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ABSTRACT

Many 3D face matching techniques have been developed to per-
form face recognition. Among these techniques are variants of 3D
facial curve matching, which are techniques that reduce the amount
of face data to one or a few 3D curves. The face’s central profile, for
instance, proved to work well. However, the selection of the opti-
mal set of 3D curves and the best way to match them is still under-
exposed. We propose a 3D face matching framework that allows
profile and contour based face matching. Using this framework we
evaluate profile and contour types including those described in lit-
erature, and select subsets of facial curves for effective and efficient
face matching. Results on the 3D face retrieval track of SHREC’07
(the 3D SHape Retrieval Contest) shows the highest mean average
precision achieved so far, using only three facial curves of 45 sam-
ples each.

Index Terms: H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—Retrieval models;

1 INTRODUCTION

Before the recent developments in 3D laser scanning, the difficult
task of automated face recognition was based on the comparison of
2D images. To automatically recognize a person in different images
requires a system to select and match the proper set of correspond-
ing facial features. For a 2D face recognition system to be generally
applicable, it needs to cope with variances in digitizers (e.g. color,
resolution and accuracy), subjects (pose, coverage and expression),
and settings (lighting, scaling and background). The introduction of
3D laser scanning in this area proved to be very useful, because of
its invariance to setting conditions: illumination has little influence
during the acquisition, the 3D measurements result in actual sized
objects, and the depth information can easily separate foreground
from background. 3D face information has found its application in
face retrieval, face recognition, and biometrics.

Related work. The task to recognize 3D faces has been ap-
proached with many different techniques as described in surveys of
Bowyer et al. [5] and Scheenstra et al. [15]. Many methods focus
on recognizing 3D faces with neutral expressions, which is still an
active field of research. Recently, Al-Osaimi et al. [1] developed
a method that combines local and global geometric information of
the face in a 2D histogram, extracts a single feature vector, and per-
forms 3D face matching. More challenging is to recognize faces
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under different expressions. In [2, 7, 11], the Iterative Closest Point
(ICP) algorithm is applied in combination with a region-based met-
ric to define facial similarity mainly on expression invariant regions
of the face. Facial curve based methods use a predefined subset of
facial curves that are reasonably robust under facial expressions, as
in 3D profile and contour matching by Li et al. [10], Samir et al.
[14] and Gökberk et al. [8]. Instead of contour lines, Berretti et al.
[3] use iso-geodesic stripes and their spatial relationship to identify
faces. Bronstein et al. [6] introduce a bending-invariant representa-
tion of the face to deal with facial expressions. Several of these 3D
face recognition methods require a reference point such as the tip of
the nose and a normalized pose of the face. Xu et al. [22] pointed
out that the assumption of a nose tip being the vertex with highest
z-value doesn’t hold and proposed a more robust method for its de-
tection. To compare face recognition techniques, Face Recognition
Grand Challenge sets [12] are publicly available.

Contribution. Our contributions to 3D face matching are the
following. First, we introduce a new face pose normalization
method that is applicable to face, full head and even full body scans
in any given orientation. Second, we propose a 3D face match-
ing framework to extract and match 3D face curves. Thirdly, we
evaluate sets of profiles and contours including those described in
literature. Fourthly, we propose new combinations of curves to per-
form both effective and time efficient face retrieval. One of these
combinations with only three curves of 45 face samples, achieved
the highest mean average precision (MAP) so far of 0.78 in the 3D
face retrieval contest of SHREC’07.

Our face pose normalization (Section 3) fits 3D templates to the
scan data and uses the inverse transformation of the optimal fit to
normalize the face’s pose. The tip of the nose is extracted from the
scan data in the process. Our 3D face matching framework (Section
4) uses the nose tip as its origin and extracts a set of profile curves
over the face surface. Then, it extracts samples along the profiles,
which are used to determine the similarity of faces. In Section 5,
we combine such samples in profile and contour features and select
sets of features for effective and efficient face matching.

2 TRAINING SET

In this work we compare 3D faces generated with the morphable
face model, which is a point distribution model (PDM) built from
100 face scans of the USF Human ID 3D Database [19]. To cre-
ate this model an optic flow algorithm was employed to estab-
lish n = 75, 972 correspondences among the 100 scans. Each
face shape Si was described using the set of correspondences
S = (x1, y1, z1, ..., xn, yn, zn)T ∈ <3n and a mean face S̄
was determined. Principal Component Analysis (PCA) was ap-
plied to these 100 sets Si to obtain the m = 99 most impor-
tant eigenvectors of the PDM. The mean face S̄, the eigenvectors
si = (∆x1, ∆y1, ∆z1, ..., ∆xn, ∆yn, ∆zn)T , the eigenvalues λi



(σ2
i = λi) and weights wi are used to model new faces according

to Snew = S̄ +
∑m

i=1 wiσisi. In this paper we create random in-
stances of the morphable model by assigning m random weights wi

within the range [-1.5,1.5]. Since the connectivity of the n corre-
spondences in the PDM is known, each instance is in fact a triangu-
lar surface mesh with proper topology and without holes.

Seven instances of the morphable model are selected as a query
(q) and each of the queries was morphed to two other instances
(i1 and i2) of the morphable model to create new relevant faces (r).
Five intensity levels of morphing were applied, namely a 90-10, 80-
20, 70-30, 60-40, 50-50 weighting scheme for the m corresponding
weights (e.g. wi(r) = 0.6wi(q) + 0.4wi(i1)). So, for each query
we have eleven relevant models including the query. The final train-
ing set consists of seven queries and 176 face instances, that is, 77
relevant models and 99 random instances.

(a) face with high
curvature areas

(b) t1 (c) best t1 loca-
tions

(d) local t2 (e) local t2 fit (f) new pose

(g) global t2 (h) global t2 fit (i) new pose

Figure 1: Pose normalization: The original face with high curvature
areas (a), the nose tip template t1 (b), and the optimal (dark blue)
locations for t1 (c). Two different templates t2 (d,g) fitted to the scan
(e,h) to normalize its pose (f,i).

3 POSE NORMALIZATION

Our feature extraction is pose sensitive, so we need to normalize the
pose of each 3D face. Pose normalization is equivalent to correct-
ing the viewing coordinate system that requires a view reference
point, a view plane normal, and a view up vector [16]. In 3D face
templates we specify the nose tip as view reference point, the gaze
direction as view plane normal, and the face’s pose as view up vec-
tor. By fitting these templates to potential nose tip locations in the
scan data, we eventually obtain a new coordinate system in which
the face’s pose is normalized.

Each vertex of a face model can be considered as a potential
nose tip location. Generally, the tip of the nose is a location with
high (positive) curvature, which makes it possible to exclude a large
number of potential placements based on a simple curvature thresh-
old heuristic. With the use of Rusinkiewicz’s curvature estimation
algorithm [13], we obtain an estimation of the mesh’s curvature at

each vertex. We select the vertices with the highest curvature as
potential nose tip locations (Figure 1a). Note that these locations
include areas around the ears, eyes, lips and chin as well. After
that, we apply 3D template matching using a nose tip template t1
(Figure 1b) to determine which high curvature vertices locally re-
semble a nose tip (dark blue areas in Figure 1c). The locations
where t1 fits well, we fit a larger template t2 (as in Figure 1d or g)
to select the actual nose tip and to normalize the pose. How this
bottom-up scheme solves the unknown viewing coordinate system
is described below.

First template. For each of the potential nose tip locations, we
have its position p and normal direction n. The first 3D template t1
is a nose tip template with the known view reference point pt1 and
view plane normal nt1 . This template is highly symmetric around
its normal nt1 , which allows us to find the view plane normal while
ignoring the view up vector. To fit the nose tip template to the scan
data, we place the nose tip template with pt1 on p and with nt1

aligned to n. The alignment is refined using the Iterative Closest
Point (ICP) algorithm [4], which minimizes the Root Mean Square
(RMS) distance of the template’s vertices to their closest points in
the scan data. As a result we have for each potential nose tip a mea-
sure of how good t1 fits that location, but also the view reference
point and view plane normal defined in t1.

Second template. We reduce the number of potential nose tip
locations to only a few locations around the face, where t1 fits well.
To these locations we fit a second template t2 that has a known view
reference point pt2 , view plane normal nt2 and view up vector ut2 .
Clearly, the optimal fit of this template solves the pose normaliza-
tion problem. This template is placed on the remaining locations
with pt2 on pt1 , nt2 aligned to nt1 and a limited number of dif-
ferent view up vectors ut2 . Since the angle between ut2 and nt2

is known, a view up vector can be instantiated using a rotation θt2

around nt2 . Because the ICP algorithm is able to correct for small
rotations we experimented with a new θt2 (i.e. view up vector) ev-
ery thirty degrees. Each placement of t2 is refined using ICP and
the alignment with the lowest RMS distance is selected. The in-
verse transformation matrix for this optimal fit is used to normalize
the face’s pose. The point in the scan data closest to pt2 is defined
as the tip of the nose used during profile extraction.

In this work we use two different templates for t2. One uses lo-
cal face information and the other global face information of the
mean face S̄ (Section 2). The local template has samples of the
mean face’s nose, while the global template consists of face sam-
ples of the entire face. We assume that for each individual, these
templates have an unique placement around the nose irrespectively
to the face’s proportion. This is a reasonable assumption, since
the ICP algorithm minimizes the RMS distance which enforces the
alignment of typical protrusions such as the nose. Throughout this
work we mainly use the local nose template to normalize the face’s
pose and to extract the nose tip, which we refer to as nose detection.
The global face template is used in Section 6, which we refer to as
face detection. The latter is used to relate our pose normalization to
the performance of face retrieval. In Figure 1, a face model is pose
normalized twice using these two templates.

4 FACE MATCHING FRAMEWORK

Starting from the tip of the nose in a pose normalized face, our
framework extracts profile curves over the face surface in different
directions. These sets of profile curves are used to determine the
similarity of two faces. To match two profile curves, we match a
set of samples along the curves. When combined, the samples in all
profiles with the same constraints build up a face contour. The facial
“Z-contour” [10, 14], for instance, is the curve that contains the
samples from all profiles that have the same Z-value. The definition
of a contour type determines which samples are extracted along the
profiles (see Section 4.2).
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Figure 2: From each face we extract Np profile curves (a). A G-
contour (c) is formed by selecting a sample on each profile (a) that
has the same geodesic distance to the tip of the nose (colored in b).
form a G-contour (c). Other contour curves are the C-contour (d),
XY-contour (e), and Z-contour (f).

To compute the similarity of two faces A and B, we extract Nc

samples for each of the Np profiles. Such a sample Aij is defined
as the intersection(s) of profile i and contour j. Because the profiles
and their contour samples are extracted in a structured way, we can
assume that these N ≤ Np · Nc samples correspond for faces A
and B. The distances between these corresponding samples intro-
duce a dissimilarity. We use this information in a 3D face matching
framework that consists of the generic formula

d(A,B) =
1

N

Np∑
i=1

Nc∑
j=1

ds(Aij ,Bij),

which must be instantiated with the following parameters:
• The number of profiles Np.
• The number of contours Nc.
• The distance measure for two corresponding samples

ds(Aij ,Bij).
The complexity of our face matching framework depends on the

values Np and Nc. In case both parameters are large, then a lot
of face data is used in the comparison, which is highly inefficient.
With many profiles Np and a few samples Nc, the 3D face compar-
ison follows a contour matching approach. With a few profiles Np

and many samples Nc, the comparison follows a profile matching
approach. The function ds(Aij ,Bij) measures the distance be-
tween samples that correspond according to the specified contour
type. The extraction and matching of feature data is described in
the following paragraphs. In Section 5, we use our framework to
evaluate different face curves and select the most relevant profiles
and contours for effective and efficient face matching.

4.1 Profile extraction
To obtain corresponding samples our framework first extracts a set
of Np profiles. A profile is defined as a 3D curve that starts from
the tip of the nose and follows a path over the surface mesh with a
predefined angle in the XY-plane. Such a path is defined by the in-
tersection points of the mesh’s triangles encountered along the way.
Basically, we extract a profile for every 360/Np degrees in the XY-
plane with the tip of the nose as origin. To crop the face, we end a
path whenever the Euclidean distance between the current location
on the path and the nose tip becomes larger than 90 mm. Beyond
this distance the chance of missing data or hair covering parts of the

face increases. Before profile extraction, the pose normalized face
is centered with its nose tip at the origin, so that the extracted sets
of profiles of two different faces are aligned. We assume a proper
topology of the face surface, but to be less restrictive a profile can
be defined as the intersection curve of the 3D face with a plane
perpendicular to the XY-plane.

4.2 Feature data
After the applied pose normalization from Section 3, we can assume
that profiles extracted in the same direction correspond. Given two
corresponding profile curves Ai and Bi, we extract Nc correspond-
ing samples (Aij and Bij). Note that all samples are locations on
the triangular surface of the face. In this work we specify four dif-
ferent contour samples:

• G-samples - samples with an approximated shortest geodesic
path of r mm over the surface to the origin.

• C-samples - samples with a curve distance of r mm over the
profile curve to the origin.

• XY-samples - samples with a circular distance of r =√
(x2 + y2) mm to the origin.

• Z-samples - samples with a depth distance of r = z to the
origin.

To extract G-samples, we first computed for each vertex its geodesic
distance to the origin using the fast marching method [9] and inter-
polated these measures for the profile paths. When a profile path is
sampled using Nc G-samples (with increasing r), we refer to it as
a G-profile. A G-contour is the set of Np G-samples at the same
distance r. In Figure 2, the four different contour curves are shown.

Several of the contour and profile curves are used in literature to
perform 3D face recognition with. For example, in the work of Li
et al. [10] a Z-contour and a XY-profile are used to match 3D faces,
Samir et al. [14] use Z-contours, Berretti et al. [3] use stripes of C-
contours, and Bronstein et al. [6] use geodesics to create canonical
face forms.

4.3 Feature matching
The extracted Np ·Nc samples from one face have an assumed one-
to-one correspondence to those of an other face. To match those
samples we apply a symmetric distance measure that can be used
for all four contour types and is rotation invariant. Therefore, we
compare samples using their relative distances to the origin (i.e.
tip of the nose) instead of their actual coordinates. We define the
point-to-point distance (dp) between a point p from sample Aij and
a point q from sample Bij , using the nose tip (pnt=origin) and the
Euclidean distance e(p, q) as:

dp(p, q) = (e(p, pnt)− e(q, pnt))
2 = (|p| − |q|)2

For a fair comparison of contour types, it is important that the
samples are matched similarly. This is rather difficult, because a
sample Aij can be more than one point depending on the selected
contour type. The Z-contour for instance, can have multiple points
p on profile Ai with a similar Z-distance to the origin. Thus a
Z-sample can have multiple points, while a C-sample and a XY-
sample have at most one point. To deal with multiple points per
sample we define the distance ds between two corresponding sam-
ples Aij and Bij as the smallest distance between possible point
pairs.

ds(Aij ,Bij) = min∀p∈Aij ,∀q∈Bij dp(p, q)

In case either sample Aij or Bij is empty due to missing data, ds

is zero.

5 FEATURE SELECTION

Our face matching framework is a useful tool to investigate the per-
formance of profile curves and contour curves for face recognition
purposes. In previous work, limited experiments were performed



using either one or a few profiles and contours. With our frame-
work we can easily select any set of profile and contour features to
perform face matching with. To evaluate selected sets of features,
we use them to query our training set. For each query, a ranked
list for the 176 face models is generated, for which we compute the
average precision. Then, the mean average precision (MAP) over
all queries is used to assess the selected features. Note that we aim
at the retrieval of relevant faces and not at face identification, which
are ranked-first results. In the following paragraphs we determine
specific subsets of contours and profiles to perform both effective
and efficient face retrieval.

5.1 Single curve matching
For efficient face matching our framework can extract a single con-
tour, and assess its performance on our training set. We tested
the robustness of single contours under varying conditions that are
common in practice, such as small errors in nose tip localization
and pose normalization, and different levels of noise. This was done
by evaluating the MAP of each contour within the range r=[1,140]
mm. Figure 3 shows the following results for each of the contour
curves:

• basic - matching original query and database faces with
known pose and nose tip location.

• tip - the queries were disrupted with a nose tip displacement,
tip1=2 mm and tip2=4 mm from the actual nose tip.

• rot - the queries were disrupted with an Euler rotation (ρ,ρ,ρ),
rot1 with ρ=1 and rot2 with ρ=2 degrees.

• noise - the queries were disrupted with additional noise rel-
ative to the average edge length η in the mesh, noise1 with
0.1η and noise2 with 0.2η.

• ndo - matching original query and database faces after auto-
matic nose detection to normalize the pose and to localize the
nose tip (Section 3).

• ndr - matching randomly rotated query and original database
faces after automatic nose detection.

From these results we learn that,
1. Small changes in r can cause a large decrease in performance.
2. C-contours are more robust to errors in nose tip localization

and pose normalization, and XY-, and Z-contours are more
robust to noise.

3. G-contours on the outer regions of the face are robust under
all these conditions.

4. Each contour type has an active region of r=1 mm to the r
just before the MAP drops to a minimum, beyond that point a
contour lacks sample data because of the face cropping.

The basic results can be used as a reference for the optimal results.
The ndo results are comparable to methods that assume scans to
be faced forward. For 3D or 2.5D face retrieval the ndr results
are important, because this involves pose normalization of faces (or
head models) under all possible orientations. For more information
about the performance of single curves, we refer to [18].

5.2 Multiple curve matching
Single curve matching has regions for which curves are able to ob-
tain high performances, but a small change in range r can cause a
large decrease in performance. In other words, effective face re-
trieval based on a single contour curve has a small chance of suc-
cess. In this section, we assess face matching using multiple curves,
based on the basic, ndo, and ndr results.

5.2.1 Uniform selection of curves
To achieve effective face retrieval, using data from multiple curves
is essential. However, there is a trade off between the effective-
ness and efficiency. Parameters Np and Nc of our framework de-
termine the amount of samples used to describe a face. A first step
is to decrease these numbers to a point were face matching is still

effective, but more efficient. To do so, we extracted Np=360 pro-
file curves and sampled each profile with Nc=360 contour samples
equally spaced over the active region (see previous section). From
these 360 profiles and contours we selected subsets with a decreas-
ing amount of samples Np · Nc = nf · nf with nf ={360,180,90,-
45,24,20,16,12,8,4}. Note that a set of 360·360 surface samples
exceeds the number of vertices in our face models.

Figure 4: The performance while varying the number of samples (top)
contours (middle) or profiles (bottom).

From the results in Figure 4 we learn that the number of samples
can be reduced from 360·360 to 45·45 without loosing discrimina-
tive power. Compared to the number of vertices of a face model,
45·45 samples is already a large reduction of face data.

With a number of profiles Np=45 we can investigate the perfor-
mance of multiple contours by varying Nc={360,180,90,45,24,20,-
16,12,8,4} and the other way around for the retrieval performance
using multiple profiles. Figure 4 shows, in general, higher perfor-
mances for the use of multiple curves compared to the use of a
single curve. For a small number of curves the use of multiple con-
tours outperforms the use of multiple profiles.



Figure 3: The mean average precision graphs of single G-, C-, XY-, and Z-contours for sample values 1 to 140 mm under varying conditions.

5.2.2 Combination of three curves

In the work of Li et al. [10] face recognition is performed on 2D
depth images using the combination of a single Z-contour at dis-
tance z=30mm with the central profile curve from forehead to chin.
With our framework we can perform face matching similarly by se-
lecting the same Z-contour, the XY-profile from nose to forehead,
and the XY-profile from nose to chin. Furthermore, we can manu-
ally select the best G-, C-, XY-, and Z-contour and the central G-,
C-, XY-, and Z-profiles for our training set. We can combine these
manually selected contours and profiles among different sampling
strategies, which we refer to as hybrid matching. We selected the
following contour curves with the highest MAP for the basic results
(see Figure 3): the G-contour at 77mm, the C-contour at 68mm, the
XY-contour at 36mm, and the Z-contour at 35mm. These contour
curves are shown in Figure 2c-f.

Contours and profiles. In this section we explore the 16
hybrid combinations of G,C,XY,Z-contours with Np=45 and
G,C,XY,Z-profiles with Nc=45. Results on the training set (Fig-
ure 5) show a high performance for the combinations of G,C,XY-
profiles with G,C,XY-contours. The marked areas show common
factors of the results. For the training set the G and C-curves per-
form best followed by XY-curves and then Z-curves. Li’s combi-
nation of the two vertical XY-profiles and one Z-contour performs
reasonably well, but not as good as our manually selected contours
and profiles. Of course the set of three optimal curves may differ
per training set.

Contours only. From the previous section, we have learned
that for a small number of curves the contours are more distinctive
than profiles. Instead of combining one contour with two profiles, it
makes sense to combine the optimally selected contours. Figure 6
shows the combined performance of the optimally selected contour
curves. Results show that the Z-contour has a negative influence
on the overall performance of selected features. Nevertheless, the
basic results for the Z-contour are high, so its lower performance
is probably caused by its lack of robustness to even small changes
in the face’s pose.

Figure 5: Hybrid matching using one optimally selected contour and
two profiles.

5.2.3 Combination of eight curves

From the results in Section 5.2.1 we have learned that eight uni-
formly selected curves having 45 equally spaced samples has a rea-
sonable performance. Thus, with only 360 samples per face we are
already able to perform effective face matching. The single curve
properties from Section 5.1 showed that each sampling type (G, C,
XY, and Z) has its strengths and weaknesses. So, it makes sense
to investigate the performance of hybrid matching using two pro-
files and one contour based on different sampling types as we did
in Section 5.2.2. In the following experiment we have used hybrid
combinations of eight contour curves in an attempt to improve the
performance.

With the use of our framework we generated for each contour
type, four equally spaced contours with Np=45 samples (see Figure
8). These G,C,XY,Z-contours were then combined into ten unique
feature sets. Because the combination of four G-contours with the
same four G-contours (and the three other exact matches) is useless,
we use eight equally spaced contours instead. Figure 7 shows the
results of the ten unique combinations of G,C,XY,Z-contours. The



Figure 6: Hybrid matching using the optimally selected contours.

Figure 7: Hybrid matching using combinations of equally spaced con-
tours.

results from this experiment show a high performance for sets of
eight G-contours, eight C-contours, and the combination of four G-
contours and four C-contours. Adequate results are obtained for
combinations of XY-contours with either G- or C-contours.

Figure 8: Features used in hybrid matching. From left to right: four
G-, C-, XY-, and Z-contours.

6 RESULTS

In this section we compare several settings of our framework on a
test set. As a test set we have used the database from “SHREC’07
- Shape Retrieval Contest of 3D Face Models” [21], that consists
of 64 queries and 1516 face instances. For the contest, all of the
faces were randomly rotated to introduce a non-trivial pose normal-
ization problem. For each of the 64 queries, we query the database
and compute the average precision of highly relevant faces. The
MAP over all 64 queries is used to evaluate our framework’s set-
tings. The settings we experimented with are those from hybrid
matching using three optimally selected curves (Section 5.2.2) and
eight uniformly selected curves (Section 5.2.3). For each set of fea-
tures we show its basic and ndr results. To obtain the basic results,

we used the ground truth information of this dataset to undo the ap-
plied rotations and to select the predefined nose tip locations. These
results indicate the optimal performance that can be reached when
the pose and nose tip are known. The ndr results were obtained
by applying nose detection to faces of the dataset directly, clearly
these results are comparable to the results of SHREC’07.

The results on the test set are shown in Figure 9. Observations
that count for all results are: (1) The larger embedding of the test
set and the greater dissimilarity of relevant faces decreases the over-
all mean average precision from around 0.9 for the training set to
around 0.7 for the test set. (2) The performance gap between re-
sults after the applied nose detection (ndr) and the predefined pose
and nose tip (basic) shows that our 3D face retrieval can be further
improved with optimized pose normalization and nose tip localiza-
tion.

To confirm the latter observation we performed an additional ex-
periment using the global face template instead of the local face
template and more view up vectors (every ten degrees) as described
in Section 3. To evaluate the pose normalization and nose tip local-
ization results, we used the ground truth data to determine the dif-
ference of the face’s pose and the located nose tip. For local nose
detection ndr the mean and standard deviation of this evaluation
are respectively 3.0 ±1.9 degrees, and 1.4 ±0.95 mm. For global
face detection fdr these results are respectively 2.1 ±1.4 degrees,
and 1.2 ±0.83 mm. The latter resulted in better pose normalization
of the faces and a more accurate localized nose tip, which has a
positive effect on the retrieval performance (see Figure 9).

6.1 Combination of three curves
For feature sets of three curves, Figure 9 shows good results for the
optimally selected G-,C-, and XY-contour in combination with the
central XY-profile. Remarkable is that the G- and C-profiles show
a relatively large decrease in performance compared to the results
from the training set. The C-profile performed very well on the
training set because all models had a similar level of noise. The test
set on the other hand, contains relevant classified faces which were
morphed towards and away from the mean face introducing differ-
ent levels of noise. This property of the test set and the fact that C-
profiles are less robust to noise explains this drop in performance.
The decrease of the G-profile’s performance can be explained as
follows. G-contours close to the tip of the nose, range r=0mm to
r=6mm, are not effective to retrieve relevant faces (see Figure 3).
However, a G-profile contains samples within this range, making
the profile curve less reliable. For the rather small training set the
central G-profiles were discriminative enough, but the larger em-
bedding of the test set caused a lower performance of these curves.
The XY-profile, with its constant performance and high robustness
to noise, is therefore the best type of profile curve. The combina-
tion of the two central XY-profiles and optimal C-contour obtained
a MAP of 0.69 for ndr and even 0.78 for fdr .

The results for optimally selected contours on the test set are
similar to those on the training set (see Figure 9. Again the highest
results are obtained for the combined G-, C-, and XY-contour. The
MAP in this case are 0.68 for ndr and 0.78 for fdr .

6.2 Combination of eight curves
For feature sets of eight uniformly selected contour curves, results
on the test set (Figure 9) shows again a drop in performance for
the combinations of C-contours and G-contours. For the eight G-
contours, the ones closest to the nose tip have a negative influence
on the performance. For the eight C-contours, the noise is again
the cause. Nevertheless, the highest results (fdr=0.78) are obtained
for the hybrid combinations of four XY-contours with either four
G-contours or four C-contours. Since C-contours and G-contours
are very much alike, their combination doesn’t improve the per-
formance. The most important observation is that for each set of



eight single type contours, there is a hybrid combination of eight
contours with a higher performance. This means that hybrid com-
binations can improve on the effectiveness of face retrieval, without
losing efficiency.

The best results for the test set are listed in Table 1. The basic
results shown in this table indicate that the retrieval performance
can be further increased, when an even more accurate pose normal-
ization and nose tip localization method is applied.

Figure 9: Retrieval results on the test set. The framework was ap-
plied using combinations of manually selected curves (top and mid-
dle), and eight uniformly selected curves (bottom).

6.3 Comparison to SHREC’07 results
The test set was used in the 3D face retrieval track of SHREC’07.
We can compare our obtained ndr and fdr results with the MAP
results of highly relevant faces (MAPH) from this contest. The
highest MAPH reported in this contest was MAPH=0.66 using our
framework without prior evaluation of its settings. The second best
result of MAPH=0.62 was obtained using an ICP-based method us-
ing approximately 7600 samples. Now, with an improved pose nor-
malization method and a small number of distinctive face features,
we achieve higher mean average precisions of up to 0.78 (see Table

features #samples ndr fdr basic
ICP 7,600 0.62 - -
180Cp 9,000 0.66 - -
180XYp 9,000 0.56 - -
180Zp 9,000 0.59 - -
Li 135 0.40 0.58 0.65
2XYp + Gc 135 0.68 0.76 0.79
2XYp + Cc 135 0.69 0.78 0.82
Gc + Cc + XYc 135 0.68 0.78 0.82
4XYc + 4Gc 360 0.69 0.78 0.85
4XYc + 4Cc 360 0.69 0.78 0.85

Table 1: The MAPH results on the SHREC’07 test set.

1). The figure below the title shows the first six items of a query’s
ranked list, see [20] for more results.

6.4 Discussion
The representation of a 3D face as a set of selected facial curves,
results in a large reduction of data, which enables efficient face
matching. This data reduction can be achieved similarly using an
ICP-based method that selects correspondences for a small subset
of vertices. However, curve matching allows for off-line feature
extraction and thus fast face matching using the predefined corre-
sponding samples. An ICP-based method on the other hand, it-
eratively determines the set of corresponding samples during face
matching. To deal with this inefficiency, Mian et al. [11] proposed
to apply a low cost rejection classifier that eliminates a large per-
centage of potential face matches, before the actual face matching.

The test set we used in this work is considered to be a difficult
one. Besides the non-trivial problem of pose normalizing the 3D
face models, the large embedding of this dataset and the way rel-
evant faces were generated makes it hard to retrieve the faces that
are classified as relevant. Throughout this work, relevant faces were
created by morphing the query towards an other instance of the mor-
phable model. In our opinion all created instances resembled their
query, even when we applied a 50-50 weighting scheme between
two very different faces. However, whether or not these syntheti-
cally generated faces are truly relevant to their query is subjective.

As stated earlier, the test set consists of instances of the mor-
phable face model that could be considered synthetic data. How-
ever, the morphable face model is a statistical model of real 3D
face scans able to generate new faces with a quality similar to
these scans. Because recent research shows that the morphable face
model can be fitted to 3D scan data, we can approximate other 3D
face scans with the optimally generated instance of the face model.
Using these approximations of the 3D face data, we can perform 3D
face recognition with the characteristic curves of the human face se-
lected in this work.

An important aspect of 3D face matching is the handling of fa-
cial expressions. For example, in [14] a subset of Z-contours were
selected that are reasonably robust for a dataset of six different ex-
pressions per person. In the previous section, we used our frame-
work to select subsets of contours that can be used for effective and
efficient face matching under facial morphing. Similarly, we could
use our framework to select the optimal set of contours for expres-
sion invariant face matching.

In [11] an ICP variant is applied to a masked face region (nose,
eyes and forehead) which is assumed to be static under facial ex-
pressions. With our framework we can simply extract and match
the profiles within this region to obtain a “masked” region. Al-
though several expressions are evaluated in their work, the assump-
tion that a face has a region that remains static under all possible
muscle contractions doesn’t hold. Moreover, the facial expressive-
ness varies for different people. Instead of restricting our frame-
work to a specified subset of profiles, we could select a percentage



of profiles that matches best for two input faces. This way, a person
might even be recognized using profiles that go through the mouth,
in case that region remains unchanged from one expression to an-
other. In SHREC’08 [17] we show that the selection of best match-
ing profiles increases the retrieval performance in the presence of
facial expressions.

6.5 Timings

The implementation of our 3D face matching framework requires
40 milliseconds to extract Np · Nc=45·45 samples from a face.
The extraction of G-samples takes more time to compute the
mesh’s geodesics. To query our training set of 176 faces using
Np · Nc=45·45 samples per face, our framework takes nearly 3.5
seconds. This is approximately 20 milliseconds for the matching of
two faces using 2,025 samples. The time required for the matching
linearly depends on the number of extracted samples. The pose nor-
malization needs 15 seconds. All timings are based on a Pentium
IV 2,8 GHz.

7 CONCLUDING REMARKS

In this work we proposed a new pose normalization method and a
3D face matching framework. Pose normalization is performed by
fitting 3D templates to the scan data and using the inverse transfor-
mation of the best fit to normalize the pose. The fitted template is
used to extract the tip of the nose. Starting from the tip of the nose
we extracted a set of profile curves, which were sampled using G-,
C-, XY-, and Z-samples. The number of profiles, the number of
contours samples, and the distance measure are the parameters to
instantiate our framework. According to the selected settings, our
framework extracts corresponding samples from faces and matches
them using the defined distance measure. For a fair comparison of
facial curves a generic distance measure was used.

With our proposed framework, we examined the properties of
profile and contour sampling, the performance of single facial
curves, uniform selected curves, manually selected curves, and hy-
brid combinations. The main results are:

1. C-contours are more robust to errors in nose tip localization
and pose normalization, and XY-, and Z-contours are more
robust to noise.

2. G-contours on the outer regions of the face are robust under
pose, noise and nose tip changes.

3. A few number of contours are more effective than a few num-
ber of profiles.

4. Effective face matching requires multiple curves.
5. Efficient and effective face matching is possible with eight

uniformly sampled curves, that is, 360 samples.
6. Hybrid matching can further improve on the effectiveness of

face retrieval.
7. Manual selection of fewer curves improves the efficiency even

further.
Two different combinations of three curves achieve the highest

results of 0.78 on the 3D face retrieval track of SHREC’07, the
feature set of two XY-profiles and one C-contour and the feature
set of the optimally selected G-, C-, and XY-contour. Both feature
sets consist of only 135 samples extracted from the face surface,
which allows highly efficient face matching.

So far, we have evaluated several settings of our framework for
their effectiveness and efficiency in a 3D face retrieval contest. Our
framework allows several ways to match faces with different ex-
pressions. In our future work, we will explore the possibilities of
our framework to expression invariant face matching. Furthermore,
we will fit the morphable face model to scans of the FRGC V2.0
and use our selected sets of profiles and contours to identify 3D
faces.
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