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a b s t r a c t 

The rapid development of 3D acquisition devices enables us to collect billions of points in a few hours. 

However, the analysis of the output data is a challenging task, especially in the field of 3D point cloud 

change detection. In this Shape Retrieval Challenge (SHREC) track, we provide a street-scene dataset for 

3D point cloud change detection. The dataset consists of 866 3D object pairs in year 2016 and 2020 from 

78 large-scale street scene 3D point clouds. Our goal is to detect the changes from multi-temporal point 

clouds in a complex street environment. 

We compare three methods on this benchmark, with one handcrafted (PoChaDeHH) and the other 

two learning-based (HGI-CD and SiamGCN). The results show that the handcrafted algorithm has bal- 

anced performance over all classes, while learning-based methods achieve overwhelming performance 

but suffer from the class-imbalanced problem and may fail on minority classes. The randomized over- 

sampling metric applied in SiamGCN can alleviate this problem. Also, different siamese network archi- 

tecture in HGI-CD and SiamGCN contribute to the designing of a network for the 3D change detection 

task. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Change detection (CD) has been one of the important topics in 

emote sensing, and has been applied in many practical areas such 

s forest monitoring, urban sprawl and earthquake assessment [1–

] . 3D change detection, as a subset of the general CD problem, 

s drawing more and more attention in the area of smart cities 

4,5] with the advantages of free from illumination variations and 

erspective distortions due to the rich 3D geometric information. 

owever, the expensive data acquisition equipment and limited 

ata sources are the main barriers for the 3D CD applications [1,6] . 

hanks to the rapid development of 3D acquisition devices, we are 

ble to collect billions of points in a few hours. However, the anal- 

sis of the output data is still a challenging problem as there aren’t 
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eneric, automated and accurate methodologies appropriate for all 

D change detection applications [7,8] . 

Change detection approaches can be generalized as direct com- 

arison and classification-based comparison in [9] . Direct compar- 

son is to detect changes directly from raw multi-temporal data. 

owever, classification-based comparison is to classify objects, e.g. 

uilding, vegetation, and then detect their changes. Compared with 

irect comparison approaches, classification-based methods are 

asier to implement and reduce the difficulty of labelling changes 

n large-scale 3D point clouds. 

Recent studies have focused on 3D data of the ground surface 

btained from terrestrial laser scanners (TLS) and aerial laser 

canners (ALS). Land cover and building related change detection 

10–14] are the mainstream. High resolution 3D point clouds 

ogether with color images are combined as hybrid data sets to 

nvestigate both spatial and temporal changes. For unsupervised 

ethods, most recent researches focus on calculating the historical 

ifferences directly. For example, digital elevation model (DEMs) 

ifference based approaches [15,16] are proposed to identify loca- 

ions and quantify spatial patterns of geomorphic changes. How- 

ver, these approaches are usually based on the assumption that 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Number of annotated objects in our Change3D benchmark. 

Labels nochange removed added change color_change Total 

Train set 421 (59.13%) 125 (17.56%) 68 (9.55%) 72 (10.11%) 26 (3.65%) 712 

Test set 90 (58.44%) 25 (16.23%) 15 (9.74%) 17 (11.04%) 7 (4.55%) 154 
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he radiometric property of scanned objects are similar in different 

imes which is actually not satisfied in real scenes. The direct and 

nsupervised difference calculation would introduce errors in 

hange detection, especially for high resolution data. For super- 

ised methods [17–19] , there is usually a post-classification process 

o find valuable objects via an image analysis framework and then 

etect the changes using multi-modal and multi-temporal data. 

owever, these approaches rely mainly on the imagery informa- 

ion. Furthermore, it is challenging to design a supervised model 

aking multi-modal and multi-temporal data as input. 

In this SHREC track on 3D point cloud change detection for 

treet scenes, we provide a cleaned and annotated 3D point cloud 

ataset obtained from mobile laser scanners (MLS). Objects in the 

ataset are initially roughly selected. Then, they are manually an- 

otated with change labels. With the proposed dataset, we aim to 

ompare and develop reliable and accurate change detection tech- 

iques for multi-temporal 3D street scenes. 

We compare different methods on the proposed Street3D 

enchmark. The contributions are summarized as: 

• We provide a unique classification-based 3D change detection 

dataset from a complex street environment. There are no other 

open 3D point cloud datasets released for our purpose. 
• We evaluate different algorithms on the dataset and help find- 

ing solutions for 3D point cloud change detection tasks. 
• The results show that the proposed siamese graph convolu- 

tional networks (SiamGCN) are good at extracting representa- 

tive geometric features and can hereby outperform compared 

algorithms on the released Change3D dataset. 

. Change3D benchmark 

In this comparative evaluation, we provide a change detection 

ataset named Change3D. The dataset is made publicly available 

t https://kutao207.github.io . 

.1. Dataset description 

The dataset is provided by CycloMedia Technology and con- 

ists of annotated ǣpoints of interest ǥ in street level colored point 

louds gathered in 2016 and 2020 in the city of Schiedam, the 

etherlands using vehicle mounted LiDAR sensors. The dataset fo- 

uses on street furniture, with the majority of labels corresponding 

o road-signs although other objects such as advertisements, stat- 

es and garbage bins are also included. Labeling was done through 

anual inspection. The 3D data from CycloMedia are generated 

rom depth maps instead of original LiDAR scans, and they are al- 

eady registered quite well [20] . 

We have selected over 78 annotated street-scene 3D point 

loud pairs in the year of 2016 and 2020. Each point cloud pair 

epresents a street scene in two different years and contains 866 

bject pairs of different change type in total. The statistics of the 

hange3D benchmark are summarized in Tab. 1 . Each object pair 

s assigned one of the following labels: 

(1) nochange (2) removed (3) added (4) change (5) 

olor_change 

• nochange refers to the case where there is no significant 

change between the two scans. 
• removed refers to objects that exists in the first scan but are 

removed from the second scan. 
193 
• added refers to objects that do not exist in the first scan but 

are added during the second scan. 
• change refers to the case where there is at least significant ge- 

ometric change but also includes cases where there is also sig- 

nificant change in the RGB space. This includes being replaced 

by other objects. For example in Fig. 1 (c) a small blue sign is 

added whilst the rest of the sign stays the same. 
• color_change refers to the case where there is not significant 

geometric case but significant change in the RGB space. For ex- 

ample, in Fig. 1 (b), content of an advertisement changed but 

the rest of the cloud is the same. 

.2. Labeling format 

Each data point consists of the coordinates of a point of interest 

nd the corresponding label. The points have been placed on or at 

he base of the object. A first step for preparing the points for in- 

ut to a model may be taking all points within a certain x-y radius 

f the point of interest (resulting cylinders as seen in Fig. 1 ) from

oth point clouds. In most cases, apart from the ground this will 

ive a fairly clean representation of the object. There are though 

ases where this will include other objects (for example signs that 

re close together) or parts of trees that are above the object. 

Corresponding point clouds are saved with file names starting 

ith the same integer (the scene number). The classifications are 

aved in csv files which also start with the same scene number. 

he coordinates contained in the csv file correspond to the points 

f interest. 

.3. Task and evaluation 

Our task is to classify the changes of meaningful objects from 

wo different years’ 3D point clouds in a complex street environ- 

ent. We provide scene-level 3D point clouds of year 2016 and 

020 and the corresponding center of meaningful objects. Partici- 

ants are encouraged to try out different methods for our task. 

We adopt the Overall Accuracy (OA) and mean Intersection over 

nion (mIoU) metrics in our 3D change detection task. 

Generally, OA reports the percent of points in the data set 

hich are correctly classified: 

A = 

N correct 

N total 

(1) 

here N correct is the number of correctly classified points and N total 

s the total number of points. mIoU is the average of per-class IoU. 

he IoU of class i is defined as: 

oU i = 

TP i 

GT i + Pred i − TP i 

(2) 

here TP i , GT i , Pred i denote the correctly classified number of 

oints, the ground truth point number, and the predicted point 

umber for class i , respectively. The classes are nochange , removed , 

dded , change and color_change . 

. Methods 

.1. PoChaDeHH: Point cloud change detection with hierarchical 

istograms 

This method is contributed by authors [Nikolaos Stagakis, 

erasimos Arvanitis and Konstantinos Moustakas]. In the follow- 

https://kutao207.github.io
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Fig. 1. An example of our Change3D dataset. 
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Fig. 2. Example of original subscenes for the dataset of 2016 and 2020, correspod- 

ingly. 

Fig. 3. Original subscenes without the large plane area. 

a

t

j

t

ng paragraphs, we will briefly describe all the steps that we fol- 

ow for the change detection approach, named Point Cloud Change 

etection with Hierarchical Histograms (PoChaDeHH) that we de- 

eloped. The source code of our work is freely available at https: 

/github.com/Stagakis/shrec21 _ changedetection . 

.1.1. Notation and basic definitions 
• as “point-of-interest” we refer to the given point that specifies 

the area (subscene) in which the object-of-interest exists. The 

points are found in the csv file of the respective scene. 
• as “subscene” we refer to the segment of the original point 

cloud scene in which the object-of-interest lies. The subcene is 

extracted by centering a cylinder on the point of interest. In 

particular, we use a modified version of the python script pro- 

vided for visualizing the subscenes to save the subscene in a 

separate ”.las” file. 
• as “object-of-interest” we refer to the specific object of the sub- 

scene that we need to check about possible changes and it is 

defined based on the given point-of-interest. The rest of the ob- 

jects extracted by the cylinder (if any) are considered and han- 

dled as outliers and noise. 

.1.2. Pre-processing of the scene 

The subscenes of the given dataset usually consist of outliers, 

ncomplete and/or noisy objects while other unrelated objects are 

patially close to our object-of-interest. To simplify the subscene, 

e remove these objects, by applying a series of processing steps. 

hese steps described below are repeated for each subscene of all 

cenes for both of the chronological areas. 

.1.3. Plane area removal 

Firstly, we want to remove the floor of the extracted subscene. 

o do that, we detect the plane with the most inliers of each sub- 

cene and discard them. This step helps us later to separate the 

ifferent objects that may appear in the subscene. In Fig. 2 , we 

resent an example of two subscenes and in Fig, 3 the results af- 

er the floor removal. 

Note here that after this step it is possible that all the informa- 

ion of the subscene to have been removed (i.e., it there was only 

 flat area). In that case, we either save the original subscene, for 

ater deciding whether the subscene is colorchanged or not, or we 

eplace the subscene with a dummy point at [0 0 0]. The latter is 

one in the case of geometric classification. 

.1.4. Clustering 

We estimate density clusters of each subscene in order to reject 

hese objects that are far away from the object-of-interest and they 
194 
re not semantically related with it. In this step, we use an adap- 

ive approach of the DBSCAN [21] algorithm that separates the ob- 

ects of the subscene into clusters based on their density. To men- 

ion here that we select and merge these cluster(s) which are close 

https://www.github.com/Stagakis/shrec21_changedetection
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Fig. 4. Results after the process of clustering. 
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Fig. 5. Heatmap of the mean distance between each point of the one object-of- 

interest and the closest points of the other. 
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t

o the point-of-interest (i.e., regarding a predefined threshold). In 

ig. 4 , we present an example where more than one objects are 

resented in the subscene. However, only one of them is related 

ith the real object-of-interest that we want to compare, so we 

ave to remove all the other unrelated objects. 

.1.5. Registration 

Once, we have found the corresponding clusters, which are re- 

ated to the given point-of-interest, we apply a registration process 

o the cluster(s) of the newest date with the corresponding clus- 

er(s) of the oldest date. 

.1.6. Comparison between registered point clouds 

To decide the class of each situation, we firstly estimate the 

ean euclidean distance of each point of the one cluster with the 

5 closest point of the other cluster, creating in this way a list of 

airs and their corresponding distance. An example that visualizes 

he heatmap of this distance is presented in Fig. 5 . Then, we cre-

te two histograms, using these distances, with an equal number 

f bins (i.e., 50) in order to be easily compared since the values 

re not normalized, as presented in Fig. 6 . These histograms repre- 

ent each one for the corresponding two clusters of each subscene. 

ccording to these histograms, we take into account only the high 

alues of distances assuming that they lie in the histograms be- 

ween 40–50 bins. 

Additionally, to identify small differences between the two 

ompared object-of-interest (i.e., change case) we search for ver- 

ices that do not appear in the list of pairs. The number of these 

nrelated vertices can be used to show a possible change between 

he two objects. 

.1.7. Color comparison between clustered point clouds 

After the initial comparison for determining the geometric class 

f the object-of-interest, we take another step to find color changes 

etween the point clouds and refine our classification. Given the 

ature of the colorchanged class we can assume that, regarding the 

eometry, color changed point clouds are a subset of the nochange 

lass. Thus, we implement a histogram comparison between point 

louds that receives as input only the nochange classified objects in 

he previous step and classifies them as either nochange or color- 

hange. The color comparison is done in the HSV space to reduce 
195 
he effect of luminosity changes and the histograms are aligned. 

ooking at the statistical distribution of the histogram distance for 

ach class, we chose a threshold to decide whether the input ob- 

ect is truly in the nochange class or should be classified as color- 

hanged. 

The entire pipeline of our work is shown in Fig. 7 . 

.2. HGI-CD: 3D point cloud change detection for street scenes 

This method is contributed by authors [Darshan Bangera and 

hankar Gangisetty]. In this work, we propose a hybrid learning- 

ased 3D change detection of bi-temporal point clouds as shown 

n Fig. 8 . Initially, we calculate the change between 2016 and 2020 

oint clouds by applying a point-to-point Hausdorff distance [22] . 

ausdorff distance is the greatest of all the distances from a point 

n one set to the closest point in the other set. We then designed a

iamese classification network [23] to detect the changes between 

oint cloud street scenes. 

.2.1. Data pre-processing 

Given the 3D point cloud scenes of 2016 and 2020 as inputs to 

he proposed hybrid learning-based framework as shown in Fig. 8 . 

nitially the 3D objects present in 2016 and 2020 scenes are ex- 

racted by considering the points that lie within a cylindrical re- 

ion around the point of interest. Let (n × 3) and (m × 3) repre- 

ent the extracted 2016 and 2020 3D objects, where n and m are 

he number of points in 2016 and 2020 with (x, y, z) as point co-

rdinates. 

We then isolate the 3D objects of 2016 (n ′ × 3) and 2020 (m 

′ ×
) from the ground surface by eliminating the large planes that 

re parallel to the ground surface and pass through the point of 

nterest as shown in Fig 8 . Any of the outliers present are removed

sing statistical outlier removal technique. If there are no points 

ithin the extracted region, we add the point of interest as the 

ole point in the 3D object. 

.2.2. Change computing 

To calculate the geometrical changes between the 2016 and 

020 point clouds, we perform a Hausdorff distance computing be- 

ween each point in the 2016 object to its nearest neighbour in the 
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Fig. 6. Histograms of the mean distance between each point of a cluster and the closest points of the other. 

Fig. 7. Histograms of the mean distance between each point of a cluster and the closest points of the other. 
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020 point cloud and vice-versa. We then perform thresholding to 

elect the points with significant change in position. 

After the change computation, we build color change graphs 

nd geometric change graphs. In the color change graphs, calcu- 

ation of the changes in colour space is performed by first aver- 

ging the RGB values into respective red, green and blue bins. A 

olour space point cloud is generated by taking the averaged RGB 

alues. The change in color space is calculated by applying a point- 

o-point Hausdorff distance. For each RGB point with significant 

hange, its corresponding (x, y, z) coordinate from the point cloud 

s taken. The k-nearest neighbours (KNN) algorithm is used to gen- 

rate a graph for color and geometrical change point clouds of 

016 and 2020 3D objects, respectively. The fast point feature his- 

ograms (FPFH) [24] are calculated for each point as their node fea- 

ures. The results from the three streams (i.e., color change, 2016 

oints geometry, 2020 points geometry) are then concatenated and 

assed to multi layer perceptrons to generate the output. In the 

iDAR scene scenarios where there are no points of significant 

hange in both 2016 and 2020 point clouds, the object is directly 

abelled as nochange . 

.2.3. Training 

We train the hybrid learning-based model using the graph node 

eatures and the edge indices as shown in Fig. 9 . The loaded data

s of dimensions (N, G ) for geometrical change detection and (N, C) 
196 
or colour change detection, where N is the number of nodes of the 

D object, G is the total features selected for FPFH along the RGB 

alues of the node and the RGB values of its nearest neighbour. 

he color change graphs and geometric change graphs data is fed 

o a Siamese graph convolutional networks (GCNs) [25] followed 

y inception networks [26] . Each of the GCN accepts the node fea- 

ures and edge indices as its input as shown in Fig. 9 . The GCN

etwork performs convolutions on the node features but main- 

ains the structure of the graph. The obtained intermediate results 

ave 80 dimensions which is fed to an Inception V1 network as 

pecified in [26] . Each parallel stream (i.e., the color and geomet- 

ic change) learn to detect if a set of points represent a changed 

art or not. Global mean pooling is performed on the 180 dimen- 

ions output of each stream to ensure that classification is done 

n the graph as a whole. The outputs are concatenated and fed 

o a multi-layered perceptron to provide the final labels. The point 

loud change detection class labels are added , removed , nochange , 

hange , and color_change . 

.2.4. Implementation details 

We train the model using the Adam optimizer with a learning 

ate of 0:001 and a decay rate of 0:001. Empirical we set a thresh- 

ld of 0:2 to select the points of significant geometric change and 

enerate a k-NN graph with k = 10 . Since the data are imbalanced,
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3D Point cloud scenes Object extraction
Plane surface and Outlier

removal

Change computing

Color change graphs Geometric change graphs

(l x 39) (n'i x 33), (m'j x 33)

Label: Added Label: Removed Label: Nochange Label: Change Label: Color_change

2016 (n x 3) 2020 (m x 3) 2016 (n' x 3)

2016 points GCNColor change GCN 2020 points GCN

Inception network Inception network Inception network 

(l x 80)

(l x 180)

(n'i x 80)

(n'i x 180)

(m'j x 80)

(m'j x 180)

Concat

MLP

(360, 128, 64, 32, 6)

Global mean pool Global mean pool Global mean pool

(1 x 180) (1 x 180)

(1 x 360)

Concat

MLP

(360, 128, 64, 32, 6)

(1 x 360)

Concat

MLP (12, 5)

(1 x 12)

if n'i == 0 

and 

m'j == 0

Label: Nochange

Fig. 8. Proposed hybrid learning-based point cloud change detection. 

Fig. 9. Graph convolution network for point cloud change detection. 
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e perform data augmentation on each of the different classes by 

onsidering jitter and rotation to balance the dataset. We used a 

rain : validation split of 80 : 20 for experimental analysis. The 

odel is trained on hardware comprising of 16 GB CPU and a sin- 

le NVIDIA Quadro P600 GPU. 

After acceptance the clean code will be released. For evaluation 

he code at following GitHub link is submitted: https://github.com/ 

arshanbangera/3D-Change-Detection . 
197 
.3. SiamGCN: Siamese graph convolutional network for 3D point 

loud change detection 

This method is contributed by authors [Tao Ku, Sam Galanakis, 

as Boom and Remco C. Veltkamp]. In this section, we intro- 

uce a Siamese Graph Convolutional Network (SiamGCN) for 3D 

oint cloud change detection. The edge convolution operator is 

dopted to extract representative features from point clouds. Then, 

https://www.github.com/darshanbangera/3D-Change-Detection
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Fig. 10. The network architecture of the proposed SiamGCN. 
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 siamese architecture [27] based on the graph convolutional net- 

orks is proposed to identify the change type of any two input 

oint sets from two different years. The code of our approach is 

ublicly available at https://github.com/kutao207/SiamGCN . 

.3.1. Preprocessing 

We design a siamese network for the task. However, the pro- 

ided data are in the form of large point clouds and only object 

enter coordinates are given. The size and shape of the objects are 

ncertain. To correctly identify the change type, we need to prop- 

rly extract object pairs around given center coordinates and in- 

ut these point cloud pairs to our proposed network for training 

nd evaluation. Since the task is to classify change types instead of 

bject classes, we don’t need to extract the objects correctly. Con- 

idering that the point clouds are well registered, we extract the 

ylinders around the given centers with an experimental distance 

f 3 m for all samples. We don’t expect the extracted point clouds 

ave the same input point number as our network is well-designed 

o deal with this issue. 

.3.2. Network architecture 

As shown in Fig. 10 , the proposed SiamGCN consists of two 

ranches of graph convolutional networks. These two branches 

hare the same weights. The point clouds from two different times 

re fed into corresponding branch and output two one-dimension 

ectors through the global max pooling layer. By subtracting these 

wo vectors, we use an MLP to get the final classification output. 

Imbalanced Data Sampler : As shown in Tab. 1 , the data are 

lass-imbalanced. Around 60% samples are labelled as nochange 

nd only around 3% are labelled as color_change, which will lead 

o a biased training process and result in failure cases in predict- 

ng minority classes. In order to address this problem, we adopt 

he randomized over-sampling metric in [28] . The general idea is 

o randomly duplicate samples in the minority class to make sure 

hat samples of each class has the same probability being adopted 

n the training process. 

Graph Construction : In order to apply graph convolution on 

oint clouds, we need to construct graphs for input points. Consid- 

ring the irregular data format of point clouds, we use graphs to 

ncoding the geometric relations among points. For a point cloud 

ith N points, suppose X ∈ R 

N×3 denotes the XYZ coordinates of 

points. A graph G = (V, E ) represents the local structure, where 

 = 1 , 2 , · · · , n and E ⊆ V × V are vertices and edges. In our ap- 

roach, we use the k -nearest neighbor ( k NN) algorithm to build 

he graph of X and obtain corresponding adjacency matrix A . We 

et the k NN query number as 16 throughout our experiments. 

Graph Convolution : Inspired by [27] , we adopt the edge- 

onditioned graph convolution operator in our proposed SiamGCN 

rchitecture. Edge convolution [27] is adopted to dynamically up- 

ate the edge features. Generally, the edge convolution is to apply 

 channel-wise symmetric aggregation operation on the edge fea- 
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ures. Mathematically, 

 

(k ) 
i 

= ReLU (θm 

· (x 

(k −1) 
j 

− x 

(k −1) 
i 

) + φm 

· x 

(k −1) 
i 

) (3) 

here θm 

and φm 

are the weights of filters and can be imple- 

ented as a shared MLP, · denotes the Euclidean inner product. 

 

k 
i 

denotes the i -th edge feature output of the k -th layer output. 

Then, we adopt the graph convolution concept in [29] to encode 

eometric information as 

 = AXW (4) 

here X = { x 1 , · · · , x N } ∈ R 

N×C is the input features, Y ∈ R 

N×D is

he filtered output, W ∈ R 

C×D denotes the weight matrix, and A is 

he adjacency matrix. 

. Results and discussion 

.1. Experimental results 

Quantitative evaluation results on the Change3D benchmark are 

ummarized in Tab. 2 . Overall Accuracy (OA) and mean Intersec- 

ion over Union (mIoU) are evaluated for all classes. We have also 

alculated the classification accuracy and IoU for each class respec- 

ively. In Fig. 11 , confusion matrices are plotted to intuitively show 

he strength and weakness of each method. 

We have evaluated the three submitted methods: PoChaDeHH, 

GI-CD and SiamGCN. PoChaDeHH is based on hand-crafted de- 

ectors, while HGI-CD and SiamGCN are learning-based and both 

dopt graph convolution networks and Siamese network architec- 

ure. 

From Tab. 2 , it is straightforward that SiamGCN outperforms 

he other two methods on accuracy and IoU. PoChaDeHH, as a 

on-learning based method can achieve 61.04% overall accuracy 

nd relatively balanced performance on classes. HGI-CD, as one 

f the learning-based methods, achieves good result on classify- 

ng majority class nochange , but fails on minority classes change 

nd color_change . The SiamGCN has very good performance on the 

ataset, especially on minority classes which achieves 95.24% and 

8.57% accuracy on minority classes change and color_change . 

.2. Discussion 

Handcrafted v.s. Learning-based : Three algorithms including 

ne handcrafted and two learning-based are evaluated on the 3D 

hange detection dataset. Although the handcrafted algorithm can 

chieve relatively balanced results on the overall and per-class ac- 

uracy and mIoU, it’s still obvious that learning-based methods can 

chieve overwhelming performance. 

Class imbalance : Class imbalance poses a challenge for 

earning-based modeling as most machine learning algorithms are 

esigned with the assumption of an equal number of examples 

or each class. However, due to the limitations of data acquisition, 

lass-imbalanced problem cannot be avoided. Around 60% objects 

https://www.github.com/kutao207/SiamGCN
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Table 2 

Quantitative results on the Change3D benchmark. 

Method 

OA 

(%) 

mIoU 

(%) 

nochange removed added change color_change 

Acc. IoU Acc. IoU Acc. IoU Acc. IoU Acc. IoU 

PoChaDeHH 61.04 30.22 76.70 61.06 48.00 31.58 66.70 40.00 5.90 4.17 28.60 14.29 

HGI-CD 53.90 17.17 81.11 55.30 28.00 16.28 20.00 14.29 0.00 0.00 0.00 0.00 

SiamGCN 92.42 76.63 84.25 55.03 89.80 72.07 94.70 89.82 95.24 69.57 98.57 96.67 

Fig. 11. Confusion matrix for all the three comparison algorithms. The x-axis represents the predicted labels while the y-axis denotes the groundtruth labels. In this figure, 

each subfigure shows clearly the classification ability of each algorithm. We normalized each row of the confusion matrix so that it is intuitive to show the probability of 

correct predictions and incorrect predictions. 

Table 3 

The comparison between concatenation operator and subtraction operator in 

SiamGCN. 

OA (%) nochange removed added change color_change 

Concat 76.54 39.60 76.06 88.37 82.64 97.97 

Sub 92.42 84.25 89.80 94.70 95.24 98.57 
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re labelled as nochange and only 3.65% labelled as color_change . 

ence, it is important to deal with the class imbalance for the par- 

icipated algorithms. SiamGCN adopts randomized oversampling 

etric to avoid the class-imbalanced problem and achieves good 

esults on minority classes. However, HGI-CD lacks this procedure 

nd fails on the minority classes which indicates the importance 

f resampling part when designing an algorithm for the class- 

mbalanced change detection dataset. 

Network architecture : When adopting deep learning based 

ethods, the network design is extremely important for robust 

nd effective modeling. For this 3D change detection task, both 

GI-CD and SiamGCN adopts the graph convolutional networks 

nd Siamese architecture. But there are still many differences. 

hen dealing with the output features of the siamese network, 

GI-CD uses a concatenation operator while SiamGCN adopts a 

ubtraction operator, which makes a difference to the final perfor- 

ance. In order to investigate the importance of these two oper- 

tors, we compare the performance of these two operators in the 

iamGCN method. The results are summarized in Tab. 3 . The sub- 

raction operator greatly increases the performance on both over- 

ll and per class accuracy. Although the concatenation operator has 

een widely used in classification and semantic segmentation, sub- 

raction is more natural and reasonable for change detection as it 

s to classify the differences. 

. Conclusions 

In conclusion, this comparative evaluation contributes to 3D 

oint cloud change detection for street scenes with multiple ap- 

roaches. We provide a street-scene 3D change detection dataset 

omposed of 78 scans with 866 annotated object pairs in year 

016 and 2020. Five class labels are included for the change type. 
199 
e introduce three novel and different methodologies including 

ne handcrafted method and two learning-based methods (HGI- 

D and SiamGCN). It shows that learning-based can achieve over- 

helming performance on the dataset. SiamGCN solves the class- 

mbalanced problem by adopting randomized oversampling and 

roposes a well-designed siamese graph convolutional network ar- 

hitecture for the 3D change detection task. Comparison results 

hows that over-sampling and using subtraction operator are the 

ey for the SiamGCN to achieve the best performance on the re- 

eased Change3D benchmark. The three compared algorithms con- 

ribute on how to design a proper framework for the 3D change 

etection task. 
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