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Abstract

This paper presents a new multiview alignment algo-
rithm that performs both the coarse and fine alignment
of unordered sets of range scans. Our algorithm selects
quadruples of range scans, which have feature points of
their 2D projections in common. These quadruples are then
verified using an Iterative Closest Point (ICP) algorithm.
The accepted quadruples form incomplete models of an ob-
ject that can be aligned using isometries of the Principal
Component Analysis (PCA) in combination with an ICP al-
gorithm. The output of our method is a set of finely aligned
meshes. Our method was applied to range scans of different
clusters of objects varying in the type of acquisition system,
the number of range scans, the scan resolution, and scan ac-
curacy. Results show that our method is both effective and
efficient for the alignment of meshes: it is capable of align-
ing object meshes with various properties, aligns the ma-
jority of meshes without a priori knowledge, and doesn’t re-
quire a multiview ICP algorithm to improve the final align-
ment.

Keywords: Range scanning, Registration, Alignment,
Merging

1. Introduction

To construct a 3D model out of a real world object, the
object’s surface can be digitized with the use of a laser range
scanner. Such a scanner measures the distance from the
scanner to the object. The most common laser range scan-
ners can only scan one side of an object at a time, and only

those parts of the object’s surface that are not occluded and
are within the scanner’s range. To capture more data of the
object’s surface, the object has to be scanned from many
different sides and for several poses. Because each scan is
generated with respect to the scanner’s coordinate system,
they need to be transformed into a common coordinate sys-
tem in which they are aligned to each other. A common way
to obtain such an alignment of range scans is to interactively
align pairs of overlapping meshes. This results in a coarse
alignment which is usually refined by the application of a
multiview ICP algorithm [2, 16, 17, 20]. Finally, the 3D
model can be constructed by merging the aligned meshes
into one single surface mesh [7, 18, 22].

An interactive pairwise alignment of meshes is per-
formed by a user, who decides which pairs of meshes have
parts of their surface in common. He or she then either se-
lects a few corresponding points on the common surface of
two meshes, or manually rotates and translates one mesh
towards the other, to bring them into alignment.

An automatic pairwise approach will try to find a set of
corresponding points on two meshes automatically. When
enough correspondences are found, the two meshes are
brought into alignment. Several techniques have been de-
veloped to perform the pairwise alignment of meshes auto-
matically, including: the exhaustive search for correspond-
ing points [3, 4] and the use of surface signatures such
as spin-images [12], point signatures [5], bitangent curves
[23], spherical attribute images [9], and 3D tensors [15].

A problem with the automatic pairwise approach oc-
curs when incorrect correspondences are selected to align
meshes, with an unsuccessful alignment as a result. An au-
tomatic multiview approach will try to solve this with the
use of a global consistency check for pairs of meshes with



high correspondence. Methods to perform the alignment
according to the multiview approach include the work of
Huber et al. [10] and Mian et al. [14]. Huber describes a
framework in which spin-images are applied on all possi-
ble pairs of meshes followed by the construction of a mini-
mal spanning graph. This spanning graph determines which
pairs of meshes should be aligned to construct a globally
correct alignment. Mian extracts 3D tensors (grid represen-
tations of local surface) from all meshes and constructs a
correspondence tree with the mesh having the most tensors
as root. The remaining meshes may only be added to the
leafs of the tree, and only when the mesh has enough corre-
sponding tensors and passes global verification.

For a set of N meshes, the approaches of Huber and
Mian involve a number of N2 and O(N2) mesh-to-mesh
comparisons respectively. More importantly they are both
using large sets of complex features (i.e. spin-images and
3D tensors). Afterwards, these methods apply a multiview
ICP algorithm to refine their coarse alignment of meshes,
which has a worst case complexity of O(N2) as well.
Contribution

In this work we propose a new method to align unordered
sets of meshes. The main idea of our method is to select
small groups of meshes, which can be aligned using Prin-
cipal Component Analysis (PCA) in combination with an
Iterative Closest Point (ICP) algorithm. Our method selects
groups of four meshes (quadruples) that represent the front,
right, back, and left views of an object’s pose. To select
the optimal quadruples, sets of 2D silhouette features are
extracted from all meshes, and matched.

This new method has a number of advantages. Firstly,
we are able to align mesh sets of objects scanned using dif-
ferent acquisition systems, objects with few and many pro-
trusions, objects with smooth and rough surfaces, and mesh
sets with little and much noise. Secondly, our method is
able to automatically align all meshes from 12 out of 25
datasets and 80% of the total amount of meshes, without
a priori knowledge. Thirdly, our approach applies O(N2)
mesh-to-mesh comparisons using low cost operations only.
The rest of the algorithm, which is the most time consuming
part, requires O(N) mesh-to-mesh comparisons and obtains
a high quality alignment similar to an O(N2) multiview ICP
algorithm in less time.

2. Method

2.1. Overview

This paper describes an efficient way to align a set of
3D meshes Mi∈(1...N). The approach is to find quadru-
ples of meshes first, that represent the object’s front, right,
back, and left side of a certain pose. Therefore, we center

all meshes and extract features from the boundary of projec-
tion silhouettes (Section 2.2) and match them to the features
of other meshes (Section 2.3). In Section 2.4 we describe
how quadruples are selected and how the four meshes are
coarsely aligned within such quadruples. The coarse align-
ment of meshes in a quadruple is refined and the quadru-
ple itself is verified (Section 2.5). During the verification
of a quadruple, the quadruple is rejected or accepted, or a
subgroup of three of its meshes is accepted. The accepted
groups of either three of four meshes are aligned in Section
2.6 which returns the final alignment of meshes.

Before starting the feature extraction, we resample the
meshes for efficiency reasons. The meshes Mi are resam-
pled towards both fine meshes FMi and coarse meshes
CMi. See Section 2.7 for implementation details.

2.2. Feature extraction

For each of the fine meshes FMi, a set of features are
extracted from two of its projections: one for the mesh
mapped to the XY-plane (FMxy

i ), and one for the mesh
mapped to the YZ-plane (FMyz

i ). We use no projection of
a mesh onto the XZ-plane. This projection could be used to
find a top or bottom view. However, to scan a top or bot-
tom view the object has to be toppled over towards a new
stable pose, which should result in a new group of different
side views. So, we use only the XY- and YZ-projections.
For mesh FMxy

i we extract the vertices on the boundary
that two opposite meshes (i.e. opposite model views) most
likely have in common, which are the right-, top-, left-, and
bottommost set of silhouette vertices of the projected mesh
(see Figure 1). We refer to this set of vertices as the XY-
features. For mesh FMyz

i only the frontmost silhouette ver-
tices are selected as its YZ-features, which may correspond
to a subset of the XY-features as described in the next Sec-
tion.

2.3. Feature matching

For each fine mesh FMi, we try to find a left, right and
back side by comparing the mesh to all other meshes us-
ing the extracted sets of features. Mesh FMi is selected as
the front mesh of a newly created quadruple and all other
meshes FMj are compared as being a potential right, back,
or left side of this quadruple. For a back to front comparison
the mirrored set of XY-features of the potential back side is
compared to the XY-features of the front. For a side to front
comparison the YZ-features are matched to the front’s XY-
features. The distance measure used in these comparisons is
the Minimum Least Squares (MLS) distance after imax iter-
ations of the point-to-point ICP algorithm (see Algorithm
1 applied to two point sets). When a side to front com-
parison is performed on an actual side-front pair, the side’s



Figure 1. The extracted features (in color)
from two opposite meshes shown with an off-
set. Vertices from holes and cavities are not
extracted, which makes the two sets of fea-
tures comparable.

Figure 2. Features (in color) from the left,
right and back view are matched to the fea-
tures of the front view. Note that the features
from the left view correspond to the leftmost
features of the front view.

YZ-features form a subset of the front’s XY-features, that
is, when we place the feature sets in one plane. Moreover,
these features correspond either to the leftmost XY-features
in case of a left side, or to the rightmost XY-features in case
of a right side (see Figure 2).

Because the point-to-point ICP algorithm requires an
initial alignment of point sets, the centers of mass of either
the entire sets of features or only the specific subsets (in case
of a side view) are aligned. For a perfect match the MLS

distance after the point-to-point ICP algorithm is zero. For
the less perfect matches, the small number of ICP iterations
allow little correction. Because each mesh is compared to
all other meshes as its potential right, back, and left side,
this process is quadratic in the number of meshes. How-
ever, we have used only low cost operations, that is, the ICP
algorithm is applied to silhouette points only.

Algorithm 1 point-to-point ICP (PS1, PS2)
1: distmin ← ∞
2: for i ← 1 to imax if no convergence do
3: pairs ← for all points in PS1 find closest point in PS2

4: dist ← minimize the sum of squared distances between the
points in pairs

5: update distmin

6: end for
7: return distmin and 2D rigid transformation

2.4. Quadruple selection

For each fine mesh FMi a quadruple is constructed of
those four meshes that have the minimal total sum of MLS
distances of the following twelve feature set comparisons:
front to back, left to right, right to front, back to right, left
to back, front to left, and vice versa (see Figure 3). As a
result, N quadruples are selected. Since the same quadruple
of four meshes may be selected up to four times, we retain
only the unique N ′ ≤ N quadruples.

During the matching of feature sets we obtain not only a
distance value for two sets of features, but a 2D rigid trans-
formation to align the feature sets as well. Each 2D transfor-
mation consists of a translation and a rotation in the plane to
which the features were mapped. The twelve rigid transfor-
mations within a quadruple are employed to obtain a coarse
alignment of the quadruple’s meshes.

2.5. Quadruple verification

In the previous section our method selects quadruples of
four meshes that represent the object’s front, right, back,
and left side of a certain pose. So, the selection of an in-
correct side view will result in a (partly) incorrect quadru-
ple. Furthermore, the initial alignment obtained so far is
not precise enough for general sets of meshes, because it
assumes 90 degree rotations between consecutive meshes.
Therefore, we need to improve the initial coarse alignment
and verify which groups are correct and which are not.
To finely align the meshes within a quadruple, we employ
Rusinkiewicz’s implementation of the point-to-plane ICP
algorithm [19] (see Algorithm 2 applied to two meshes M1

and M2). This algorithm establishes point-to-plane corre-
spondences from vertices of one mesh to the nearest facet



Figure 3. The relative transformation of each
of the four views consist of: a translation (t)
along either the x- or z-axis and a rotation
(θ) around the z- or x-axis. F2R is the 2D
transformation of the front’s YZ-features to-
wards the right side’s XY-features rotated 90◦

around the y-axis for global alignment.

on the other mesh and vice versa. Point-to-plane pairs with
a distance larger than 2.5 times the standard deviations (σ)
and without normal compatibility (angle between points
normals > 45◦) are rejected. When either convergence or a
stopping criterion is reached the MLS distance is returned.
By changing the maximum number of iterations imax, the
target number of pairs ptarget, and the minimum number of
pairs pmin the outcome of the algorithm can be influenced.

To improve each of the (N ′) unique quadruples, the
point-to-plane ICP algorithm is applied four times, once
for each pair of neighboring meshes in a quadruple. This
gives us 3D rigid transformations to transform each mesh
towards its two neighbors and a MLS distance for each
transformation. The minimum of all (4N ′) MLS distances
is used to accept or reject each 3D transformation. This
minimal distance represents an optimal and reachable dis-
tance for the alignment of a pair of meshes, that is, under
the assumption that all meshes Mi were scanned using the
same laser range scanner and the fact that they were resam-
pled and cleaned in a similar way. 3D transformations with
a MLS distance larger than tdist times the minimal distance
are rejected. When three or four meshes remain linked by
their 3D transformations, then these three or four meshes
are finely aligned using the transformations and the group
is accepted as such. See Figure 4 for several accepted and
thus finely aligned groups of an object.

In rare situations, the ICP algorithm might reach the min-
imum number of corresponding point-pairs with a MLS dis-
tance that satisfies the selected tdist, while the alignment is
not correct. Because correct groups of meshes have similar
volumes for their tight bounding box, we reject groups for
which the tight bounding box volume is larger than tbb times
the median tight bounding box volume of all groups. Since

the bounding box of a PCA normalized object is an approx-
imation of its tight bounding box, we apply this check after
PCA normalization in Section 2.6. See Section 2.7 for the
values for imax, ptarget, pmin, tdist and tbb.

Algorithm 2 point-to-plane ICP (M1, M2)
1: distmin ← ∞
2: for i ← 1 to imax if no convergence do
3: pairs ← closest point to plane pairs of ptarget randomly

selected vertices from M1 to M2 and M2 to M1

4: pairs ← pairs with distance < 2.5σ and with normal
compatibility

5: if #pairs < pmin return failure
6: dist ← minimize the sum of squared distances between the

points in pairs
7: update distmin

8: end for
9: return distmin and 3D rigid transformation

Figure 4. Six different, accepted, and finely
aligned groups obtained after quadruple ver-
ification.

2.6. Group alignment

At this stage we have verified and finely aligned groups
of either three or four meshes for different poses of the ob-
ject. These groups cover large parts of the object’s surface,
which enables us to employ a technique to align incomplete
models. To do so, we merge the data of each group’s meshes
into one (incomplete) model, and then pose normalize the
models and obtain their correct alignment using the point-
to-plane ICP algorithm as explained below. Because an
incomplete model consists of approximately three or four
times the number of vertices compared to one fine mesh
FMi, we merge the coarse meshes CMi instead.

An incomplete model is PCA normalized by using its
center of mass as the coordinate system’s origin and its prin-
cipal axes of variation as the coordinate system’s axes. A



well known problem of the PCA normalization is the exis-
tence of eight possible isometries to align the three princi-
pal axes to the x-, y- and z-axis. However, four of those
involve mirroring, which ought to be excluded. The incom-
plete model with most vertices is selected to align the other
models to, using our PCA/ICP algorithm (see Algorithm
3 applied to two models/meshes). This algorithm employs
the point-to-plane ICP algorithm to each of the valid PCA
isometries to find the optimal alignment of two models. In
case of an object with three distinct eigenvalues, this algo-
rithm has to try four different isometries. When an object
has two similar eigenvalues, then swapping the two corre-
sponding eigenvectors might be a necessity to find the op-
timal alignment. In case of even three similar eigenvalues
the algorithm requires a maximum of 24 valid PCA isome-
tries. Since the point-to-plane ICP algorithm with a large
number of target pairs returns only a low MLS distance for
the correct alignment of two models, a cut-off criterion can
be used to limit the number of tried PCA isometries. This
is accomplished by returning the minimal distance and the
corresponding 3D rigid transformation once the algorithm
reaches a state in which the minimal distance is sufficiently
smaller than the maximal encountered ICP distance, deter-
mined by threshold tdist (see Section 2.7). As a result the
algorithm requires at least two and at most 24 applied point-
to-plane ICP algorithms. With the alignment of the ac-
cepted groups the final alignment of meshes is completed.
When a single mesh is included in multiple groups, its 3D
transformation with the lowest ICP distance is retained.

Algorithm 3 PCA/ICP (M1, M2)
1: distmin ← ∞, distmax ← 0
2: for i ← 1 to 6 do
3: M0 ← M1

4: dist ← MLS from point-to-plane ICP(M0,M2)
5: update distmin and distmax

6: if tdist × distmin < distmax break
7: Mz ← rotate M1 180◦ around the z-axis
8: dist ← MLS from point-to-plane ICP(Mz,M2)
9: update distmin and distmax

10: if tdist × distmin < distmax break
11: My ← rotate M1 180◦ around the y-axis
12: dist ← MLS from point-to-plane ICP(My,M2)
13: update distmin and distmax

14: if tdist × distmin < distmax break
15: Mx ← rotate M1 180◦ around the x-axis
16: dist ← MLS from point-to-plane ICP(Mx,M2)
17: update distmin and distmax

18: if tdist × distmin < distmax break
19: if i = 1 then swap most similar eigenvectors
20: else rotate M1 90◦ to a new unique pose.
21: end for
22: return distmin and 3D rigid transformation

2.7. Implementation

Meshes obtained by a laser range scanner can be highly
over sampled. For a time efficient method, we size normal-
ized and resampled the meshes Mi. The resampling was
done by extracting a synthetic range image from all meshes
using a fixed resolution (i.e. storing its z-buffer). This reso-
lution was automatically selected, such that the largest mesh
was resampled using 20,000 sample points. These synthetic
range images were converted into our fine meshes FMi by
connecting adjacent range samples. Similarly we used only
1
16 -th of the extracted range samples to obtain our coarse
meshes CMi. The meshes FMi and CMi were cleaned
by removing faces with an edge longer than te (te = 3.8)
times their resolution and removing connected components
with less than tf (tf = 20) faces divided by the mesh reso-
lution. The advantage of this remeshing process is that each
vertex in a coarser mesh still represents a point on the orig-
inally constructed surface, and that the extraction of right-,
top-, left- and bottommost sets of vertices becomes a triv-
ial process. A disadvantage is that very slender object parts
may not be sampled and become excluded from a coarser
mesh. See Figure 5 for some resampling results.

Figure 5. From left to right: the original,
the resized, the finely resampled, and the
coarsely resampled meshes of the C2 kitten
object.

To match sets of features with the use of Algorithm 1
a maximum number of four iterations was sufficient. For
Algorithm 2 we used 30 iterations for imax, and a target
number of pairs (ptarget) and a minimum number of pairs
(pmin) equal to, respectively, 80% and 6% of the maximum
amount of vertices of the two meshes M1 and M2. During
the verification of quadruples we removed 3D transforma-
tions with a distance tdist = 2.5 times the minimal MLS
distance, and rejected groups with a tight bounding box vol-
ume larger than tbb = 1.25 times the median tight bounding
box volume of all groups. Finally, we have used a cut-off
criterion of tdist = 3.8 in Algorithm 3.



Figure 6. Adding synthetic noise to a clean
range scan.

3. Datasets

To test the effectiveness of our method we applied it
to five classes (C1-C5) of increasing difficulty, with a to-
tal number of 25 objects. The first cluster consists of four
existing 3D models from which 64 meshes were gener-
ated as follows. All models were scaled to a 200 mm
sized model and transformed to eight unique poses. For
each model’s pose a range image (i.e. z-buffer) was gener-
ated for eight different sides, rotating the model in steps
of 45◦ around the Y-axis. The range images were con-
verted to meshes by connecting adjacent vertices and the
meshes were cleaned by removing faces with a normal al-
most perpendicular (α∆ < 10◦) to the scan direction. To
model scanning noise (Figure 6), we randomly displaced
each vertex within range [− 1

2η, 1
2η] in its normal direction,

with η equal to the average edge length in the mesh (we
used Trimesh2 for this [19]). The original cluster models
are used as ground truth models, to compare the quality of
our final alignment to that of a multiview ICP algorithm.

The second cluster consists of seven objects scanned us-
ing the Roland LPX-250 laser scanner. This device scans
objects orthogonally in the scan direction and has a rotation
table, which we employed to obtain sets of either four or
eight range scans per object’s pose.

The third cluster contains a subset of three objects from
the first cluster. These objects were scanned with a Minolta
vi-910 for four, eight or twelve views per pose with approxi-
mately the same angle between sequentially scanned views.

The fourth cluster consists of Mian’s four objects [14].
It is used to show the applicability of our method to sets of
range scans without an exact number of views per pose.

To compare our results with Mian’s alignment results
[15] we included a fifth cluster from the Stuttgart Range
Image Database [21] that he used in his work: a cluster of
seven 3D models from which per model 66 range images
were synthetically generated. Again the range images were
converted into meshes and cleaned, and noise was added.

The models from cluster C1 and most of the models
and scans from clusters C2 and C3 are available in the

Object Our method MeshAlign
MLS(mm) time(sec) MLS(mm) time(sec)

C1 bimba 1.333 93 1.332 340
C1 elephant 2.683 96 2.645 408
C1 greek 3.112 99 3.095 439
C1 oil-pump 2.833 98 2.811 363

Table 1. The quality of the alignments and the
time to obtain them. Our method was ap-
plied to unaligned scans and MeshAlign to
our alignment. The quality was measured us-
ing the MLS distance from aligned vertices to
ground truth models.

AIM@SHAPE shape repository [1].

4. Results

In Section 4.1 we evaluate the fine alignments obtained
by our method, and we show that the quality of our align-
ments is comparable to the alignment obtained by a multi-
view ICP algorithm. Since our final alignments are of high
quality, the meshes are directly merged towards a single sur-
face mesh (Section 4.2). In Sections 4.3 and 4.4 we describe
the effectiveness and efficiency of our method.

4.1. Fine alignment quality

For each cluster an object’s final alignment (of meshes
FMi) is shown in Figure 7, the other alignments are of
similar quality. Because the alignment of grouped meshes
were refined during quadruple verification and all accepted
groups were finely aligned using a PCA/ICP algorithm, this
Figure shows qualitative good final alignments.

For the models in cluster C1, we compared the quality of
our alignments to the results of a multiview ICP algorithm.
For this comparison we applied MeshAlign (v.2) [11] to our
alignment to see if the alignment improves. MeshAlign
applies Pulli’s [17] multiview ICP algorithm to improve
the initial alignment of large datasets. The quality of an
alignment is quantified using Metro [6], which in our case
computed the MLS distance of all vertices of the aligned
meshes towards the ground truth model. Results from Table
1 show that MeshAlign’s multiview ICP algorithm barely
improves (less than 1.5%) the alignment we obtained using
our method. In other words, our method returns a highly
accurate alignment similar to the result of a multiview ICP
algorithm.

4.2. Merged model quality

When an accurate fine alignment of meshes is obtained,
a merge method can construct a single surface out of the



(a) C1 oil-pump (64/64) (b) C2 kitten (24/24) (c) C3 memento (32/36) (d) C4 dino2 (16/21) (e) C5 pit-bull (42/66)

Figure 7. One final alignment of each cluster C1-C5. The fraction of successfully aligned meshes
FMi is shown.

partially overlapping meshes. We used MeshMerge [11] to
merge our sets of meshes. MeshMerge builds a carefully
weighted distance field for each mesh, and blends all the
distance fields together in a seamless way in a single vol-
umetric representation. The final surface is reconstructed
through the standard Marching Cubes algorithm [13].

The merged models in Figure 8 show qualitative good
models, even though some models show holes due to miss-
ing scan data or to the lack of aligned meshes (Figure 8(l)).
Notice that the models from clusters C1 and C5 are still
noisy due to the added noise. Results for the biplane are
based on the alignment of the original meshes, rather than
resampled data, to avoid data loss near slender parts (such
as the wings in side views). To inspect the full models we
refer to [8].

4.3. Effectiveness

The results from Figure 8 and Table 2 show that our
method is able to align mesh sets of objects scanned us-
ing different acquisition systems (different clusters), ob-
jects with few and many protrusions (e.g. C2 buste vs.
C2 memento), objects with smooth and rough surfaces (e.g.
C3 pierrot vs. C3 warrior), and mesh sets with little and
much noise (e.g. C3 memento vs. C5 pit-bull). Further-
more, we see that our method aligns all meshes from C1
and C2, which are the meshes from the optimal acquisition
process. For the datasets in clusters C3 and C4 the major-
ity of meshes are aligned. The difficulty with the meshes in
C3, is that the acquisition system’s software generated rig-
orously cleaned meshes, which eliminated useful data. Our
method automatically aligns a significant number of meshes
(upto 51) for the noisy datasets in cluster C5. Note that our
method performs better on the scan reconstructed models
bone, dino3, dragon, frog and pit-bull, than on the highly
symmetric CAD models porsche and biplane. In total our
method aligns all meshes from 12 out of 25 datasets and
80% of the total amount of meshes.

The results of Mian’s method shown in Table 2 are based

on his automatic pairwise registration algorithm [15]. To
obtain the correct alignment of these meshes, he had to
select an ordered subset of (18 to 26) meshes for which
a priori knowledge had to be defined about the overlap of
views. Knowing which view pairs had overlap, his method
was able to align all selected (noiseless) meshes. To align
all 66 meshes, he would have to order all meshes while
our method is able to automatically align large numbers of
meshes (with noise) without a priori knowledge.

4.4. Efficiency

Our method aligns datasets of N meshes Mi∈(1...N).
For each mesh we synthetically generate a range image
from which we construct a fine mesh FMi, a coarser mesh
CMi and two sets of 2D features. Then each fine mesh
is matched to all other fine meshes, which is quadratic in
the number of meshes. It takes constant time to generate
quadruples in which four meshes are coarsely aligned to
each other. Similar quadruples are removed, leaving N ′

quadruples of meshes to be verified. During the verifica-
tion of all quadruples, four mesh-to-mesh comparisons are
applied involving a point-to-plane ICP algorithm, which is
of O(N ′). After verification there are N ′′ accepted finely
aligned groups of either three or four meshes left. The
coarse meshes CMi are “merged”, that is, considered to
be the surfaces of one mesh without additional computa-
tions. Each merged group has fewer vertices than a single
fine mesh, because a group consists of three or four coarse
meshes and each coarse mesh CMi has approximately 1

16
of the fine mesh’s vertices. Finally, we apply N ′′ times
the PCA/ICP algorithm for which we use at most 24 times
the point-to-plane ICP algorithm, in other words, we ap-
ply at most 24N ′′ mesh-to-mesh comparisons, which is of
O(N ′′). Since N ′′ ≤ N ′ ≤ N we have a total number of
O(N2) mesh-to-mesh comparisons.

The N2 mesh-to-mesh comparisons during the matching
of features are based on low cost operations only. Experi-
ments show that the time to match the sets of 2D features



is much less than the time to verify the quadruples, even
for the datasets with 66 meshes. Thus, up to 66 meshes the
group verification with a number of O(N ′) comparisons is
the bottleneck. However, the group verification is also the
main reason why we don’t need to apply a multiview ICP
algorithm, which requires O(N2) mesh comparisons. For
comparison, the time that MeshAlign’s multiview ICP algo-
rithm required to “improve” the alignment of the 64 meshes
of the C1 bimba model was 340 seconds, which is even
more than the total time of 93 seconds (see Table 2) our
algorithm required to obtain an alignment of similar quality
starting from the bimba’s unaligned meshes.

Our method’s feature extraction requires less than one
second, the verification of a group two to three seconds,
and the alignment of groups nearly a second per accepted
group. For the alignment of the majority of 66 noisy scans,
our method needed two to five minutes in total. Sets of 64
meshes from cluster C1 were even aligned in less than two
minutes. All timings are based on a Pentium IV 2,8 GHz
with 520 MB internal memory.

Obviously, the total number of applied point-to-plane
ICPs (Algorithm 3) shown in Table 2 is related to the num-
ber of accepted groups. In general two to five point-to-
plane ICPs were required to align an accepted group. In
Section 2.6 we already stated that this number could in-
crease when the object has similar eigenvalues. This is what
happened for C3 pierrot. The effect on C2 pierrot is how-
ever much less, because its data is more complete.

5. Discussion

A limitation of our method is that each quadruple (and
thus each scan) should cover more or less the entire ob-
ject, because accepted quadruples are aligned using their
center of masses and principal axes. Scans that cover only
a small part of an object’s view, or scans without proper
left and right neighbors are most likely not aligned. Al-
though the matching of features can correct for small rota-
tions between neighbors, the method performs best on hor-
izontally scanned meshes. This also explains the difference
in performance for clusters C1 and C5: the latter consists
of scans without any pose assumptions, while the first has
for each pose eight scans (i.e. two quadruples) with the
same bottom-up direction. Nevertheless, our method per-
forms very well on the scans from cluster C5.

6. Concluding remarks

In this paper, we propose a new and efficient method to
perform both the coarse and fine alignment of meshes. Our
method selects for each mesh three other meshes that repre-
sents its left, right, and back side neighbors. Such quadru-
ples are then verified and the accepted groups of three or

four meshes form incomplete 3D models of an object pose.
These incomplete models are pose normalized and with the
selection of the optimal PCA isometry (based on its ICP-
error) these models can be correctly aligned. With the align-
ment of the incomplete models we obtain our final align-
ment.

Our method is capable of aligning various sets of meshes
both effectively and efficiently. Effectively, because 80% of
the total amount of meshes were automatically aligned and
even all meshes of 12 out of 25 datasets were completely
aligned, without a priori knowledge. Efficiently, because
our method requires O(N2) mesh-to-mesh comparisons us-
ing low cost 2D silhouette feature matching. The quadru-
ple verification and group alignment use high cost opera-
tions, but require only O(N) mesh comparisons. In con-
trast, other coarse alignment systems apply a multiview ICP
algorithm to refine the obtained coarse alignment, which
requires O(N2) high cost mesh comparisons with a final
alignment of similar quality as a result.

Future work includes the development of an efficient al-
gorithm that can be applied to align the remaining unaligned
meshes to the set of aligned meshes. To accomplish this, an
efficient mesh selection strategy is required to select a sub-
set of aligned meshes that represent various object views
and to find overlap between these meshes and the unaligned
ones.
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Figure 8. The final reconstructed 3D models of clusters C1-C5. The surface merging was performed
with MeshMerge on the fine meshes FMi. The fraction of successfully aligned meshes used to
reconstruct a model is shown. *The original meshes were used.


