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a b s t r a c t

Localization and navigation are the two most important tasks for mobile robots, which require an up-
to-date and accurate map. However, to detect map changes from crowdsourced data is a challenging
task, especially from billions of points collected by 3D acquisition devices. Collecting 3D data often
requires expensive data acquisition equipment and there are limited data sources to evaluate point
cloud change detection. To address these issues, in this Shape Retrieval Challenge (SHREC) track, we
provide a city-scene dataset with real and synthesized data to detect 3D point cloud change. The
dataset consists of 866 pairs of object changes from 78 city-scene 3D point clouds collected by LiDAR
and 845 pairs of object changes from 100 city-scene 3D point clouds generated by a high-fidelity
simulator.

We compare three methods on this benchmark. Evaluation results show that data-driven methods
are the current trend in 3D point cloud change detection. Besides, the siamese network architecture is
helpful to detect changes in our dataset. We hope this benchmark and comparative evaluation results
will further enrich and boost the research of point cloud change detection and its applications.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Point cloud change detection is drawing more and more atten-
ion with the quick development of autonomous ground and un-
amed aerial vehicles over the last few years. These autonomous
ehicles are commonly used in a variety of tasks, such as forest
onitoring [1], urban planning [2], logistics delivery [3] and

emote sensing [4]. To make sure these tasks can be completed
uccessfully, an accurate and up-to-date map is required, which
akes point cloud change detection crucial.
The rapid development of 3D acquisition devices enables us to

ollect billions of points in a few hours. However, how to analyze
uantitative collected data is a challenging task, especially for 3D
oint cloud change detection. The general objective of change de-
ection from 3D point clouds is to detect spatial changes between
wo point clouds obtained from the same site at different times
nd then to identify the change types [5,6]. Classical approaches
irectly process raw crowdsourced data to detect changes [7,8].
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However, these methods are time-consuming and are not able to
distinguish the unknown and empty areas.

On the other hand, a different class of methods relies on
classification-based comparison to achieve change detection
[9–11]. Unlike direct comparison approaches, these methods first
cluster and classify points into different classes and then a reg-
istration process is introduced to detect 3D changes. However,
these methods impose a huge computational complexity. Thus,
current methods have different strengths and weaknesses, de-
pending on data processing and scene contents. More and more
new algorithms, aiming for 3D change detection have been pub-
lished. However, it is unclear whether these methods are suitable
for complexity scene containing rich urban objects with varying
light, shapes and textures, for the lack of available datasets.

Change detection plays an important role in robot navigation,
remote sensing and logistics delivery, for such tasks require an
accurate and up-to-date map with rich 3D information. Thus,
collecting 3D data becomes crucial. However, current data equip-
ment is expensive with costs in the thousands to millions of
dollars. For example, expensive sensors including airborne laser
scanners (ALS), mobile laser scanners (MLS) and terrestrial laser
scanners (TLS) are often used to collect point clouds for change
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Fig. 1. Examples of the dataset showing city scenes with a variety of changed
urban objects: left point cloud captured by LiDAR and the right point cloud
generated by the simulator.

detection [12–15]. Alternative solutions rely on structure from
motion (SfM) and multi-view stereo (MVS) to generate point
clouds [16,17]. However, these methods are time-consuming and
require several days to generate point clouds for a medium-sized
urban environment [18].

The limited number of available datasets is also a barrier
o Point cloud change detection [19]. SHREC 2021 point cloud
hange detection dataset [20] only provides point clouds for real
rban scenes while datasets provided by [21] only focus on simu-
ated scenes. To the best of our knowledge, there are no available
atasets which take advantages of both real and synthesized data.
To address these issues, we propose the point cloud change

etection for city scenes benchmark and compare different meth-
ds on the proposed benchmark. In this benchmark, we provide
3D point cloud dataset consisting of real captured 3D data by a
obile laser scanner (MLS) and synthesized 3D data generated by

he high-quality simulator AirSim built on Unreal Engine 4 [22].
The objects in our datasets cover a variety of shapes, sizes,

nd textures, such as cars, garbage bins and lights. Our main
ontributions are summarized as follows:

• A representative dataset providing high-quality annotated
3D point clouds, which contains rich urban objects with varying
light, shapes and textures, and covers a wide range of change
detection challenges. The dataset fills the vacancy in the point
cloud change detection task.

• A comprehensive evaluation of point cloud change detection
pproaches. We organize the Shape Retrieval Challenge (SHREC)
enchmark on point cloud change detection and use different
valuation metrics to compare the proposed methods based on
ur datasets. Evaluation results indicate that approaches that fully
xploit the geometric features are more robust for point cloud
hange detection for minority classes.

. Benchmark

Our point cloud change detection benchmark provides high-
uality annotated 3D point clouds for complex city scenes con-
aining urban objects of varying shapes and textures. To facilitate
ata-driven approaches, we also synthesize a large number of
igh-quality 3D point clouds using the simulator AirSim built on
nreal Engine 4.

.1. Dataset

We use both real-world data and data generated from simu-
ation for the point cloud change detection retrieval. As shown in
ig. 1, our dataset contains a variety of urban objects in complex
ity scenes.
The real-world dataset describes the street scenes in 2016 and

020 for Schiedam, a city in the Netherlands. It is captured by
iDAR sensors which are mounted in a car. In this dataset, we
36
Fig. 2. An example of ‘‘change’’ type.

Fig. 3. An example of ‘‘color_change’’ type.

focus on street furniture including road-sings, advertisements,
garbage bins and so on. It contains 78 annotated street-scene 3D
point cloud pairs in the year 2016 and 2020, respectively, and
866 labeled urban objects with different change types. Labeling
is done through manual inspection.

Our aim is to build a point cloud change detection dataset
containing rich urban objects with varying viewpoints, shapes
and textures which are the limitation for real captured datasets.
Inspired by the low cost of producing very large-scale synthetic
datasets with complete and accurate ground-truth information, as
well as the recent successes of synthetic data for training change
detection systems, we generate a synthesized dataset with a
high-quality simulator.

We generate the synthesized dataset using simulated scenes in
Unreal Engine 4 with the AirSim plugin. The synthesized dataset
contains 100 annotated street-scene 3D point cloud pairs gener-
ated at two different time points and 845 labeled urban objects
with different change types. The synthetic scenes we use are
offered by Unreal Engine 4 which provides many cutting edge
graphics features such as photometric lights, ray traced distance
field shadows and so on. Thus, the synthetic scenes are able to
mimic the real ones and model real-world complex objects such
as electric poles, trees and buildings with shadows, reflections.
Labeling is also done through manual inspection.

Compared with our real-world dataset, the urban objects in
our synthesized dataset have richer shapes, textures and light
conditions. We combine the synthesized and real-world data to
build the final dataset, which covers a wide range of change
detection challenges.

To define and distinguish the term ‘‘change’’ in the context
of various scenarios, we follow the definition provided by SHREC
2021 [20]. The change types are defined as:

• nochange is used in the case where there is no significant
change between the two scans of the same urban object.

• added is used in the case where an object which does not
exist in the first scan appears in the second scan.

• removed is used in the case where object that exists in the
first scan disappears in the second scan.

• change is used in the case where there exists some geometric
change for the urban object. For example, a small handle is added
to the urban object, as shown in Fig. 2.

• color_change is used in the case where the object has no
geometric change but has a color change. For example, compared
with the first scan the color of the advertisement is changed as
shown in Fig. 3.
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Fig. 4. The network architecture of the proposed SiamGCN-GCA method.
Fig. 5. The architecture of the proposed GCA module.

In our dataset, each 3D point cloud contains labeled urban
objects with different change types. The labeled points have been
placed on or at the base of the objects which are saved in csv
files. Each point cloud and its corresponding csv file share the
same name. So the same identifier can be used to find the point
cloud and the corresponding change types of different objects in
it. To make our dataset suitable for learning-based approaches,
the dataset is split into training and test sets with ratios of 80
and 20.

2.2. Evaluation metrics

In this benchmark, we aim to find and classify changes for ur-
ban objects between two different states of complex city scenes.
We provide scene-level 3D point clouds generated at two differ-
ent time points and the corresponding center of urban objects.

As point cloud change detection can be considered as clas-
sification problem. Therefore, the standard classification met-
rics including Overall Accuracy (OA) [23] and mean Intersection
over Union (mIoU) metrics [24] are introduced to evaluate the
performance of different proposed methods in our benchmark.

The Overall Accuracy represents the proportion of correctly
classified samples. The OA is calculated by dividing the number
of correctly classified objects M by the total number of objects N
with different change types.

OA =
M
N

(1)

The Intersection over Union (IoU) measures the overlap be-
tween predicted results and the ground truth

IoU =
TP

PN + GN − TP
, (2)

where TP , GT and PN are the number of correct predictions for
a certain class, the number of objects predicted to the certain
class and the ground truth number of objects to the certain class,
respectively.
37
3. Methods

All the proposed methods are described in the following sub-
sections.

3.1. SiamGCN-GCA: 3D point cloud change detection with siamese
and geometry context aware (GCA) attention

This method is contributed by authors [Georgios Zamanakos,
Lazaros Tsochatzidis, Angelos Amanatiadis and Ioannis
Pratikakis]. In this work, a novel Geometry Context Aware (GCA)
attention mechanism is proposed, that could be used to enhance
the performance of Graph Convolutional Networks for the task
of 3D point cloud change detection. SiamGCN [20] is used as a
baseline model, which is modified with the proposed GCA mech-
anism. The resulting SiamGCN-GCA network follows a siamese
architecture to process the two input point clouds from two
different time periods. The code of SiamGCN-GCA approach is
publicly available at [25].

3.1.1. Preprocessing
The provided dataset is in the form of large point cloud scenes

with the center coordinates of areas of interest provided along
with a classification label. It consists of two domains including
a set of synthetic scenes and a set of real LiDAR data. For both
synthetic and real sets, the preprocessing steps are the same.

As a preprocessing step, two object pairs are extracted around
each center coordinate. This is accomplished by extracting a
cylindrical area around each center coordinate with a distance
of 3 m for all samples. The choice of distance is made after
experimental work.

The resulting object pairs are centered, but the coordinates of
the points are not normalized. As a result, the true geometry of
the scene is kept intact.

Since data are class-imbalanced, SiamGCN-GCA adopts the
same strategy as in SiamGCN [20]. SiamGCN-GCA uses an imbal-
anced data sampler to duplicate samples in the minority class.
By doing so, it is ensured that the samples of each class have the
same probability of being used during training.

3.1.2. Network architecture
As shown in Fig. 4, the proposed SiamGCN-GCA consists of

two branches, one for each object scene. The two branches share
the same weights. Each branch is designed to extract a one
dimensional feature vector. The resulting two one dimensional
features vectors are subtracted and their difference is used as
input to a MLP, to obtain the final classification output.

As in SiamGCN, the Dynamic Graph CNN (Edge convolution
[26]) is used as feature extractor.

The GCA attention mechanism consists of two distinct mod-
ules as shown in Fig. 5 including the positional sub-network and

the contextual sub-network.
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Fig. 6. Block diagram of the Voxel Feature Encoding (VFE).
Fig. 7. The network architecture of the proposed SiamVFE method.
The Positional sub-network aims in encoding the geometry
of the scene. Given a point cloud scene P consisting of N points,
let Ppos ∈ RN×3 be the [x, y, z] 3D coordinates of the N points. The
positional sub-network receives as an input the Ppos and projects
it into a higher dimension. Mathematically,

PEi = MLPi(Ppos), (3)

where PE is the positional encoding, MLP is a multilayer percep-
tron architecture and i is the block number. The resulting high
dimensional PE is then added to the feature vector from the Edge
convolution sub-network via a summation operation.

The Contextual sub-network aims in extracting a global con-
text of each scene by re-weighting the already learned features of
each point. Let P f

i ∈ RB×N×C be the resulting feature vector of each
scene, where B is the batch number, N is the number of points, C
is the number of feature channels and i is the block number. The
contextual sub-network first performs a global average pooling
across all N points to extract the global average feature vector
of each scene. Then, via a Squeeze and Excitation (SE) architec-
ture [27], the global average feature vector is transformed into
an attention vector Ai ∈ RB×C . Mathematically,

Ai = σ (W2δ(W1(GAP(P
f
i )))), (4)

where σ , δ are the sigmoid and ReLU activation functions re-
spectively, W1,W2 are the linear projections of the squeeze and
the excitation operations respectively. GAP is the global average
pooling operation.

The resulting Ai is multiplied by P f
i to perform the feature

re-weighting.

3.2. SiamVFE: Point cloud change detection with siamese and the
voxel feature encoding architectures

This method is contributed by authors [Georgios Zamanakos,
Lazaros Tsochatzidis, Angelos Amanatiadis and Ioannis
Pratikakis]. In this work, a deep learning architecture that relies
on the Voxel Feature Encoding (VFE) architecture is proposed,
for the task of 3D point cloud change detection inspired by the
context of LiDAR-based 3D object detection. VFE is used by 3D
38
object detectors, such as VoxelNet [28] and PointPillars [29],
for extracting a discriminative feature vector per voxel or pillar,
respectively.

VFE is built upon a mini-PointNet structure consisting of linear
layers and max pooling, as shown in Fig. 6. Furthermore, due to its
computational efficiency, VFE enables the processing of multiple
points at the same time. The symmetric function of max pooling
is applied on a local neighborhood of points, given the voxel or
pillar that they belong to. The code of our approach is publicly
available at [25].

3.2.1. Preprocessing
Same as in method SiamGCN-GCA (Section 3.1.1, Page 3).

3.2.2. Network architecture
As shown in Fig. 7, the proposed SiamVFE consists of two

branches, one for each object scene. The two branches share
the same weights. Each branch is designed to extract a one
dimensional feature vector for each scene. The resulting two one
dimensional feature vectors are subtracted and their difference is
used as an input to a MLP to obtain the final classification output.
In SiamVFE, the whole scene was treated as a single pillar that
takes all points in a certain radius.

Given a point cloud scene P consisting of N points, let P =

{pi = [xi, yi, zi, ri, gi, bi]} ∈ RN×6, where [xi, yi, zi] refers to the 3D
coordinates and [ri, gi, bi] to the RGB values for each ith point,
respectively. The mean coordinates of all points N define the
centroid of the point cloud and are denoted as V = [ux, uy, uz].
Let K = [kx, ky, kz] be the center coordinates of the scene. Each
point is defined by its relative offset from both the centroid and
center of the point cloud scene. As a result, each point pi is now
encoded as: P ′

= {p′

i = [xi, yi, zi, xi−ux, yi−uy, zi−uz, xi−kx, yi−
ky, zi − kz, ri, gi, bi]} ∈ RN×12.

Following steps in SiamVFE pipeline, P ′ is fed as an input to
a VFE for feature extraction. The resulting pillar is projected into
a Bird’s Eye View (BEV) pseudo-image. This BEV pseudo-image is
further processed by a 2D CNN with kernel equal to one.



Y. Gao, H. Yuan, T. Ku et al. Computers & Graphics 115 (2023) 35–42

3

V
I
t
p
I
(
r
M
s
G

3

b
p
a
a
b
f
w
w
S
t
i

3

a
p
o
o

Fig. 8. The network architecture of the proposed SiamKPConv.
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.3. SiamKPConv: 3D point cloud change detection for street scenes

This method is proposed by [Aliki Panou, Ioannis Romanelis,
lassis Fotis, Gerasimos Arvanitis, and Konstantinos Moustakas].
n this work, a siamese KPConv network to detect changes be-
ween two point clouds at different chronological times is pro-
osed. The network architecture is briefly illustrated in Fig. 8.
n a nutshell, SiamKPConv leverages Kernel Point Convolution
KPConv) [30], which is a type of convolution that operates di-
ectly on raw point clouds, to extract features at different scales.
ore details about the method will be presented in the following
ections. A code implementation of the project is available on
itHub [31].

.3.1. Data pre-processing
To prepare the data for our network, a fixed-size 3D bounding

ox with the point of interest at its center is defined and the
oint clouds that fall within that box are extracted. Specifically,
bounding box with a fixed size of 2.4 m in length and width
nd a height of 11 m is defined. The dimensions of the bounding
ox are chosen empirically by observing the datasets and are
ound to be satisfactory for both datasets. If no points are found
ithin the bounding box, they are replaced with dummy points
hich are randomly generated points to ensure that the input to
iamKPConv network is always of a consistent size. Additionally,
o limit the number of points, 2048 points are selected randomly
n each point cloud.

.3.2. Network architecture
A 4-stage KPConv feature extractor is employed in the siamese

rchitecture. This network uniformly downsamples the input
oint clouds and learns hierarchical features, enabling the capture
f information at different scales. We utilize code base from the
pen source implementation of [32].
KPConv: The building block in this architecture is KPConv. The

point cloud is represented with two matrices: the points P ∈ RN×3

and the features F ∈ RN×D. The general point convolution of a
matrix F by a kernel g at a point x ∈ R3 is defined as:

(F ∗ g) =

∑
xi∈Nx

g(xi − x)fi (5)

where xi is a point P ∈ RN×3 and fi its corresponding features
in F ∈ RN×D. Nx is defined in [30] as the radius neighborhood of
point x. Thus, Nx = { xi ∈ P | ∥xi − x∥ ≤ r}, where r ∈ R is the
chosen radius. This neighborhood definition ensures robustness
to varying densities.

The relative positions of the neighboring points with respect
to the center x are defined by: yi = xi − x. The domain of the
definition of g is the ball: B3

r = {y ∈ R3
| ∥y∥ ≤ r}.

Let {
∼

xk | k < K } ⊂ B3
r be the K kernel points and {Wk | k < K }

⊂ RDin×Dout be the associated weight matrices that map features
39
from dimension Din to Dout . The kernel function g for any yi ∈ B3
r

is defined as:

g(yi) =

∑
k<K

h(yi,
∼

xk)Wk, (6)

where h is the correlation between
∼

xk and yi and is higher when
∼

k is closer to yi. The correlation is defined as:

(yi,
∼

xk) = max(0, 1 −
∥yi −

∼

xk∥
σ

), (7)

where σ is the influence distance of the kernel points.
Each stage in the encoder part of the architecture, except

for the first one, consists of three convolutional blocks. In all
stages except for the first one, the first block is always ‘‘strided’’.
This ‘‘strided’’ KPConv operation simulates 2D strided convolu-
tions by downsampling the point cloud, thus reducing the num-
ber of points to compute features at different scales. SiamKP-
Conv uses grid subsampling as in [30] to downsample the point
clouds. As described in [30], ‘‘ResBlocks’’ are designed like ResNet
blocks [33].

The parameter in the KPConv network that matters the most
is the initial voxel size for grid subsampling, which is determined
based on the dataset density and the level of detail required to
detect changes. In the case of the Change3D dataset, the initial
voxel size was set to 0.015 m, while for the synthetic dataset, it
was set to 0.02 m. The voxel size is doubled in each downsam-
pling step along with the convolution radius, thereby increasing
the receptive field of SiamKPConv.

The first KPConv layer is fed with four initial features: the
RGB information of point clouds and a constant value of 1. Group
normalization with 32 groups is applied after each KPConv layer.
The same encoder is used for both point clouds.

The output of the final block is passed through a global max
pooling layer to obtain a final feature vector for each point cloud.
We then subtract these feature vectors to get a difference vector,
which is fed to an MLP with 3 hidden layers for classification. A
dropout of 0.5 is used in the first two layers of the MLP network.

To address the challenge of imbalance in both datasets, a
weighted random sampler is used that draws more samples from
the minority classes during training to ensure that the model was
exposed to enough examples of each class.

3.3.3. Implementation details
The network is implemented using PyTorch framework and

trained on a NVIDIA GeForce RTX 2060 GPU. Adam optimizer with
a weight decay of 10−6 is used and minimizes a cross-entropy
loss function. The batch size was set to 1. The initial learning rate
was set to 10−2 and was multiplied by 0.95 every 4 epochs to
decrease the learning rate gradually. SiamKPConv uses an 80:20
train/validation split for all the experiments.
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Table 1
Quantitative evaluation of the change detection accuracy in terms of classification accuracy and OA.

Methods OA(%) change added removed nochange color_change

Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real

SiamGCN-GCA 61.54 61.18 18.18 29.41 52.94 46.67 60.00 60.00 75.79 75.00 0 0
SiamVFE 56.73 53.95 0 17.65 50.00 20.00 63.33 52.00 67.37 71.59 25.00 0
SiamKPConv 84.83 62.34 16.67 17.65 82.61 60.00 96.67 92.00 93.75 66.67 25.00 14.29
Table 2
Quantitative evaluation of the change detection accuracy in terms of IoU and mIoU.

Methods mIoU(%) change added removed nochange color_change

Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real

SiamGCN-GCA 31.14 29.78 6.25 18.52 44.44 31.82 45.00 41.67 60.00 56.90 0 0
SiamVFE 27.86 23.16 0 11.11 40.96 14.29 39.58 35.14 51.61 55.26 7.14 0
SiamKPConv 53.85 37.06 10.53 8.82 77.03 47.37 78.38 67.65 83.33 55.56 20.00 5.88
Table 3
The number of annotated urban objects of different change types.

Dataset nochange removed added change color_change

Synthetic Real Synthetic Real Synthetic Real Synthetic Real Synthetic Real

Train set 257 (40.54%) 351 (59.80%) 113 (17.82%) 100 (17.04%) 212 (33.44%) 54 (9.20%) 41 (6.47%) 63 (10.73%) 11 (1.74%) 19 (3.24%)
Test set 96 (45.50%) 90 (58.44%) 30 (14.22%) 25 (16.23%) 69 (32.70%) 15 (9.74%) 12 (5.69%) 17 (11.04%) 4 (1.90%) 7 (4.55%)
Fig. 9. The performance of different methods in terms of OA.
d
w
I
o
o

. Experimental results

Overall performance. Tables 1 and 2 show the evaluation
results for all the change classes. We evaluate three approaches
including SiamGCN-GCA, SiamVFE and SiamKPConv. We use the
Overall Accuracy (OA) and mean Intersection over Union (mIoU)
metrics to evaluate these approaches for all classes. We also
calculate the classification accuracy and IoU for each class.

From Tables 1 and 2 we can see that SiamKPConv achieves
the best performance. For example, SiamKPConv outperforms
SiamGCN-GCA and SiamVFE 23.29% and 28.10% in terms of OA,
respectively on the synthesized dataset. SiamKPConv outperforms
SiamGCN-GCA and SiamVFE 22.71% and 25.99% in terms of mIoU,
respectively on the synthesized dataset.

Datasets. In our benchmark, we provide real and synthetic
datasets to participants. Both datasets contain five change types
and each change type consists of different numbers of urban
objects, as shown in Table 3.

From Tables 1 and 2 we can see that compared with the real
dataset, all the approaches achieve better performance on the
synthetic dataset. This indicates that even though the synthetic
dataset provides a variety of labeled urban objects which have
richer shapes, textures and light conditions, the real dataset poses
more challenges for the change detection. On the other hand, we
can see that the evaluated methods achieve similar performance
on the synthetic and real datasets, especially for SiamGCN-GCA
and SiamVFE. It indicates that our synthetic dataset is able to
mimic the complex real city scenes and cover most of point cloud
change detection challenges.
40
Network architecture. The network architecture plays an im-
portant role in data-driven approaches. All the evaluated meth-
ods in our benchmark are based on Siamese architecture to de-
sign their networks, which indicates that Siamese architecture is
popular for the change detection task.

Apart from the Siamese architecture, the evaluated methods
use different sub-networks. For SiamGCN-GCA, it uses Edge con-
volution [26]) to extract features. Besides, SiamGCN-GCA intro-
duces Context Aware (GCA) attention mechanism to enhance the
performance of Graph Convolutional Networks. Fig. 9(a) shows
its performance for each change type. Compared with the other
two methods, SiamGCN-GCA has better performance to detect
changes for urban objects with ‘‘nochange’’ type on the real
dataset.

However, SiamGCN-GCA has poor performance to detect
changes for urban objects with ‘‘color_change’’ type on both
synthetic and real dataset.

Compared with SiamGCN-GCA and SiamVFE, SiamKPConv
adds Kernel Point Convolution (KPConv) to its network. From
Tables 1, 2 and Fig. 9 we can see that it achieves the best
performance among the evaluated methods, and it outperforms
the other approaches on the class of ‘‘removed’’ type in terms of
OA. This indicates that KPConv is helpful for point cloud change
detection.

Class imbalance. Class imbalance is a common problem in
eep learning, especially in classification problems. It occurs
hen there are many more instances of some classes than others.

n our synthetic and real datasets, 40.54% and 59.13% urban
bjects are classified as ‘‘nochange’’ while 1.74% and 3.65% urban
bjects are classified as ‘‘color_change’’.
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In such cases, classifiers are more likely to be overwhelmed
by the large classes and ignore the small ones. To address this
problem, SiamGCN-GCA and SiamVFE uses an imbalanced data
sampler to duplicate samples in the minority class. Compared
with SiamKPConv which does not adopt the imbalanced data
sampler, SiamGCN-GCA achieves better performance on the class
of ‘‘change’’ type in term of OA as shown in Table 1.

Compared with duplicating samples in the minority class,
adding samples is able to improve the performance significantly.
From Tables 1 and 2 we can see that when the number of labeled
urban objects of the same class is similar on both synthetic
and real datasets, the evaluated methods have similar perfor-
mance. However, when the number of labeled urban objects
has big differences, the corresponding performances also change
significantly.

For example, 33.44% of urban objects are labeled as ‘‘added’’ on
the synthetic training dataset while only 9.55% of urban objects
have the same labels on the real training dataset. SiamVFE trained
on the synthetic dataset achieves 40.96% IoU while SiamVFE
trained on the real dataset only achieves 14.29% IoU.

5. Conclusions

Point cloud change detection is a challenging but important
research direction for remote sensing, robotics and visual navi-
gation. With this benchmark, we provide a point cloud change
detection dataset containing 178 city scenes and 1711 urban ob-
ject pairs. We have captured some state-of-the-art approaches in
this field and will be able to systematically measure its progress
in the future.

Evaluation results show that data-driven methods are the
current trend in 3D point cloud change detection. The siamese
network architecture is helpful to detect the changes in our
dataset and approaches which fully exploit the geometric features
are more robust for point cloud change detection for minority
classes. Additionally, comparison results show that the synthetic
data are able to mimic the real data and narrow the reality gap
between the virtual environment and the real scene. We also note
some limitations of our dataset, which we hope to improve in the
future. The dataset needs to be expanded by adding more urban
objects for minority classes.
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