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Morphable face models have proven to be an effective tool for 3D face modeling and face recognition,

but the extension to 3D face scans with expressions is still a challenge. The two main difficulties are (1)

how to build a new morphable face model that deals with expressions, and (2) how to fit this

morphable face model automatically to new 3D face scans with unknown expressions. This work

presents a multi-resolution approach to semi-automatically build seven morphable expression models,

and one morphable identity model from scratch. We propose an algorithm that automatically selects

the proper pose, identity, and expression such that the final model instance accurately fits the 3D face

scan. To prove high fitting accuracy and its use for face recognition, we perform experiments on the

publicly available UND, GAVAB, BU-3DFE, FRGC v.2 datasets. Our results show high recognition rates of

respectively 99%, 98%, 100%, and 97% after the automatic removal of the expressions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Statistical models of the human face have proven to be an
effective tool for person identification using 3D face scans. To
build a statistical model, a set of example faces is required with
face features in full correspondence. With such a model, a new
face instance can be constructed as a linear combination of the
example faces. For 3D face identification, the idea is to use the
statistical model to construct a face instance that resembles an
input image. The way these example faces are combined linearly
to represent an input face, provides both global and local
information about the input face, that can be used to classify
and identify different input faces. Expressions are a problem,
because they change the resemblance of the input faces.
1.1. Related work

Most of the early 3D face recognition methods focused on
variants of the iterative closest point (ICP) [2] algorithm to find
similarity between two 3D face scans. As 3D face recognition
became more challenging with larger datasets and expression
scans, the ICP-based methods showed two main disadvantages.
The non-rigid expression deformations forced the ICP-based
methods to rely on smaller face regions such as the nose and
forehead, and the computational expensive face matching
lowered its practical use. Methods of Faltemier et al. [8] and
ll rights reserved.
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Mian et al. [12] reported high recognition rates based on nose
regions in combinations with ICP.

For efficient face matching, the extraction of person specific
features became the new area of interest. For instance, the
re-parameterization of each facial surface to an indexed collection
of curves enables the direct comparison of these curves during
face matching [16]. With high recognition rates, low computa-
tional costs during face matching, and high robustness to noise
and missing data, 3D morphable face model based methods prove
to perform well. To build a 3D morphable face model, dense
correspondence are required among a set of 3D example faces.
The mean face and the statistical variation of these faces can be
computed using principal component analysis (PCA). Using the
statistical face variations, the mean face can be deformed to fit the
noisy scan data. The way such a model is deformed (larger, wider,
longer nose, etc.), provides information on the geometric shape
properties of the input face. The coefficients that induce these
deformations form a relatively small feature vector for efficient
face matching. For reliable model coefficients, the model
deformation must be independent of changes in the face pose.
Therefore, the model fitting is often combined with an ICP
algorithm to compensate for the rigid transformation between
closest point features. Because both the model fitting and the ICP
algorithm are local optimization methods, a coarse alignment
between the scan data and the model should be automatically
established first.

In [4], Blanz et al. fit a morphable model to 3D scan data and
use the deformation weights (or model coefficients) to recognize
faces with neutral expressions. In each iteration of their stochastic
Newton algorithm, the current model instance is projected to 2D
image space and the model coefficients are adjusted according to
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the difference in texture and depth values. For the coarse
alignment and to initiate the morphable model, they manually
select seven corresponding face features on their model and in the
depth scan.

Amberg et al. [1] have built a PCA model from 270 identity
vectors and a PCA model from 135 expression vectors and combined
the two into a single morphable face model. Their method fits this
model to 3D scan data by iteratively finding closest point pairs to
improve on the alignment, the identity deformation, and the
expression deformation at the same time. Their local optimization
method, which does not guarantee convergence to the global
minimum, returns a set of identity coefficients that perform well
in terms of face recognition.

Lu and Jain [11] train a morphable expression model for each
expression in their test set. Starting from an existing neutral scan,
they fit each of their expression models separately to adjust the
vertices in a small region around the nose to lower the ICP error
between that particular neutral scan and an expression scan. The
expression model that produces the most accurate fit is used to
deform the neutral scan. For the initial alignment they use three
automatically detected feature points. For the fitting, they
combine the accurate ICP alignment for the rigid transformation
with the fast eigenspace projection [19] for the expression
deformation. This process is iterated until convergence and the
lowest residual error is used as the dissimilarity score between
the neutral scan and the new scan. Although the authors use PCA
models, their method can be classified as an ICP based method,
because the fitting procedure has to be repeated for every pair of
face scans in the dataset. The expression models are merely used
to improve on the ICP fitting procedure.

Mpiperis et al. [14] build a bilinear PCA model for the BU-3DFE
dataset suitable for both expression and identity recognition after

a face scan is brought into full correspondence with the model.
To establish full correspondence, they detect the boundary of the
mouth, elastically deform a low resolution face mesh to the
scan data (considering the mouth), and subdivide the mesh for
denser correspondences. The bilinear PCA model is solely used to
map the full correspondence to expression and identity coeffi-
cients that are either used for expression classification or person
identification.

Kakadiaris et al. [9] deform an annotated subdivision face
model to scan data. Their non-statistical deformation is driven by
triangles of the scan data attracting the vertices of the model. The
deformation is restrained by a stiffness, mass and damping
matrix, which control the resistance, velocity and acceleration of
the model’s vertices. They use the newly created geometry for
wavelet analysis and achieve state of the art recognition results
on the face recognition grand challenge (FRGC) [15].
1.2. Contribution

Starting with a dataset of neutral scans, expression scans, and
a small set of facial landmarks, we describe how to build a strong
multi-resolution PCA model for both identity and expression
variations of the human face. We build one morphable identity
model and seven separate morphable expression models, for the
‘expressions’ anger, disgust, fear, happiness, sadness, surprise, and
inflated cheeks. For expression invariant face recognition it is
important to have the identity and expression models separated,
but it makes the model-to-scan fitting more complex. Our fitting
algorithm automatically searches for the best identity and
expression combination, such that the newly created face
instance accurately fits the input face scan. It combines eigen-
space sampling to avoid local minima, eigenspace projection for
fast local convergence, and predefined face components for higher
accuracy. The shape priors captured in the morphable face model
allows for the robust handling of noise and holes in the face scan.
After the fitting process, the final model instance and its PCA
coefficients can be used as; the filled and noiseless representation
of the expression scan, to retrieve the defined landmarks, to
bootstrap the face model, to remove the expression, and for
expression invariant face recognition. In our work, face recogni-
tion is not only an interesting application, it also quantifies the
uniqueness of the model coefficients and indirectly the fitting
accuracy as well.

The contributions are:
�
 An easy way to build different identity and expression models.

�
 The decoupling of the rigid model-to-scan alignment and the

non-rigid model-to-scan deformation for efficient face modeling.

�
 An enhanced automatic fitting algorithm to establish dense

correspondences among faces with expressions and to extract
landmarks.

�
 New face recognition with the use of multiple local minima in

the identity space.

�
 Performance evaluation of three different coefficient vectors

for the recognition.

2. Datasets

We use the 3D face scans of the UND [5], the GAVAB [13,17],
the BU-3DFE [21], the FRGC v.2 [15], and the USF Human ID 3D
[20] databases. The UND set, from the University of Notre Dame,
contains 953 frontal range scans of 277 different subjects with
mostly neutral expression. The GAVAB set consists of nine low
quality scans of which we use seven for each of its 61 subjects as
in [17]. The BU-3DFE set, from the Binghamton University, was
developed for facial expression classification. This set contains
one neutral scan and 24 expression scans having different
intensity levels for each of its 100 subjects. The FRGC v.2 set, of
the Face Recognition Grand Challenge contains 4007 high quality
3D face scans of 466 different subjects. Almost half of these scans
show an expression varying from a smile or frown to a
pronounced laugh or a surprised look. The USF Human ID 3D
database, from the University of South Florida, contains 136 high
quality full head scans without expressions.

We aim at 3D face modeling and recognition, and therefore we
need to segment the face from each scan. For that, we employ the
pose normalization method described in [18] that takes as input a
triangular surface mesh and outputs the normalized pose of the
face with the tip of the nose in the origin. The face is segmented
by removing the scan data with a Euclidean distance larger than
130 mm from the nose tip. In several scans of the FRGC v.2, the
frontal pose was not completely recovered due to hair covering
the face. To further improve on the face’s pose, an average nose
template (shown in Fig. 1) is aligned to each segmented face and
the inverse transformation applied to the scan. This template was
selected for its high expression invariance as described in [12].
Qualitative evaluation showed that the tip of the nose was found
in all 3D scans, except for two scans of the FRGC v.2 which did not
have a nose (2 failures out of 8023 scans).
3. Morphable face model

In this work, we use a new morphable face model built from
both 3D neutral and expression scans of the human face. We fit
this model to 3D scan data in such a way that expressions can be
removed and subjects identified in an expression invariant
manner. To build a morphable face model with expressions, an
example set of subjects showing various expressions is required.
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Fig. 1. Semi-automatic model building. The pose normalized faces are annotated with landmarks (first row) that correspond among different expressions and

different subjects to construct an initial face mesh as a layer over the cylindrical depth image (second row). A subdivision scheme is applied to acquire dense 3D face

meshes (third row).
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For that, we use the BU-3DFE [3] dataset, from which we select
the 100 neutral scans and 600 expression scans at their highest
intensity level. The BU-3DFE set was developed for facial
expression classification. This set contains one neutral scan and
24 expression scans having different intensity levels, for each of
its 100 subjects. From this set we selected the neutral scans and
the highest intensity level expression scans (anger, disgust, fear,
happiness, sadness, surprise at level 4). The goal is to model a
neutral face model from a dense set of correspondences, and a
neutral-to-expression model for each of the expressions anger,
disgust, fear, happiness, sadness and surprise. The neutral face
model, which is built from the 100 neutral scans, captures the
identity of different subjects, whereas a neutral-to-expression
model captures the facial changes caused by a certain expression.

A morphable face model is a type of statistical point
distribution model (PDM) [7], where the points are facial features
that have a different distribution among different faces. Building a
morphable face model, requires n dense correspondences
S¼ ðx1,y1,z1, . . . ,xn,yn,znÞ

T AR3n among the input face scans of
the training set. Principal component analysis (PCA) is used to
capture the statistical distribution of these correspondences
among the input faces. Because the automatic estimation of
reliable dense correspondences among noisy face scans with
expressions is still unsolved, we propose a semi-automatic
correspondence estimation that requires 26 facial landmarks.
With the use of these 26 landmarks, we construct a low resolution
mesh that is projected to the cylindrical depth image of a 3D face
scan. By subdividing the triangles of the low resolution mesh, a
multi-resolution representation of the face is constructed. At each
level, we assume that the vertices between different subjects or
expressions correspond. The correspondences at the highest level
are used to build a neutral 3D morphable face model as well as a
morphable expression model for each of the expressions. Because
the manual annotation of facial landmarks in 3D face scans is
often a major disadvantage in statistical modeling, we explain in
Section 3.6 how our initial morphable face model can be used to
enhance itself with new 3D scan data. This automatic boot-

strapping is a useful tool to limit the user input. We explain the
semi-automatic construction of the morphable identity and
expression models using the following steps:
(1)
 Manual annotation of facial landmarks, including nose, eyes,
eyebrows, and mouth.
(2)
 Cylindrical depth image construction.

(3)
 Multi-resolution face mesh construction.

(4)
 Building the morphable identity model.

(5)
 Building the morphable expression models.
(6)
 Automatic bootstrapping the morphable model.

(7)
 Data reduction.

(8)
 Component selection.
3.1. Landmark annotation

In each of the 700 pose normalized (raw) BU-3DFE scans, we
manually selected the same sequence of 26 facial landmarks as an
initial set of correspondences. These landmarks include locations
on the nose, mouth, eyes, and eyebrows, and provide a coarse
notion of facial changes among different identities and expres-
sions. This is the only user input throughout this work. In fact,
most of these landmarks were already annotated in the BU-3DFE
set and the nose tip was detected automatically.
3.2. Cylindrical depth image

Knowing that almost all face scans (even with facial hair and
expressions) can be correctly pose normalized after the final
alignment to an average nose template (Section 2), it makes sense
to build the morphable face model based on face scans in the
coordinate system of this nose template. Each BU-3DFE scan was
brought into alignment with the reference nose template, which
has the desired pose and its nose tip in the origin. Although the
nose template was accurately fitted to the face scans, this does not
mean that the nose tip of the face scan is aligned to the nose tip in
the template. A smaller nose, for instance, has its tip behind the
template (lower z-value) and a larger nose in front of the template
(higher z-value). To produce a cylindrical depth image dðy,yÞ for
each of the face scans, we simulate a cylindrical laser range
scanner. To cover most of the face, the nose template and the
aligned face scans are moved 80 mm along the positive z-axis. A
surface sample is acquired for each angle y at each height y with
radius distance d to the y-axis of the coordinate system. Basically,
we cast a horizontal ray at height y with an angle y in the xz-plane
from the y-axis to the face scan, and store the distance to the
furthest ray–triangle intersection. Because we model the face
only, we scan the front half of the cylinder i.e. the angles
y¼ ½1803,3603

�. The step size for y is 0.41 (450 angles) and the step
size for y is 0.5 mm, producing a high resolution 2D cylindrical
depth image. The 26 annotated landmarks are projected to the
cylindrical depth image, by assigning them to the closest ray. Note
that the cylindrical depth image can be converted to a 3D triangle
mesh by connecting the adjacent samples and projecting the
cylindrical coordinates to 3D.
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3.3. Multi-resolution face mesh

To construct the low resolution face mesh, we extend the
initial set of landmarks using predefined locations on the
cylindrical depth map, such as the location (2701, nose tipy+180)
on the forehead, the location (2701, lower lipy�70) on the chin,
leftmost location (1801, upper lipy) and rightmost location (3601,
upper lipy). This way a coarse 2D mesh is constructed as an
overlay on the cylindrical depth image (Fig. 1). By using relative
locations, we ensure that all necessary face features (chin,
forehead, cheeks) are captured, whereas the cylindrical depth
images provide radial depth variation among different subjects.
Alternatively, a more geometry guided approach could be used
instead. Large triangles are avoided in the coarse mesh, by adding
extra vertices in sparse density areas. The final low resolution
mesh consists of 68 vertices and 110 triangles. To improve on the
cylindrical depth map quality, depth values outside the face
polygon and inside the mouth polygon are removed, and depth
values are interpolated and extrapolated to fill the gaps. With the
use of this underlying depth map, the face mesh can be projected
to 3D. To construct a higher resolution face mesh, we subdivide
each triangle in the low resolution mesh into four smaller
congruent triangles. In an iterative manner, we construct five
meshes with a resolution up to 28 160 ð110� 44

Þ triangles. The
highest resolution mesh is projected in 3D using the cylindrical
depth image and speckle noise is removed by a single iteration of
Laplacian smoothing. The advantage of the subdivision scheme is
that each vertex in a lower resolution mesh has the same index
number in the highest resolution mesh, which means that the
highest resolution mesh can be used as the final multi-resolution
face mesh.

In the end we have acquired for each input face a set of dense
correspondences S¼ ðx1,y1,z1, . . . ,xn,yn,znÞ

T AR3n, with 28 160
triangles and n¼14 288 vertices of which the first 26 vertices
were manually annotated. Valid transitions for lower resolution
faces are in this case, n¼68, n¼246, n¼932, n¼3624. To
distinguish between a face with an expression and a neutral face,
we use Ei for an expression face and Si for a neutral face in
full correspondence. The multi-resolution mesh construction is
shown in Fig. 1. In addition to the multi-resolution mesh, we also
construct a mirrored version. Therefore, we interchange the
coordinates of the left and right side landmarks, mirror the
cylindrical depth map in the y-axis, and redo the multi-resolution
mesh construction. With these additional faces, the variability of
the morphable face model increases. Also, the statistical mean
face becomes fully symmetric around the y-axis, because facial
asymmetry is modeled in both directions.
3.4. Morphable identity model

Building an identity based face model requires a training set of
neutral faces of different subjects in full correspondence. For that
we use the m¼200 (original and mirrored) neutral face instances
S¼ ðx1,y1,z1, . . . ,xn,yn,znÞ

T AR3n, with n¼14 288. Principal compo-
nent analysis (PCA) is applied to these neutral face instances Si to
acquire an orthogonal coordinate system in which each face can
be described as a linear combination of principal shape vectors,
i.e. the eigenvectors of the eigenspace. Turk and Pentland [19] also
described how to compute the ‘eigenfaces’ that define this ‘face
space’, for 2D intensity images.

Each of the m¼200 face instances Si is described as a one-
dimensional vector of size 3n, and the average of these vectors is
the mean face shape S. The mean shape S is extracted from each
face instance Si, and these shape deformation vectors are stored in
a matrix A½S1�S,S2�S, . . . ,Sm�S� of size 3n �m. To compute the
eigenfaces, a covariance matrix C ¼ A AT is constructed from
which the eigenvectors and eigenvalues are extracted which can
be done efficiently as described in [19]. The eigenvectors
si ¼ ðDx1,Dy1,Dz1, . . . ,Dxn,Dyn,DznÞ

T , the eigenvalues li and iden-
tity coefficients ai are used to model an identity vector according
to

Sid ¼
Xm�1

i ¼ 1

ai

ffiffiffiffi
li

p
� si:

Adding this identity vector to the mean face S results in a 3D
face with a new identity, Sinst ¼ SþSid. The identity coefficient ai

represents the number of standard deviations si ¼
ffiffiffiffi
li

p
that a face

instance morphs along eigenvector si. To determine the coefficient
ai for face instances Si, one can subtract S and project its residual
identity vector Sid into face space:

ai ¼
1ffiffiffiffi
li

p ðsT
i SidÞ:

The projection of the identity vector onto each eigenvector
returns the least-squares solution defined as a¼ ð ~S

T ~SÞ�1
ð ~S

T
SidÞ,

because the columns in matrix ~S ¼ ½s1,s2, . . . ,sm�1� are orthogonal
[10]. Without the use of PCA (as in [11]), one must solve the least-
squares solution for the (linearly independent) face instances
Si according to a¼ ðAT AÞ�1

ðAT SidÞ, which is computationally more
expensive. In the end, the vector a can be used to describe a
subject in face space, and as a feature vector for the recognition of
3D faces.

3.5. Morphable expression model

Building an expression model requires full correspondence
between all the neutral faces and the sets of expression faces,
which we established in Section 3.3. Matrix A is now initiated
with the difference between the expression face Ei and neutral
face Si of subject i. The computation of the eigenvalues and
eigenvectors for the matrix A[E1�S1, E2�S2, y, Em�Sm] remains
the same. The eigenvectors ei ¼ ðDx1,Dy1,Dz1, . . . ,Dxn,Dyn,DznÞ

T ,
the eigenvalues mi (s2

i ¼ mi) and weights bi are used to model an
expression vector according to

Sexpr ¼
Xm�1

i ¼ 1

bi

ffiffiffiffiffimi

p
� ei:

Adding an expression vector Sexpr to a neutral face instance
Sinst, results in a 3D face with a certain expression, Sexpr:inst

¼ SþSidþ Sexpr .
After the correspondence estimation and mirroring, our

training set consists of 200 neutral faces and 1200 expression
faces in full correspondence. At this point, we could either build a
generic model including all expressions or a specific model for
each of the expressions, anger, disgust, fear, happiness, sadness,
and surprise. In the work of Lu and Jain [11], experiments with an
expression-generic and expression-specific models show that the
latter outperforms the former. Although their example faces are
different and the expressions were only modeled in a small area
around the nose, we decided to use expression-specific models as
well. For each of the expressions we build a new model ðbi,mi,eiÞ,
which we use to add an expression to the neutral face instance
Sinst, but also to remove an expression from Sexpr.inst.

3.6. Automatic bootstrapping

For face recognition purposes it is important to have an
identity model Sid that describes a large human population. The
face space allows for the interpolation between example faces and
the extrapolation outside its statistical boundary, but only to
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Fig. 3. Face deformation along the first eigenvector (left) and the second

eigenvector (right). Starting from the mean face, a model based shape deformation

is applied by changing the coefficients a1, a2, b1, or b2 to �2 or +2. From top to

bottom, the deformation is based on the identity model ðs¼ aÞ, and the expression

models ðs¼ bÞ anger, disgust, fear, happiness, sadness, surprise, and cheek

inflation. The deformation b1 ¼�2 results in unrealistic faces.
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some extend. In case a subject cannot be sufficiently described in
face space, its identity coefficients ai become unreliable. However,
manually annotating more 3D face scans is not desired. Instead,
we automatically enhance the identity model with 134 (beard-
less) scans of the USF Human ID 3D database. For that, the
morphable face model is fitted to each scan as described in
Section 4 and the set of 26 facial landmarks extracted. Then the
cylindrical depth images are constructed, the multi-resolution
face meshes Si created, and the identity model Sid rebuild with the
468 original and mirrored sets of correspondences Si. These steps
are shown in the flow chart of Fig. 2.

Because the FRGC v.2 dataset contains not only scans with the
aforementioned expressions, but also scans with inflated cheeks,
we select twenty subjects with inflated cheeks and their neutral
faces, and build an ‘expression’ model of these scans. For that, we
again use our model fitting algorithm to establish full correspon-
dences between morphable identity model and these forty FRGC
scans. Afterwards, PCA is applied to the 20 regular and 20
mirrored expression vectors to build the expression model Sexpr

for cheek inflation.
The automatic bootstrapping method that we use here, does

not require a perfect fit of the entire model, but just for the 26
annotated landmarks. However, to get these landmarks in place, it
helps to fit the full morphable model and not just the vertices that
correspond to such landmarks.

3.7. Data reduction

In Fig. 3, the mean face S is deformed along the first two
eigenvectors of either the identity model or an expression model.
Because each of the expressions causes a similar face deformation
among the training subjects, the first eigenvector is the main
vector to move from the cluster of neutral faces to the cluster of
expression faces. A negative coefficient b1 for eigenvector e1

means that we move away from an expression cluster, causing
unrealistic changes. Note that a weight of b1 ¼ 2 is already an
exaggeration of the expression. The first eigenvector of all
expression models except the sad model causes a larger shape
deformation than the first eigenvector of the identity model,
which in turn causes a larger shape deformation than the second
eigenvector of the expression models. This is reflected by the
eigenvalues li and mi of the deformation models, which are larger
in case of a larger shape deformation. During the morphable
model fitting it is important to optimize the large shape
deformations before the smaller shape deformations. Because
the smallest eigenvectors are the least significant and add merely
noise to a model instance, we reduce the number of eigenvectors
for the identity model to ms¼80 and for each expression model
to me¼6.

3.8. Component selection

Each eigenvector of a morphable model defines a translation
vector for each vertex in the model. With the use of a mask vector
one can simply turn a vertex in the model on or off. A vertex that
BU-3DFE
Scans Full point

Correspondence
Landmarks

Expr

Ide

Fig. 2. Flow chart of the semi-
is not selected, is not adjusted nor evaluated during the model
fitting. So, the use of a lower resolution for the multi-resolution

face model speeds up the fitting process. Additionally, we can
select predefined components such as the nose, eyes, mouth, and
the rest of the face and refine each of these components
individually to have a larger face variety with the same model
[18]. With our expression deformation models, we can find
regions of the face that are invariant to expressions. When the
expression coefficients bi of an expression model are all set to one,
each vertex is translated to a new position. These translation
vectors have different lengths, depending on the selected
expression model and the expression invariance of that particular
Bootstrap
Inflated Cheeks

Bootstrap
USF Scans

ession Models
βi, μi, ei

ntity Model
αi, λi, si

automatic model building.
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vertex. If the maximum displacement, over all expression models,
is stored for each vertex, we can determine face regions that are
more static under different expressions. We select 60% of the
vertices with the smallest maximum vertex displacements as
the static face component. A static face component can be used
to coarsely estimate the identity coefficients before estimating
the expression coefficients. Fig. 4 shows these sets of selected
vertex indices.
4. Morphable model fitting

The task of the model fitting algorithm is to find the face
instance Sexpr.inst in the high dimensional face space that produces
the best point-to-point correspondence with a new face scan.
Additionally, the model fitting algorithm should be robust to
noise and perform well even when large areas of the face are
missing. To regulate the scan density, each face surface is
cylindrically rescanned (as in Section 3) to a uniform resolution
ðDy¼ 1:3,Dy¼ 1:3Þ with approximately 16 000 vertices. Slender
triangles and small connected components are removed. When
accurate point-to-point correspondences are established between
the morphable face model and the scan data, then the identity
coefficient vector a can be used for face recognition, or the
expression deformation Sexpr can be subtracted from Sexpr.inst to
produce a neutral face instance Sinst for geometry based face
recognition. In this section, we describe a fully automatic method
that efficiently optimizes the weights a and b to obtain a model
instance from the high dimensional face space that accurately
fits the face scan. To evaluate if an instance of the morphable face
Fig. 4. Component selection. From left to right, n¼3624 lower resolution vertices,

four face components, expression deformation intensity, and 60% most static

vertices under various expressions.

Fig. 5. Flow chart of the combined iden

Fig. 6. Example faces of the morphable model fitting. From left to right, the processed s

the multiple component refinement, the automatically acquired landmarks, and the ne
model is a good approximation of the 3D face scan, we use the
root mean square (RMS) distance of closest point pairs in
Euclidean space emin,

drmsðSexpr:inst ,scanÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i ¼ 1

eminðpi,scanÞ2

vuut

using n vertices of Sexpr.inst. Closest point pairs ðp,p0Þ for which p0

belongs to the boundary (including holes) of the face scan are not
used in the distance measure.

Several methods for 3D morphable model fitting have been
proposed in the literature [1,4,11,18]. These methods consider two
transformations, a rigid transformation to align the model with the
scan data and a non-rigid deformation to deform the model to the
scan data. As described in Section 2, our method computes the rigid
transformation only once, with the use of a pose normalization
method that aligns the scan data with an average nose template.
This transformation is kept constant during the fitting process for
fast model fitting. The model fitting is separated into an expression

optimization step to select the best expression model and an identity

optimization step to find the global minimum (and local minima) in
the identity space. The morphable model fitting is shown in Fig. 5 as
a flow chart and in Fig. 6 based on an example face. Both the
expression and identity fitting use the two coefficient selection

algorithms described below.
4.1. Coefficient selection

With the face scan aligned to the average nose template, we
can compute the closest point pairs between the mean instances S

and the scan. These closest point correspondences will only be
reliable when the scan closely resembles the mean face. To
improve on the set of correspondences, the model coefficients of
the principal identity vectors and the expression vectors are
adjusted iteratively using eigenspace sampling (algorithm
ESSamp). After a number of iterations, the correspondences of
Sexpr.inst are reliable enough to apply eigenspace projection

(algorithm ESProj) and to evaluate the fit using drms. Fig. 7
shows a schematic view of the iterative search through (2D)
coefficient space. To optimize expressions, algorithms ESSamp
and ESProj use bi, mi, ei instead.
tity and expression model fitting.

can, the static region fit, the selected coarse fit (surprised), the full face refinement,

utralized face model.
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S̄
s1

s2

αrange = 2

4
3

Si(α1 ,α2)

Sscan
(α1,α2)

αincr =

′ ′

Fig. 7. Searching the coefficient space using eigenspace sampling (solid arrows)

and eigenspace projection (dashed arrow). At each mark, the model instance Si is

updated and correspondence with the scan estimated.
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Algorithm 1. ESSamp ðS,a,scanÞ

for k’1 to kmax do

aincr ¼
2
3arange (4 samples in full range)

for i’imin to imax do
for a0i’ai�arange to aiþarange do

update S0 ¼ Sþðða0i�aiÞ
ffiffiffiffi
li

p
� SÞ

drmsðS0,scanÞ smaller -aopt ¼ a0i
a0i ¼ a

0
iþaincr

update S¼ Sþððaopt�aiÞ
ffiffiffiffi
li

p
� SÞ

arange ¼
5
4aincr (slight overlap)

return drms(S,scan)

Algorithm 2. ESProj ðS,a,scanÞ

for k’1 to kmax do
select sets of correspondences S and Sscan

compute residual deformation vector S-Sscan

for i’imin to imax do

a0i ¼ aiþ
1ffiffiffi
li

p ððS�SscanÞ
T SÞ

update S¼
Pm

i ¼ 1 a0i
ffiffiffiffi
li

p
� S

return drms(S,scan)

The eigenspace sampling iteratively selects model coefficients,
that morphs the face model closer to the scan data. This algorithm
simply tries four new coefficients for each sequential eigenvector
si, and keeps the one that produces the smallest RMS distance.
By reducing the search space arange in each iteration, the algorithm
produces a more accurate fit in each of the iterations. Because the
first eigenvectors induce the fitting of global face properties and
the last eigenvectors change local face properties, each iteration
follows a global to local fitting scheme. To avoid local minima in
face space, we try four new coefficient values in each iteration and
we use in following iterations a slightly larger range arange than
the latest increment aincr .

The eigenspace projection refines the set of correspondences
that are selected with the eigenspace sampling method. Before
the projection, we have to establish n0rn closest point corre-
spondences from instance Sexpr.inst to the scan data, where each
point-pair describes the direction to which the vertex of Sexpr.inst

should move for a tighter fit. The number of correspondences n0 is
usually smaller than the number of vertices of the morphable face
model n, because we use a multi-resolution scheme and not every
vertex in the model has a closest compatible point in the scan
data. The sets of n0 correspondences Sexpr.inst and Sscan are
subtracted and in case n0on, the missing correspondences are
replaced with zero vectors to retain full correspondence with the
morphable model. The residual deformation vector can be
projected either into the eigenspace of the expression model or
into the eigenspace of identities:

b0i ¼ biþ
1ffiffiffiffiffimi
p ððSexpr:inst�SscanÞ

T eiÞ,

a0i ¼ aiþ
1ffiffiffiffi
li

p ððSexpr:inst�SscanÞ
T siÞ:

Projecting the residual deformation vector onto the eigenvec-
tors of the orthogonal eigenspace is the fastest and easiest way to
obtain the least-squares solution for the given set of correspon-
dences (Section 3.4). Afterwards, a new set of closest point
correspondences can be selected and the residual deformation is
projected into the eigenspaces again. This process converges to a
local optimum within a few iterations (kmax). As a result, the
model coefficients are refined.
4.2. Expression fitting

The main difficulty in model fitting is that neither the
expression coefficients nor the identity can be optimized without
optimizing the other. When the model is fitted to a new scan with
an unknown expression, it makes sense to coarsely estimate the
identity based on expression invariant regions and then to select
the best expression model and search for its optimal expression
parameters.

Starting with the morphable mean face S, the identity
coefficients a are improved using algorithms ESSamp and ESProj
based on the static face component (Fig. 4). The former algorithm
iteratively improves coefficients (imin,imax) a1 up to a4, a5 up to a8,
and a9 up to a12. To cover a large range of facial variety, we use a
large range of coefficients arange ¼ 2, and kmax¼4 iterations. The
established correspondences are refined with algorithm ESProj to
obtain the coarsely fitted face instance Scoarse.

To find the expression instance Sexpr.inst that fits the scan data
best, we need to find the optimal combination of identity and
expression coefficient vectors a and b. Moreover, to select the
appropriate expression model, we need an optimized fit for each
of the expression models in combination with Scoarse. For that, we
select an expression model and three different coefficients
b1 ¼ f0:0,0:5,1:0g for its first expression vector e1 and apply this
deformation to Scoarse. Note that this first expression vector causes
the largest shape deformation, and that its weight should be
positive (Section 3.7). Starting from each of these instances
Sexpr.inst, the coefficients b2 up to b6 are refined with algorithm
ESSamp using arange¼ 2 and kmax¼4. Then a1 to a4, b1 to b6, a5 to
a8, and a9 to a12 are refined with algorithm ESSamp using
arange ¼

1
2 and kmax¼4.

For each expression model and for each coefficient b1, a
combined identity/expression fit is acquired with ESSamp. Each of
these coarse fits is then projected onto the eigenspace of
expressions and then to the eigenspace of identities to refine
the established correspondences with all model coefficients in
algorithm ESProj (kmax¼1). The best fit, i.e. the instance with the
smallest drms distance, is selected as the best coarse fit as shown in
Fig. 5. To further refine the expression parameters b of the
selected fit, the residuals are projected onto the expression space
with algorithm ESProj using kmax¼5 iterations. This gives us the
final expression vector Sexpr.
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4.3. Identity fitting

After the expression fitting, we have obtained a coarse identity
vector that, in combination with the final expression vector,
produces a relatively good fit to the scan data. For the purpose of
face recognition, each subject needs a unique expression invariant
identity vector a. Amberg et al. [1] proposed to produce the best
possible fit and to use the decoupled identity vector for face
recognition. In [18] a more accurate fit was produced by fitting
predefined face components individually. Here, we use both
methods and propose a new descriptor.

To produce the best possible fit for the entire face as one
component, we use algorithm ESProj to refine the identity
coefficients in kmax¼5 iterations. This gives us the final identity
vector Sid and its coefficient vector a. This single-component vector

is used as feature vector for the face matching.
For the multiple component method, we define a subset of

vertices for the nose, eyes, mouth and remainder regions
and project the residual vector for each component to the identity
space using ESProj. This gives us an identity vector Sid and
a coefficient vector a per component. The coefficient vectors
are concatenated to produce a single feature vector for the
face matching, which we refer to as the multi-component vector.
The identity vector Sid can be used to bootstrap the model
directly, or its facial landmarks can be mapped to the scan data
and used to model a new set of correspondences as we did in
Section 3.

Since there is no guarantee that the fitting process finds the
global optimum in the identity space, we propose to search for a
number of local optima and concatenate their coefficient vectors
a. These locations in ms-dimensional space should form a unique
pattern for each subject usable for face recognition. To find four
local minima, we initiate a face instance as the combination of the
mean face with the final expression vector ðSþSexprÞ, and adjust its
first two coefficients a1 and a2 with {�2,2}. Then algorithm
ESSamp is applied using a relatively small arange ¼

1
2, and kmax¼4,

to iteratively refine coefficients a1 up to a12 as we did before. Each
of the four coarsely fitted Sexpr.inst is then refined using algorithm
ESProj in kmax¼5 iterations (also without b). This gives us an
identity vector Sid and its coefficient vector a for each of the four
initializations. The coefficient vectors are concatenated to produce
a single feature vector for the face matching, which we refer to as
multi-minima vector. More local minima can be used at the cost of
a larger feature vector.
4.4. Implementation

The difficulty in model fitting is the high dimensional face
space in which each location represents a detailed face mesh.
Exhaustive search for the global optimum is an intractable task
and scan deficiencies and expressions cause local minima in the
face space. During the expression model fitting (Section 4.2),
we iteratively fit each expression model using three different
values b1 to be able to select the proper intensity of the
expression. Algorithm ESSamp, iteratively improves a small
set of coefficients (e.g. a1 up to a4) at a time, which allows
the algorithm to recover from an incorrect choice for a coefficient
at an early stage. Refining either one coefficient iteratively at a
time or all coefficients per iteration are two variants that
performed less well. For the selection of the best expression
model, we fit each model in combination with no more than
twelve coefficients of the identity model. With all identity
coefficients, several expression models may produce a tight fit
to the scan data, so with limited resources the distance drms

becomes more reliable.
Mpiperis et al. [14] also experienced that especially the mouth
region causes local minima in the face space that require
additional effort to avoid. One common local minimum is a
model instance with a closed mouth while the face scan shows an
open mouth. Instead of a dedicated mouth detection algorithm
that Mpiperis proposed, we allow the model’s vertices in the
mouth area to pair up with boundary points of the scan data. In
case the face scan has an open mouth and the face model has not,
these point pairs are automatically penalized by the distance
measure drms.

For the ESProj algorithm we use closest point-to-point
correspondences from the model to the scan data and from
the scan data to the model. This results in a higher fitting accuracy
[14]. With the use of a kD-tree the closest point correspondences
can be found efficiently. For high efficiency, we compute in
algorithm ESSamp only the correspondences from model to
scan, because the model and its kD-tree change in each
iteration. For the eigenspace sampling we consider a close
point-pair to be valid if their distance is smaller than 50 mm,
for the eigenspace projection we use a distance of 10 mm. We
stop traversing a kD-tree, when this criterion can no longer
be met.

For time efficiency, algorithm ESSamp is applied using the
low resolution face model of n¼932 vertices. Algorithm ESProj
is applied to a coarse fit using n¼3624 vertices and to the
final expression and identity vectors using n¼14 288 vertices.
In the end, the time to process a raw scan requires ca. 3 s for
the face segmentation, ca. 10 s to fit all expression models, less
than 1 s to improve the coarse identity fit, and ca. 4 s to find
four local minima on a Pentium IV 2.8 GHz. Note that the fitting of
each expression model as well as the search for multiple minima
can be done in parallel to further speed up the process.
5. Face matching

We automatically fit the morphable model to all scans in the
UND, GAVAB, BU-3DFE, and FRGC v.2 datasets. Note that a small
subset of the BU-3DFE and the FRGC v.2 were added to the
models. After the fitting we have obtained three feature vectors of
model coefficients, namely, the single-component vector, the
multi-component vector, and the multi-minima vector. For the
face matching we use each of these vectors individually to do 3D
face recognition. To determine the similarity of faces with these
coefficient vectors, we use the L1 distance between the
normalized coefficient vectors. So, the matching of two faces
requires only the comparison of either ms or 4 ms float values,
which is extremely time-efficient. For each query, we compute its
similarity to all other models in the training set, generating a
ranked list of face models sorted on decreasing similarity values
in the process. Based on these ranked lists, we compute the
recognition rate (RR), the mean average precision (MAP), and
according to the FRGC benchmark the verification rate at 0.1%
false acceptance rate (VR@0.1%FAR) [18,15]. The VR@0.1%FAR is a
measure for the authentication scenario, because it distinguishes
between clients to accept and imposters to rejected.
6. Results

6.1. Morphable model fitting

In this section we evaluate the accuracy of the final expression
instances Sexpr.inst both quantitatively and qualitatively. After the
identity fitting in Section 4.3 we have two final face instances, a
single component fit (SC) and a multiple component fit (MC).
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Fig. 8. Model fitting to processed scans (1st column) using the neutral model only (2nd and 3rd column), a single component (4th and 5th column) and multiple

components (6th and 7th column). The last column shows the neutralized face instances Sexpr.inst�Sexpr of the 6th column.
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We can evaluate the fits qualitatively by looking at the more
frequent surface interpenetration of the fitted model and face
scan (Fig. 8), which means a tighter fit. Note that our fitting
method is robust to missing data and even creates accurate face
instances when half of the face is missing. A quantitative
evaluation can be done by comparing the residual drms

distances. Table 1 shows a decrease in residual error for the
multiple components.

To prove that the expression modeling improves the fitting
process, we also fitted the neutral model as a whole without the
additional expression models. These fitting results are shown in
the 2nd and 3rd column of Fig. 8, which show a consistent failure
in case of expression scans. The higher residual drms distances are
listed in Table 1 (SC neutral).
6.2. Face matching

After the fitting process, the expression deformation Sexpr can
be subtracted to neutralize the expression, Sexpr:inst�Sexpr ¼ SþSid.
The identity coefficients a that model the identity deformation Sid

are used for the face matching as explained in Section 5. For
perfect retrieval results, the acquired coefficient vector a for each
scan of the same subject should point to the same unique position
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in the ms-dimensional coefficient space. To get an impression of
the identity clustering in coefficient space, we show in Fig. 9 ten
random subjects of the UND dataset having more than four scans.
The projected coefficient vectors are those acquired with the
single component fit. These graphs show that not only the
principal eigenvectors are useful to distinguish between different
subjects, but that even the fiftieth coefficient contributes to the
clustering of subjects.

The face matching results of the single-component (SC), multi-
component (MC), and multi-minima (MM) vectors are listed in
Table 2. Results show that (1) our method can be applied with
considerable success to a large range of datasets, (2) the use of
expression models is essential for high performance, (3) the use of
multiple components (MC) improves on the single component
(SC) results, (4) in case of scan data with lower quality, as in the
GAVAB dataset, the multiple minima (MM) approach can improve
the system’s performance. In Fig. 10, we show the cumulative

match characteristic (CMC) curves for both the multiple
component and multiple minima results on the four datasets.
Notice that the recognition rates for the BU-3DFE are very high,
this is because for each face there is at least one other face that is
very similar due to the slightly different ‘expression intensities’ in
this set.

Comparison UND. Several authors report recognition rates for
the UND dataset. Blanz et al. [4] achieved a 96% RR for 150 queries
in a set of 150 faces. Amberg et al. [1] used all 953 scans and
achieved 100% RR.
Table 1
The residual RMS error (mm) is determined for each model fit to its scan.

Dataset Fit min max mean sd

UND SC neutral 0.64 2.34 0.75 0.13

SC 0.63 2.32 0.75 0.12

MC 0.62 2.27 0.72

GAVAB SC neutral 0.70 1.98 0.89 0.16

SC 0.70 1.53 0.85 0.10

MC 0.67 1.36 0.78 0.08

BU-3DFE SC neutral 0.60 2.32 0.79 0.14

SC 0.60 1.12 0.71 0.06

MC 0.59 0.99 0.67 0.05

FRGC v.2 SC neutral 0.64 3.55 0.81 0.19

SC 0.65 3.39 0.79 0.17

MC 0.63 3.40 0.75 0.16

The most accurate (min) and least accurate (max) fit, the mean and the standard

deviation are reported for each dataset.

Fig. 9. Identity clustering in coefficient space. Each coefficient aids the classification of

normalizing the length of all vectors a.
Comparison GAVAB. The GAVAB dataset has been used in the
Shape Retrieval Contest 2008 [17] to compare 3D face retrieval
methods. Results of different approaches vary between 60% and
100% RR. Recently, Amberg et al. [1] achieved a recognition rate of
99.7% on this dataset. They use a morphable head model that
covers the neck and ears as well, features that may aid the person
identification.

Comparison BU-3DFE. Mpiperis et al. [14] performed experi-
ments on the BU-3DFE dataset. They used two methods for the
expression invariant face matching, a symmetric bilinear model
and geodesic polar coordinates, with respectively 86% and 84% RR.

Comparison FRGC Lu et al. [11] applied their expression-specific
deformation models to only 100 subjects of the FRGC v.2 and
report 92% recognition rate and 0.7 VR@0.1%FAR, which is
considerably lower than the results with our expression-specific
deformation models. Moreover, we do not need a neutral face
scan for the deformation nor the computational expensive ICP
algorithm for the matching. Other 3D shape based methods that
report the VR@0.1%FAR for the all-to-all face matching experi-
ment are, Mian et al. [12] with 0.87 VR, Cook et al. [6] with 0.92
VR, and Faltemier et al. [8] with 0.93 VR. Most of them use the
computational expensive ICP algorithm during face matching and
simply neglect data in regions with expressions. Kakadiaris et al.
[9] reported a 97% RR and 0.97 VR@0.1%FAR for slightly different
experiments.
subjects (shown in color). The last graph shows the projection onto a1 and a2 after

Table 2
All to all face matching.

Dataset Fit RR MAP VR@0.1%FAR

UND SC neutral 0.99 0.99 0.99

SC 0.99 0.98 0.97

MC 0.99 0.98 0.98

MM 0.99 0.99 0.97

GAVAB SC neutral 0.94 0.80 0.53

SC 0.97 0.90 0.73

MC 0.97 0.92 0.77

MM 0.98 0.93 0.80

BU-3DFE SC neutral 0.98 0.59 0.29

SC 1.00 0.91 0.80

MC 1.00 0.92 0.82

MM 1.00 0.91 0.75

FRGC v.2 SC neutral 0.91 0.80 0.73

SC 0.97 0.89 0.84

MC 0.97 0.91 0.87

MM 0.97 0.91 0.82
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Fig. 10. The cumulative match characteristic curves for the multiple component

(MC) results (top) and mulitple minima (MM) results (bottom) on the four

datasets.
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7. Conclusion

We presented a complete 3D expression invariant face recogni-
tion system. Starting from pose normalized face scans, we proposed
an easy to implement method to semi-automatically build identity
and expression models from the BU-3DFE dataset. With the
presented model fitting algorithm, we can automatically establish
full correspondence with new scan data and bootstrap the identity
and expression models. Statistical face models provide strong shape
priors that allow for the robust handling of noise and holes. Results
show that our method can be effectively used for landmark
extraction, bootstrapping, face completion, and face matching,
which is an advantage over other methods.

The method that we presented, coarsely fits the identity model
in combination with each of the expression models and keeps the
overall best fit. Because separate models are used for the identity
and expression deformations, an expression can be neutralized
and the separate identity coefficients used for the (expression
invariant) face matching. Three identity coefficient vectors were
acquired for the face matching, one based on the face as a single
component, one for multiple face components, and one for
multiple local minima. Compared to the literature, all our
coefficient vectors perform very well on the publicly available
datasets. Our system effectively recognizes faces with expressions
from several data sets, and is also very time-efficient: After the
model is fitted to each scan in at most 17 s (linear to the number
of scans), our face matching (quadratic to the number of scans)
requires only the comparison of either 80 or 320 float values in
our experiments. Therefore, our method can be very well applied
to authentication scenarios (e.g. airport check-ins) as well as face
retrieval scenarios (e.g. searching criminal records).
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