demarcation of classes. The use of

nterpolation would further require the use of a post-processing

echnique to refine the output. Finally, the predicted semantic la-

els for every point are obtained as the output of the model with

imensions (N , d out), where d out is the number of classes in the

ataset.

.4.4. Experimental settings

We train our proposed GRanD-Net model for 50 epochs with a

rain-validation split of 3:1 for the 5 classes leaving the undefined

lass. A four layered network is used with feature sizes of 16, 64,

28, and 256 while training. We train GRanD-Net using the Adam

ptimizer with a learning rate of 0.01 and a decay rate of 0.05. A

rid size of 0.06 is fixed for grid-subsampling while training and

e select k = 16 nearest neighbours to be queried. To train our

odel, we sample a fixed number (N) of 65,536 points from each

oint cloud as the input and use a batch size of 4 with 500 steps

er epoch. The best performing GRanD-Net model is frozen with a

ean intersection over union (mIoU) of 84.11%. The frozen model

s used to predict segments for the 20 test point clouds that con-

ain a total of 72,753,747 points. The resulting mIoU is 86.4% with

n overall accuracy (OA) of 97.83% for 5 classes shown in Table 3 .
20
.5. PointNet ++

We choose PointNet ++ [29] as our baseline method for the

valuation. PointNet ++ takes point coordinates as input and is able

o learn deep features efficeiently and robustly. It is a very popular

ase algorithm for many 3D point cloud related tasks.

The implementation for semantic segmentation task is available

ia https://github.com/intel- isl/Open3D- PointNet2-Semantic3D .

. Results and discussion

.1. Experimental results

The evaluation results are shown in Table 3 . Overall accuracy

OA) and mean Intersection over Union (mIoU) are evaluated for

ll classes, and for each class, the IoU metric is also calculated. We

lso plot the confusion matrix of each algorithm in Fig. 16 to help

nvestigate the weakness of each model.

There are 5 methods under evaluation: Baseline (PointNet ++),

4UCC, Spherical DZNet, ResGANet and GRanD-Net. P4UCC is based

n a combination of 4 hand-crafted detectors, the other four

ethods are learning-based. In these four learning-based methods,

pherical DZNet is a two-stage approach with a ground detector

nd a projection based deep learning architecture for training and

redicting, while the other three take point coordinates as input

nd learning representations directly from points in an end-to-end

ay.

https://github.com/intel-isl/Open3D-PointNet2-Semantic3D

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Table 3

Evaluation results of our Street3D benchmark.

Method OA (%) mIoU (%) Building Car Ground Pole Vegetation

Baseline 91.30 66.39 82.52 40.13 89.10 39.46 80.72

P4UCC 94.13 72.25 84.35 60.51 96.46 40.18 79.75

Spherical DZNet 93.89 67.30 83.16 49.93 96.46 27.52 79.41

ResGANet 93.55 71.39 82.96 57.66 94.40 32.94 88.98

GRanD-Net 97.83 86.40 93.66 83.92 98.10 61.79 94.55

Fig. 14. Qualitative results of GRanD-Net on the test set (5D4KVQ9U and 5D4KX3TQ point clouds).

Fig. 15. Qualitative results of GRanD-Net on the test dataset. The black circle shows the pole mislabelled as building.

4

i

s

v

r

4

v

.2. Computation complexity and timing

In Table 4 , we show the number of trainable parameters and

nference time as criterias for computation complexity and timing,

ince these 5 methods are run on different platforms and each has

ery different architecture and input format. We list the time as a
eference.

21
.3. Discussion

As shown in Table 3 and Fig. 16 , we have the following obser-

ations:

• From obtained results with Spherical DZNet, we have identi-

fied some drawbacks related to spherical projections: (1) ob-

jects size strongly depends on distance to sensor; (2) high vari-

ation of objects shape according to sensor perspective. Both of

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

Fig. 16. Confusion matrix for all the five comparison algorithms. The x -axis represents the predicted labels while the y-axis denotes the groundtruth labels. In this figure,

each subfigure shows clearly the classification ability of each algorithm. We normalized each row of the confusion matrix so that it is intuitive to show the probability of

correct predictions and incorrect predictions.

Table 4

Computation cost for participated methods.

Method Platform Number of trainable

parameters

Seconds per million

points for inference

Other time

P4UCC CPU Intel i5 dual-core, 8GB RAM,

Matlab2018b

- - 17.91 seconds per million

points

Spherical DZNet CPU Intel Xeon E-2186G, 32GB

RAM, GPU Nvidia Titan X 12 GB

88.8K - Spherical projection: 0.15s, 2D

training one epoch: 3.8s, 2D

prediction: 1.15s, 2D to 3D:

0.81s, kNN search: 50s

Baseline CPU Intel i7-8700, 16GB RAM, GPU

Nvidia GTX-1080ti 11 GB

0.97M 768.13s -

ResGANet CPU Intel i7-8700, 16GB RAM, GPU

Nvidia GTX-1080ti 11 GB

1.76M 850.31s -

GRanD-Net Trained on Google Cloud Platform,

CPU - 4 vCPU, 15 GB Memory

(Powered by Intel Skylake), GPU-

NVIDIA Tesla T4 16GB

0.99M 219.37s -
them may affect the capability of the model to learn. In ad-

dition, we identified a particularly low score in pole class. We

think it is mainly due to the presence of traffic sign of point-

cloud 5D4L1RW5. Few traffic signs are present in the dataset.

Moreover, this one is close to the scanner and has over 150

thousand 3D points.
• It is worth noting that P4UCC is the only non-learning-based

approach but still outperforms 3 learning-based methods (Base-

line, Spherical DZNet and ResGANet) by using four detectors

to identify point categories progressively. It shows that hand-

crafted method is still reliable and may outperform learning-

based methods.
• GRanD-Net achieves superior performance on four of the

classes, except pole. We observe that the resulting IoU of

ground, vegetation, building, and car classes are segmented ac-
22
curately as the dataset distribution in these classes is high

and learnt better. We also performed a qualitative analysis of

GRanD-Net model on the test set shown in Fig. 14 . Visual in-

spection shows that our model performance is good and close

to ground truth. As the pole class IoU is low to figure out

the misclassification we plotted the confusion matrix for the

GRanD-Net shown in Fig. 16 (5). Based on the confusion ma-

trix and visual inspection, we observe that few instances of the

pole class are mislabelled as building shown in Fig. 15 , due to

their proximity to the building points and also the insufficiency

of the pole training points.
• It is obvious that ‘Building‘ and ‘Ground‘ are easy to be correctly

classified while ‘Car‘ and ‘Pole‘ are hard to be segmented. Con-

sidering the proportion of ‘Car’ and ‘Pole’ in the train/test set

is 2.82%/2.19% and 0.47%/0.78%, all four learning-based meth-

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

t

t

h

t

m

c

S

fi

c

t

s

‘

a

p

t

h

5

c

p

w

f

o

S

w

w

m

s

c

t

G

t

s

c

(

d

D

e

c

o

C

c

t

d

o

W

w

S

S

S

S

o

o

o

M

A

F

R

[

ods cannot segment minority classes well. Non-learning-based

P4UCC performs better on minority classes.
• We also observe that all three point-set learning-based meth-

ods (Baseline, ResGANet and GRanD-Net) have to downsample

the large point clouds before model training due to the limit

of hardware computation power. It may more or less result in

information loss and influence the segmentation performance.

It is obvious that the end-to-end learning approaches are the

rend to tackle with the 3D point cloud semantic segmentation

ask. They usually have powerful ability to segment certain classes,

owever they may also suffer from imbalanced data. The tradi-

ional hand-crafted method may not outperforms learning-based

ethods on certain classes but when the data is imbalanced, they

an show their robustness and reliability.

Another issue worth noting is the limited classes of our

treet3D dataset. For the 3D semantic segmentation task, it is suf-

cient to have 5 classes. However, it may not be enough for spe-

ific tasks. For example, ‘road’ is an important category for au-

onomous driving application. However, Street3D has ‘ground’ in-

tead of ‘ground’. It is not easy to recover road from only 3D

ground’ points. But our Street3D can still contribute to training

nd validating deep learning networks for autonomous driving ap-

lication. The 4 learning-based methods in this paper can be easily

ransferred to or finetuned on a dataset with a ‘road’ label as what

ave usually been done in 2D CNN applications.

. Conclusions

In conclusion, this track has drawn attention on 3D point

loud semantic segmentation for street scenes using multiple ap-

roaches. We provide a street scene dataset composed of 80 scans

hich are well annotated with five class labels. We introduce

our novel and different methodologies that outperform a state-

f-the-art deep learning based method (PointNet ++) for the new

treet3D benchmark. As there is a non-learning method (P4UCC)

hich also outperforms learning-based approaches, it shows that

ell-designed feature descriptors for the classification could have

ore importance in the segmentation than the learned features,

pecifically with unbalanced data. The four methods have fo-

used not only on different architectures but also on different fea-

ures (covariance-based features in P4UCC, multi-scale features in

RanD-Net, graph representations in ResGANet, spherical descrip-

ors in Spherical DZNet), which opens the possibility of combining

ome of the descriptors from each discussed proposal in a new ar-

hitecture. The task is still challenging as small data size classes

Car and Pole) are still hard to be classified. More work need to be

one for solving the performance imbalance over classes.

eclaration of Competing Interest

We wish to confirm that there are no known conflicts of inter-

st associated with this publication and there has been no signifi-

ant financial support for this work that could have influenced its

utcome.

RediT authorship contribution statement

Tao Ku: Methodology, Software, Writing - original draft, Data

uration. Remco C. Veltkamp: Supervision. Bas Boom: Data cura-

ion. David Duque-Arias: Methodology, Software, Writing - original

raft. Santiago Velasco-Forero: Methodology, Software, Writing -

riginal draft. Jean-Emmanuel Deschaud: Methodology, Software,

riting - original draft. Francois Goulette: Methodology, Soft-

are, Writing - original draft. Beatriz Marcotegui: Methodology,

oftware, Writing - original draft. Sebastián Ortega: Methodology,
23
oftware, Writing - original draft. Agustín Trujillo: Methodology,

oftware, Writing - original draft. José Pablo Suárez: Methodology,

oftware, Writing - original draft. José Miguel Santana: Methodol-

gy, Software, Writing - original draft. Cristian Ramírez: Method-

logy, Software, Writing - original draft. Kiran Akadas: Method-

logy, Software, Writing - original draft. Shankar Gangisetty:

ethodology, Software, Writing - original draft.

cknowledgement

The work “Spherical DZNet” was partially funded by REPLICA

UI 24 project and ARMINES.

eferences

[1] Hackel T, Savinov N, Ladicky L, Wegner JD, Schindler K, Pollefeys M. Seman-

tic3d.net: a new large-scale point cloud classification benchmark. CoRR 2017 .
http://arxiv.org/abs/1704.03847 .

[2] Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI
vision benchmark suite. In: Proceedings of the 2012 IEEE conference on com-

puter vision and pattern recognition, Providence, RI, USA, June 16-21, 2012.
IEEE Computer Society; 2012. p. 3354–61. doi: 10.1109/CVPR.2012.6248074 .

[3] Roynard X, Deschaud J, Goulette F. Paris-lille-3d: a point cloud dataset for

urban scene segmentation and classification. In: Proceedings of the 2018
IEEE conference on computer vision and pattern recognition workshops, CVPR

workshops 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer So-
ciety; 2018. p. 2027–30. doi: 10.1109/CVPRW.2018.00272 .

[4] Zolanvari SMI, Ruano S, Rana A, Cummins A, da Silva RE, Rahbar M, et al.
Dublincity: annotated lidar point cloud and its applications. In: Proceedings

of the thirtieth British machine vision conference 2019, BMVC 2019, Cardiff,
UK, September 9-12, 2019. BMVA Press; 2019. p. 44 . https://bmvc2019.org/

wp- content/uploads/papers/0644- paper.pdf .

[5] Boulch A, Saux BL, Audebert N. Unstructured point cloud semantic labeling us-
ing deep segmentation networks. In: Pratikakis I, Dupont F, Ovsjanikov M, ed-

itors. Eurographics workshop on 3D object retrieval, 3DOR 2017, Lyon, France,
April 23-24, 2017. Eurographics Association; 2017 .

[6] Chen X, Ma H, Wan J, Li B, Xia T. Multi-view 3D object detection network for
autonomous driving. In: Proceedings of the 2017 ieee conference on computer

vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017;

2017. p. 6526–34. doi: 10.1109/CVPR.2017.691 .
[7] Maturana D, Scherer S. Voxnet: a 3D convolutional neural network for real-

time object recognition. In: Proceedings of the 2015 ieee/rsj international
conference on intelligent robots and systems, IROS 2015, Hamburg, Ger-

many, September 28 - October 2, 2015; 2015. p. 922–8. doi: 10.1109/IROS.2015.
7353481 .

[8] Tchapmi LP, Choy CB, Armeni I, Gwak J, Savarese S. Segcloud: Semantic seg-

mentation of 3D point clouds. In: Proceedings of the 2017 International Confer-
ence on 3D Vision, 3DV 2017, Qingdao, China, October 10-12, 2017. IEEE Com-

puter Society; 2017. p. 537–47. doi: 10.1109/3DV.2017.0 0 067 .
[9] Qi CR, Su H, Mo K, Guibas LJ. Pointnet: Deep learning on point sets for 3D

classification and segmentation. In: Proceedings of the 2017 IEEE conference
on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA,

July 21-26, 2017; 2017a. p. 77–85. doi: 10.1109/CVPR.2017.16 .

[10] Landrieu L, Simonovsky M. Large-scale point cloud semantic segmentation
with superpoint graphs. In: Proceedings of the 2018 ieee conference on com-

puter vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018. IEEE Computer Society; 2018. p. 4558–67. doi: 10.1109/CVPR.2018.

00479 .
[11] Thomas H, Qi CR, Deschaud J, Marcotegui B, Goulette F, Guibas LJ. Kpconv:

flexible and deformable convolution for point clouds. In: Proceedings of the

2019 IEEE/CVF international conference on computer vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019. IEEE; 2019. p. 6410–19. doi: 10.

1109/ICCV.2019.00651 .
12] Hu Q , Yang B , Xie L , Rosa S , Guo Y , Wang Z , et al. Randla-net: efficient seman-

tic segmentation of large-scale point clouds Proceedings of the IEEE conference
on computer vision and pattern recognition; 2020 .

[13] CloudCompare. 3D point cloud and mesh processing software open source

project. http://www.cloudcompare.org . 2020.
[14] Ortega S , Trujillo A , Santana J , Suárez J . An image-based method to classify

power line scenes in lidar point clouds. In: Proceedings of the twelfth interna-
tional symposium on tools and methods of competitive engineering, Las Pal-

mas de Gran Canarias, Spain; 2018. p. 7–11 .
[15] Blomley R , Weinmann M , Leitloff J , Jutzi B . Shape distribution features for

point cloud analysis-a geometric histogram approach on multiple scales. ISPRS
Ann Photogramm Remote Sens Spatial Inf Sci 2014;2(3):9 .

[16] Zhao R, Pang M, Wang J. Classifying airborne lidar point clouds via deep fea-

tures learned by a multi-scale convolutional neural network. Int J Geograph Inf
Sci 2018;32(5):960–79. doi: 10.1080/13658816.2018.1431840 .

[17] Torr PHS, Zisserman A. MLESAC: a new robust estimator with application to
estimating image geometry. Comput Vis Image Underst 20 0 0;78(1):138–56.

doi: 10.1006/cviu.1999.0832 .

http://arxiv.org/abs/1704.03847
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPRW.2018.00272
https://bmvc2019.org/wp-content/uploads/papers/0644-paper.pdf
https://doi.org/10.1109/CVPR.2017.691
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/3DV.2017.00067
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2018.00479
https://doi.org/10.1109/ICCV.2019.00651
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0012
http://www.cloudcompare.org
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0014
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0015
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0015
https://doi.org/10.1080/13658816.2018.1431840
https://doi.org/10.1006/cviu.1999.0832

T. Ku, R.C. Veltkamp, B. Boom et al. Computers & Graphics 93 (2020) 13–24

[

[

[

[

[

[

[

[

[

[
[18] Johnson J, Douze M, Jégou H. Billion-scale similarity search with gpus. CoRR
2017 . http://arxiv.org/abs/1702.08734 .

[19] Hernández J , Marcotegui B . Point cloud segmentation towards urban ground
modeling. In: 2009 Joint Urban Remote Sensing Event. IEEE; 2009. p. 1–5 .

20] Nakagawa Y, Uchiyama H, Nagahara H, Taniguchi R. Estimating surface normals
with depth image gradients for fast and accurate registration. In: Brown MS,

Kosecká J, Theobalt C, editors. Proceedings of the 2015 international conference
on 3D vision, 3DV 2015, Lyon, France, October 19-22, 2015. IEEE Computer So-

ciety; 2015. p. 640–7. doi: 10.1109/3DV.2015.80 .

21] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomed-
ical image segmentation. In: Navab N, Hornegger J, III WMW, Frangi AF, ed-

itors. Proceedings of the medical image computing and computer-assisted
intervention – MICCAI 2015 – eighteenth international conference Munich,

Germany, October 5–9, 2015, Proceedings, Part III. Lecture Notes in Computer
Science, 9351. Springer; 2015. p. 234–41. doi: 10.1007/978- 3- 319- 24574- 4 _ 28 .

22] Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C. The importance

of skip connections in biomedical image segmentation. In: Carneiro G, Ma-
teus D, Peter L, Bradley AP, Tavares JMRS, Belagiannis V, et al., editors. Deep

learning and data labeling for medical applications – first international work-
shop, LABELS 2016, and second international workshop, DLMIA 2016, held in

conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceed-
ings. Lecture Notes in Computer Science, 10 0 08; 2016. p. 179–87. doi: 10.1007/

978- 3- 319- 46976- 8 _ 19 .
24
23] Milioto A, Vizzo I, Behley J, Stachniss C. Rangenet ++ : Fast and accurate
lidar semantic segmentation. In: Proceedings of the 2019 IEEE/RSJ interna-

tional conference on intelligent robots and systems, IROS 2019, Macau, SAR,
China, November 3-8, 2019. IEEE; 2019. p. 4213–20. doi: 10.1109/IROS40897.

2019.8967762 .
24] Lantuéjoul C, Maisonneuve F. Geodesic methods in quantitative image analysis.

Pattern Recogn 1984;17(2):177–87. doi: 10.1016/0 031-3203(84)90 057-8 .
25] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

In: Proceedings of the 2016 IEEE conference on computer vision and pattern

recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016; 2016. p. 770–8.
doi: 10.1109/CVPR.2016.90 .

26] Sandryhaila A , Moura JM . Discrete signal processing on graphs. IEEE transac-
tions on signal processing 2013;61(7):1644–56 .

27] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. In:
Bengio Y, LeCun Y, editors. Proceedings of the forth international conference

on learning representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,

Conference Track Proceedings; 2016 . http://arxiv.org/abs/1511.07122 .
28] Hendrycks D., Gimpel K.. Gaussian error linear units (gelus). arXiv preprint

arXiv: 1606084152016 .
29] Qi CR , Yi L , Su H , Guibas LJ . Pointnet ++ : Deep hierarchical feature learning

on point sets in a metric space. In: Advances in neural information processing
systems 30: annual conference on neural information processing systems 2017,

4–9 December 2017, Long Beach, CA, USA; 2017b. p. 5099–108 .

http://arxiv.org/abs/1702.08734
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0019
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0019
https://doi.org/10.1109/3DV.2015.80
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-46976-8_19
https://doi.org/10.1109/IROS40897.2019.8967762
https://doi.org/10.1016/0031-3203(84)90057-8
https://doi.org/10.1109/CVPR.2016.90
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0026
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0026
http://arxiv.org/abs/1511.07122
arxiv:/160608415201
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0029
http://refhub.elsevier.com/S0097-8493(20)30140-0/sbref0029

	SHREC 2020: 3D point cloud semantic segmentation for street scenes
	1 Introduction
	2 Street3D benchmark
	2.1 Related work
	2.2 Dataset
	2.3 Evaluation

	3 Methods
	3.1 P4UCC: Progressive 4-staged Urban Cloud Classifier
	3.1.1 Ground detector
	3.1.2 Car detector
	3.1.3 Pole detector
	3.1.4 Building detector

	3.2 Spherical DZNet
	3.2.1 Coarse ground detection
	3.2.2 Segmentation in 2D projections
	3.2.3 Postprocessing

	3.3 ResGANet: residual graph attentional networks
	3.3.1 Preprocessing
	3.3.2 ResGANet architecture
	3.3.3 Interpolation

	3.4 GRanD-Net: Grid subsampling, RandLA-Net and Dilated Convolutions
	3.4.1 Data preparation
	3.4.2 Data loading
	3.4.3 Training
	3.4.4 Experimental settings

	3.5 PointNet++

	4 Results and discussion
	4.1 Experimental results
	4.2 Computation complexity and timing
	4.3 Discussion

	5 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	References

