
Multimedia Retrieval Algorithmics

Remco C. Veltkamp

Department of Information and Computing Sciences, Utrecht University
Padualaan 14, 3584 CH, The Netherlands

Remco.Veltkamp@cs.uu.nl

Abstract. After text retrieval, the next waves in web searching and mul-
timedia retrieval are the search for and delivery of images, music, video,
and 3D scenes. Not only the perceptual and cognitive aspects, but also
many of the algorithmic and performance aspects are still badly under-
stood. One relevant issue is the design of dissimilarity measures (distance
functions) that have desired properties. Another aspect is the develop-
ment of algorithms that can compute or approximate these distances
efficiently. Indexing data structures and search algorithms are necessary
to make the search more efficient than sequential browsing through large
collections. Apart from provable properties of individual algorithms, the
experimental verification of the performance of a complete retrieval sys-
tem is important to analyse merits and drawbacks of certain approaches,
and to compare various techniques.

1 Introduction

Multimedia research has been going on since the nineteen-sixties, even if it was
not called like that. A key aspect of multimedia research is interfacing: estab-
lishing a seamless interaction and communication between the user and the
computer. In that respect it represents an important ingredient of current de-
velopments which are denoted by buzz phrases such as ubiquitous computing,
ambient intelligence, context awareness, the disappearing computer, video at
your fingertips, anything, anyone, anywhere, anytime. Multimedia retrieval is
essential for coping with the problems of information overload, in production
and content management, and in personalized usage. Indeed, the reason that
email and web search engines have become so immensely popular are precisely
that they cope with these issues with respect to text. However, if perceptu-
ally relevant multimedia methods, that guarantee performance, are not invented
soon, there is no hope that similar problems are effectively solved with respect
to images, music, video, and 3D models.

Since the first pictorial information systems in the early nineteen-eighties,
research has come a long way in developing various methods to handle visual
information by its content, as opposed to processing by keywords [1]. However,
these content descriptions consist of low level color, texture, and shape fea-
tures [2], and they often miss perceptual relevance. The methods for extracting
and comparing these features are primarily heuristic, which, although they are

Jan van Leeuwen et al. (Eds.): SOFSEM 2007, LNCS 4362, pp. 138–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Multimedia Retrieval Algorithmics 139

clever themselves, miss guaranteed properties. In contrast, an algorithmic ap-
proach is focused on provable properties, see section 2.

Looking at a particular multimedia framework as in figure 1, we see that
those processes that are of an algorithmic nature are the extraction of features
from the multimedia documents, the matching of the query features with the
database features, the construction of the indexing data structure to speed up the
searching, and the visualization of the resulting retrieved multimedia documents.

The big challenge in multimedia for the next years is the processing of in-
formation in a way that is perceptually and semantically relevant. Because of
the need for personalized information access and searching, processing should
be done in a manner that is guaranteed effective. Because the searching and fil-
tering is performed on very large databases of multimedia information, it must
be done with guaranteed efficiency also. The holy grail is not yet within reach.
What makes this difficult is the gap between the high level semantic information
and the low level features of current multimedia systems. For example, if one is
looking for an image of the holy grail (such as figure 2) on the basis of image
content features, one may query for a chalice shape and a star shape. However,
simple edge detection yields a set of unconnected lines, not a star. Therefore,
low level features will fail miserably for this purpose.

A concrete listing of research issues in multimedia is the following. Firstly, in
order to arrive at semantic access, a necessary step is the identification of what
is perceptually and cognitively important in the multimedia documents.
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Fig. 1. Multimedia retrieval framework
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Secondly, in order to cope with the data and information overload, it is be-
coming essential that effective and efficient searching techniques are developed.
Indeed, not only company archives contain huge amounts of media. The suc-
cess of mobile phone with sms (short message service) shows that as soon as
consumer groups adopt devices like mobile phones with built-in digital cameras
and mms (media message service) via broad band communication like GPRS or
UMTS, massive amounts of images and video are produced and stored. Digital
music and movies is already causing a very large amount of Internet traffic. The
so-called fourth wave in multimedia (after images, video and music), consisting
of 3D models and scenes, is showing more and more on the web. Together these
media form an enormous amount of data, and it is essential to provide tools to
match and filter, and to retrieve personalized information from it.

Fig. 2. M. L. Kirk, “And Down the Long Beam Stole the Holy Grail”, 1912

Thirdly, to make retrieval feasible from such large quantities, efficient search-
ing methods must be invented. In particular, indexing data structures and al-
gorithms must be designed that avoid the need to scan whole collections from
front to back, but instead refer the user in a few steps to the right place in the
collection.

Fourthly, any successful fully-fledged system needs to provide a combination
of image, video, music, and 3D model handling with text capabilities. The inte-
grated system engineering is far from trivial, and challenging in itself.

The algorithmic aspects of these items form an area of research, multimedia
algorithmics, which requires a combination of theoretical algorithm design and
application oriented experimentation.

In the next sections we discuss the field of multimedia algorithmics, the design
of dissimilarity measures, the experimental evaluation of those, and indexing over
large collections to speed up the retrieval.
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2 Multimedia Algorithmics

Like all computer systems, all multimedia systems are built on algorithms. They
are the crucial mechanisms for working with information in any representation:
computing, deriving, deciding, checking, storing, searching, learning, managing,
modeling, visualizing, comparing, optimizing, transforming, sending, protecting,
etc. Any system in modern information and communication technology is an
algorithmic system. When it comes to the design of algorithms for multimedia,
this involves for example algorithms for extracting and grouping perceptually
relevant patterns, computing the similarity, indexing and searching in large col-
lections, and visualizing retrieval results in a way that is meaningful for relevance
feedback. Research issues are the invention of new algorithms that solve problems
in an efficient way, guaranteeing provable properties in a rigorous way, taking
an axiomatic approach, basing derivations on first principles.

Apart from fundamental modeling, design and analysis of perceptually rel-
evant algorithms, implementations and experimentation play a crucial role to
show proof-of-concepts in practice. Implementation was characteristic of early
work in algorithmics. Donald Knuth, one of the most influential researchers in
early computer science, insisted on implementing every algorithm he designed,
and on conducting rigorous analysis of the resulting code. Since then, appre-
ciation has faded, but since a few years, the algorithms community has shown
signs of returning to implementation and testing as an integral part of algorithm
development [3].

The above-stated aspects are combined into a line of research that is rooted
in the discipline of fundamental algorithm design, and applied to the domain of
multimedia: multimedia algorithmics. The gap between the high level semantic
information and the low level features of current multimedia systems makes it
difficult to make a significant step forward. A challenging research agenda for the
next years is to invent algorithms for multimedia along the following orthogonal
axes:

1. The tasks in a typical multimedia framework that are of an algorithmic
nature: perceptual feature extraction, pattern matching, indexing, and visu-
alization.

2. The different media (images, music, video, 3D models and scenes) to which
these task are applied.

3. The desired properties of algorithms that must be invented: robustness, in-
variance, and efficiency, etc.

Together, these aspects span a whole research space, as illustrated in figure 3.

3 Dissimilarity Measures

This section is about one of the aspects mentioned above, matching of patterns in
various types of media. In particular we will look at geometric pattern matching,
or shape matching. These geometric patterns could be shapes in images, musi-
cal patterns, the shape of 3D models and scenes, etc. Matching is the process of
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computing the dissimilarity between two shapes, possibly minimized under some
transformation group like translations and rotations. The design of a dissimilar-
ity function that is suitable for a particular application, and the development
of algorithms to compute that dissimilarity are important issues. We first dis-
cuss formal properties if dissimilarity measures, then we will look at the specific
problem of matching polylines to a polygonal shape.

3.1 Properties

In this section we list a number of possible properties of similarity measures.
Whether or not specific properties are desirable will depend on the particular
application, sometimes a property will be useful, sometimes it will be undesirable.
A shape dissimilarity measure, or distance function, on a collection of shapes S is
a function d : S ×S → R. The following conditions apply to all the shapes A, B,
or C in S.

1 (Nonnegativity) d(A, B) ≥ 0.

2 (Identity) d(A, A) = 0 for all shapes A.

3 (Uniqueness) d(A, B) = 0 implies A = B.

4 (Strong triangle inequality) d(A, B) + d(A, C) ≥ d(B, C).

Nonnegativity (1) is implied by (2) and (4). A distance function satisfying (2), (3),
and (4) is called a metric. If a function satisfies only (2) and (4), then it is called
a semimetric. Symmetry (see below) follows from (4). A more common formula-
tion of the triangle inequality is the following:

5 (Triangle inequality) d(A, B) + d(B, C) ≥ d(A, C).

Properties (2) and (5) do not imply symmetry.
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Similarity measures for partial matching, giving a small distance d(A, B) if
a part of A matches a part of B, in general do not obey the triangle inequality.
A counterexample is the following: the distance from a man to a centaur is small,
the distance from a centaur to a horse is small, but the distance from a man to
a horse is large, so d(man, centaur) + d(centaur, horse) ≥ d(man, horse) does
not hold. It therefore makes sense to formulate an even weaker form:

6 (Relaxed triangle inequality) c(d(A, B) + d(B, C)) ≥ d(A, C), for some
constant c ≥ 1.

7 (Symmetry) d(A, B) = d(B, A).

Symmetry is not always wanted. Indeed, human perception does not always find
that shape A is equally similar to B, as B is to A. In particular, a variant A of
prototype B is often found more similar to B than vice versa.

8 (Invariance) d is invariant under a chosen group of transformations G if for
all g ∈ G, d(g(A), g(B)) = d(A, B).

For object recognition, it is often desirable that the similarity measure is invari-
ant under affine transformations.

The following properties are about robustness, a form of continuity. They
state that a small change in the shapes lead to small changes in the dissimilarity
value. For shapes defined in R

2 we can require that an arbitrary small change
in shape leads to an arbitrary small in distance, but for shapes in Z

2 (raster
images), the smallest change in distance value can be some fixed value larger
than zero. We therefore speak of an ‘attainable ε > 0’.

9 (Deformation robustness) For each attainable ε > 0, there is an open set F of
homeomorphisms sufficiently close to the identity, such that d(f(A), A) < ε
for all f ∈ F .

10 (Noise robustness) For shapes in R
2, noise is an extra region anywhere in

the plane, and robustness can be defined as: for each x ∈ (R2 −A), and each
attainable ε > 0, an open neighborhood U of x exists such that for all B,
B−U = A−U implies d(A, B) < ε. When we consider contours, we interpret
noise as an extra region attached to any location on the contour, and define
robustness similarly.

3.2 Multiple Polyline to Polygon Matching

There is evidence that, for the task of object recognition, the human visual
system uses a part-based representation. Biederman [4], for example, suggested
that objects are segmented at regions of deep concavity into an arrangement
of simple geometric components. For the retrieval of polygonal shapes, we have
therefore developed an algorithm to search for the best matching polygon, given
one or more query parts. This dissimilarity measure models partial matching, is
translation and rotation invariant, and deformation robust.
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Let P1 be a polyline, and let P1(s) be the point on P1 at distance s along
the polyline from its beginning. The turning-angle function Θ1 of a polyline P1
measures the angle of the counterclockwise tangent at P1(s) with respect to
a reference orientation as a function of s. It is a piecewise constant function,
with jumps corresponding to the vertices of P1. The domain of the function is
[0, �1], where �1 is the length of P1. Rotating P1 by an angle θ corresponds to
shifting Θ1 over a distance θ in the vertical direction.

The turning-angle function ΘP of a polygon P is defined in the same way,
except that the distance s is measured by going counterclockwise around the
polygon from an arbitarily chosen reference point. Since P is a closed polyline, we
can keep going around the polygon, and the domain of ΘP can thus be extended
to the entire real line, where ΘP (s + �P ) = ΘP (s) + 2π. Moving the location of
the reference point over a distance s along the boundary of P corresponds to
shifting ΘP horizontally over a distance s.

To measure the mismatch between P1 and the part of P starting at P (t),
we align P1(0) with P (t) by shifting the turning-angle function of P over a dis-
tance t and computing the L2-distance between the two turning-angle functions,
minimized over all possible rotations θ (that is: vertical shiftings of the turning
functions). The squared mismatch between P1 and P , as a function of t, is thus
given by:

d1(t) := min
θ∈R

∫ �1

0
(ΘP (s + t) − Θ1(s) + θ)2ds. (1)

An ordered set of k polylines {P1, P2, . . . , Pk} can be represented by concate-
nating the turning-angle functions of the individual polylines. Thus we get a
function ΘPL : [0, �k] → R, where �j is the cumulative length of polylines P1
through Pj . For 1 ≤ j ≤ k and �j−1 ≤ s ≤ �j we have ΘPL(s) := Θj(s − �j−1),
so that each polyline Pj is represented by the section of ΘPL on the domain
[�j−1, �j ]. The squared mismatch between Pj and P (shifted by t) is now given
by:

dj(t) := min
θ∈R

∫ �j

�j−1

(ΘP (s + t) − ΘPL(s) + θ)2ds. (2)

We now express the mismatch between the set of polylines {P1, P2, . . . , Pk}
and P as the square root of the sum of squared mismatches between each polyline
and P , minimized over all valid shiftings:

d(P1, . . . , Pk; P ) := min
valid shiftings t1 . . . tk

⎛
⎝ k∑

j=1

dj(tj)

⎞
⎠

1/2

. (3)

It remains to define what the valid shiftings are. To keep the polylines disjoint
(except possibly at their endpoints) and in counterclockwise order around the
polygon, each polyline has to be shifted at least as far as the previous one, that
is: tj−1 ≤ tj for all 1 < j ≤ k. Furthermore, to make sure that Pk does not wrap
around the polygon beyond the starting point of P1, we have to require that
�k + tk ≤ t1 + �P (see figure 4).
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Fig. 4. To match polylines P1, . . . , P3 to polygon P , we shift the turning functions of
the polylines over the turning function of the polygon. To maintain the order of the
polylines around the polygon, we need to guarantee t1 ≤ t2 ≤ t3 and �3 + t3 ≤ t1 + �P .

In [5] we show that the optimal placement and the distance value can be
computed in O(km2n2) time with a straightforward dynamic programming al-
gorithm, and in O(kmn log(mn)) time and space with a novel fast algorithm.

4 Experimental Evaluation

In order to compare different dissimilarity measures, we can look at the formal
properties they have, such as listed in section 3.1. Another way is to evaluate
how well they perform in practice on a specific task. One way to make such
comparisons is on the basis of a chosen ground truth. The Motion Picture Expert
Group (MPEG), a working group of ISO/IEC (see http://www.chiariglione.
org/mpeg/) has defined the MPEG-7 standard for description and search of
audio and visual content. The data set created by the MPEG-7 committee for
evaluation of shape similarity measures [6,7] offers an excellent possibility for
objective experimental comparison of the existing approaches evaluated based
on the retrieval rate. The shapes were restricted to simple pre-segmented shapes
defined by their outer closed contours. The goal of the MPEG-7 Core Experiment
CE-Shape-1 was to evaluate the performance of 2D shape descriptors under
change of a view point with respect to objects, non-rigid object motion, and
noise. In addition, the descriptors should be scale and rotation invariant.

The test set consists of 70 different classes of shapes, each class containing
20 similar objects, usually (heavily) distorted versions of a single base shape.
The whole data set therefore consists of 1400 shapes. For example, each row in
figure 5 shows four shapes from the same class.
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Fig. 5. Example images from the
MPEG-7 Core Experiment CE-Shape-
1 part B

Fig. 6. Images with the same name
prefix belong to the same class

We focus our attention on the performance evaluation of shape descriptors
in experiments established in Part B of the MPEG-7 CE-Shape-1 data set [6].
Each image was used as a query, and the retrieval rate is expressed by the so
called Bull’s Eye score: the fraction of images that belong to the same class in
the top 40 matches.

Strong shape variations within the same classes make that no shape similarity
measure achieves a 100% retrieval rate. E.g., see the third row in figure 5 and
the first and the second rows in figure 6. The third row shows spoons that are
more similar to shapes in different classes than to themselves.

A region-based and a contour-based shape similarity method are part of the
MPEG-7 standard. The contour-based method is the Curvature Scale Space
(CSS) method [8]. This technique matches two shapes based on their CSS-
image, which is constructed by iteratively convolving the contour with a Gaus-
sian smoothing kernel, until the shape is completely convex. When at a certain
iteration a curvature zero-crossing disappears due to the convolution process,
a peak is created in the CSS-image. Two shapes are now matched by comparing
the peaks in their CSS-images.

The multiple polyline to polygon matching algorithm of section 3.2 has been
implemented in C++ and is evaluated in a part-based shape retrieval application
(see http://give-lab.cs.uu.nl/Matching/Mtam/) with the Core Experiment
CE-Shape-1 part B test set. We compared our matching to the CSS method, as
well as to matching the global contours with turning angle functions (GTA) with
respect to the Bulls Eye score. These experimental results indicate that for those
classes with a low performance of the CSS matching, our approach consistently
performs better. See figure 7 for two examples. The interactive selection of part
to query with, makes a comparison on all images from the test set infeasible, but
a rigorous experimental evaluation is given in [9]. The running time for a single
query on the MPEG-7 test set of 1400 images is typically about one second on
a 2 GHz PC.
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Fig. 7. A comparison of the Curvature Scale Space (CSS), the Global Turning Angle
function (GTA), and our Multiple Polyline to Polygon (MPP) matching

In order to compare the performance of various similarity measures, we built
the framework SIDESTEP – Shape-based Image Delivery Statistics Evaluation
Project, http://give-lab.cs.uu.nl/sidestep/. Performance measures such
as the number of true/false positives, true/false negative, specificity, precision,
recall, negative predicted value, relative error, k-th tier, total performance, and
Bull’s Eye score can be evaluated for a single query, over a whole class, or over
a whole collection, see figure 8.

In [10] we have compared many dissimilarity measures on the basis of their for-
mal properties, as well as on their performance in terms of the Bull’s Eye score on
the MPEG-7 test collection. The difference between the Bull’s Eye scores of these
dissimilarity measures as reported in the literature, and the performances of the
reimplement methods in SIDESTEP is significant. Our conjecture is that this is
caused by the following. Firstly, several methods are not trivial to implement,
and are inherently complex. Secondly, the description in the literature is often
not sufficiently detailed to allow a straightforward implementation. Thirdly, fine
tuning and engineering has a large impact on the performance for a specific data
set. It would be good for the scientific community if the reported test results
are made reproducible and verifiable by publishing data sets and software along
with the articles.

The MPEG-7 test set provides a strict classification, which is not always avail-
able. The ground truth developed in [11] was used at the “1st Annual Music
Information Retrieval Evaluation eXchange” (MIREX) 2005 for comparing var-
ious methods for measuring melodic similarity for notated music. This ground
truth does not give one single correct order of matches for every query. One
reason is that limited numbers of experts do not allow statistically significant
differences in ranks for every single item. Also, for some alternative ways of al-
tering a melody, human experts simply do not agree on which one changes the
melody more. See figure 9 for an example. In cases like this, even increasing the
number of experts might not always avoid situations where the ground truth
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Fig. 8. SIDESTEP interface

contains only groups of matches whose correct order is reliably known, while the
correct order of matches within the groups is not known. Here, the 31 experts we
asked do not agree on whether the second or the third piece is more similar to
the query. The third piece is shorter, but otherwise identical to the query, while
the second one contains more musical material from the query, but two ties are
missing.

In [11] we proposed a measure (called “average dynamic recall”) that mea-
sures, at any point in the result list, the recall among the documents that the
user should have seen so far. Unlike Kekäläinen’s and Järvelin’s measures [12],
this measure only requires a partially ordered result list as ground truth, but no
similarity scores, and it works without a binary relevance scale. It does not have
any parameters that can be chosen arbitrarily, and it is easy to interpret.

Consider a result list
〈R1, R2, . . .〉

and a ground truth of g groups of items

〈(G1
1, G

1
2, . . . , G

1
m1

), (G2
1, . . . , G

2
m2

), . . . , (Gg
1, . . . , G

g
mg

)〉

(with mi denoting the number of members of group i) where we know that
rank(Gi

j) < rank(Gk
l ) if and only if i < k, but we do not know whether

rank(Gi
j) < rank(Gi

p) for any i (unless j = p). We propose to calculate the
result quality as follows. Let n =

∑g
i=1 mi be the number of matches in the
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Query: Peter von Winter (1754-1825): Domus Israel
speravit, RISM A/II signature: 600.054.278

1.
Peter von Winter: Domus Israel speravit, 600.054.278

2.
Peter von Winter : Domus Israel speravit, 600.055.822

3.
Anonymus: Offertories, 450.040.980

Fig. 9. Ground truth for Winter: “Domus Israel speravit”

ground truth and c the number of the group that contains the ith item in the
ground truth (

∑c
v=1 mv ≥ i ∧

∑c−1
v=1 mv < i). Then we can define ri, the recall

after the item Ri, as:

ri =
#{Rw|w ≤ i ∧ ∃j, k : j ≤ c ∧ Rw = Gj

k}
i

.

The result quality is then defined as:

ADR =
1
n

n∑
i=1

ri.

This measure was used at the MIREX 2005 and 2006 competitions for sym-
bolic melodic similarity, and the 3D shape retrieval contest (SHREC) 2006.

5 Indexing

Proximity searching in multimedia databases has gained more and more inter-
est over the years. In particular searching in dissimilarity spaces (rather than
extracting a feature vector for each database object) is an increasing area of
research. With growing multimedia databases indexing has become a necessity.

Vantage indexing works as follows: given a multimedia database A and a dis-
tance measure d : A × A → R, select from the database a set of m objects
A∗ = {A∗

1, ...A
∗
m}, the so called vantage objects. Compute the distance from each

database object Ai to each vantage object, thus creating a point pi = (x1, ...xm),
such that xj = d(Ai, A

∗
j ). Each database object corresponds to a point in the

m-dimensional vantage space.
A query on the database now translates to a range-search or a nearest-

neighbor search in this m-dimensional vantage space: compute the distance from
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the query object q to each vantage object (i.e. position q in the vantage space)
and retrieve all objects within a certain range around q (in the case of a range
query), or retrieve the k nearest neighbors to q (in case of a nearest neighbor
query). The distance measure used on the points in vantage space is L∞.

Vleugels and Veltkamp show [13] that as long as the triangle inequality holds
for the distance measure d defined on the database objects, recall (ratio of num-
ber of relevant retrieved objects to the total number of relevant objects in the
whole data base) is 100%, meaning that there are no false negatives. However,
false positives are not excluded from the querying results, so precision (ratio of
number of relevant retrieved objects to the total number of retrieved objects)
is not necessarily 100%. We claim that by choosing the right vantage objects,
precision can increase significantly.

The retrieval performance of a vantage index can improve significantly with
a proper choice of vantage objects. This improvement is measured in terms of
false positives, as defined below. Let δ be the distance measure in vantage space.

Definition 1. Return set Given ε > 0 and query Aq, object Ai is included in
the return set of Aq if and only if δ(Aq, Ai) ≤ ε.

Definition 2. False positive Ap is a false positive for query Aq if δ(Aq, Ap)≤ε
and d(Aq , Ap) > ε.

We present a new technique for selecting vantage objects that is based on two
criteria which address the number of false positives in the retrieval results directly.
The first criterion (spacing) concerns the relevance of a single vantage object, the
second criterion (correlation) deals with the redundancy of a vantage object with
respect to the other vantage objects. We call this method Spacing-based Selection.

The main idea is to keep the number of objects that are returned for a query Aq

and range ε low. Since false negatives are not possible under the condition that
the triangle inequality holds for d, minimization of the number of false positives
is achieved by spreading out the database along the vantage space as much as
possible. False positives are, intuitively speaking, pushed out of the returned sets.

5.1 Spacing

In this section we will define a criterion for the relevance of a single vantage
object Vj . A priori the query object Aq is unknown, so the distance d(Aq, Vj)
between a certain query Aq and vantage object Vj is unknown. The size of the
range query (ε) is unknown beforehand as well. Optimal performance (achieved
by small return sets given a query Aq and range ε) should therefore be scored
over all possible queries and all possible ranges ε.

This is achieved by avoiding clusters on the vantage axis belonging to Vj . Our
first criterion therefore concerns the spacing between objects on a single vantage
axis, which is defined as follows:

Definition 3. The spacing between two consecutive objects Ai and Ai+1 on the
vantage axis of Vj is d(Ai+1, Vj) − d(Ai, Vj).
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Let μ be the average spacing. Then the variance of spacing is given by
1

n−1

∑n−1
i=1 ((d(Ai+1, Vj) − d(Ai, Vj)) − μ)2. To ensure that the database objects

are evenly spread in vantage space, the variance of spacing has to be as small as
possible. A vantage object with a small variance of spacing has a high discrimi-
native power over the database, and is said to be a relevant vantage object.

5.2 Correlation

It is not sufficient to just select relevant vantage objects, they also should be non-
redundant. A low variance of spacing does not guarantee that the database is well
spread out in vantage space, since the vantage axes might be strongly correlated.

Therefore, we compute all linear correlation coefficients for all pairs of van-
tage objects and make sure these coefficients do not exceed a certain threshold.
Experiments show that on the MPEG-7 shape images set pairwise correlation is
sufficient and that higher order correlations are not an issue.

5.3 Algorithm

Spacing-based Selection selects a set of vantage objects according to the criteria
defined above with a randomized incremental algorithm. The key idea is to add the
database objects one by one to the index while inspecting the variance of spacing
and correlation properties of the vantage objects after each object has been added.
As soon as either the variance of spacing of one object or the correlation of a pair
of objects exceeds a certain threshold, a vantage object is replaced by a randomly
chosen new vantage object. These repair steps are typically necessary only at early
stages of execution of the algorithm, thus keeping the amount of work that has to
be redone small. For details, see the algorithm in figure 10.

The complexity of our algorithm is expressed in terms of distance calculations,
since these are by far the most expensive part of the process. The running time
complexity is then O(

∑n
i=0 Pi × i + (1 − Pi) × k) where k is the (in our case

constant) number of vantage objects and Pi is the chance that, at iteration i,
a vantage object has to be replaced by a new one. This chance depends on
the choice for εspac and εcorr. There is a clear trade-off here: the stricter these
threshold values are, the better the selected vantage objects will perform but also
the higher the chance a vantage object has to be replaced, resulting in a longer
running time. If we only look at spacing and set εspac such that, for instance, Pi

is (log n)/i, the running time would be O(nlog n) since k is a small constant (8
in our experiments).

5.4 Experimental Evaluation

We implemented our algorithm and tested it on MPEG-7 test set CE-Shape-1
part B, and the distance measure used to calculate the distance between two of
these shape images is the Curvature Scale Space (CSS), discussed in section 4. To
justify our criteria, we manually selected four sets of eight vantage objects that
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Input : Database A with objects A1, ..., An, d(A, A) → R, thresholds εcorr and εspac

Output : Vantage Index with Vantage objects V1, V2, ..., Vm

1: select initial V1, V2, ..., Vm randomly
2: for All objects Ai do in random order
3: for All objects Vj do
4: compute d(Ai, Vj)
5: add Ai to index
6: if var(Spacing)(Vj) > εspac then
7: remove Vj

8: select new vantage object randomly
9: if for any pair p(Vk, Vl), Corr(Vk, Vl)> εcorr then

10: remove p’s worst spaced object
11: select new vantage object randomly

Fig. 10. Spacing-based Selection

either satisfy both criteria (weakest correlation and lowest variance of spacing:
weak-low), none (strongest correlation and highest variance of spacing: strong-
high) or a strong-low or weak-high combination.

The performance of these four sets of vantage objects was evaluated by query-
ing with all 1400 objects. The number of nearest neighbors that was retrieved
for each query object varied from 1 to 200. The distance of the furthest nearest
neighbor functioned as ε, which was used to calculate the number of false pos-
itives among these nearest neighbors, see Definition 2. For each vantage index,
and all k-NN queries, k = 1, ..., 200, an average ratio of false positives in result
was calculated over all 1400 queries. The results are displayed in figure 11, to-
gether with some typical runs of our algorithm, the “MaxMin” approach [13]
and the “loss-based” approach [14].

These results show that both criteria need to be satisfied in order to achieve
good performance (only the set called weak-low scores less than 50% false positives
for all sizes of nearest neighbor query). Furthermore, it shows that our algorithm
can actually select a set of vantage objects in which these criteria are satisfied,
since false positive ratios are low for these sets. For more details, see [15].

6 Concluding Remarks

Motivated by the need for perceptually relevant multimedia algorithmics, we
looked at properties of shape dissimilarity measures, showed a framework for
the experimental performance evaluation of dissimilarities (SIDESTEP), and
introduced a new performance measure (Average Dynamic Recall). Because in
human perception the parts of objects play an important role, we developed
a dissimilarity measure for multiple polyline to polygon matching, and designed
an efficient algorithms to compute it. We then introduced a way to decrease the
number of false positive retrievals by selecting vantage objects for indexing on
the basis of an objective function that has a direct relation with the number of
false positives, rather than by a heuristic.
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Fig. 11. MPEG-7: false positive ratios

This paper primarily shows examples in the domain of image retrieval, but we
have taken a similar approach to music retrieval. As a dissimilarity measure we
have designed the Proportional Transportation Distance [16], a normalized ver-
sion of the Earth Mover’s Distance [17]. It satisfies the triangle inequality, which
makes it suitable for indexing with the vantage method. Indeed, we have used
it in combination with the vantage indexing method in our music retrieval sys-
tems Muugle (http://give-lab.cs.uu.nl/muugle) [18] and Orpheus (http:
//give-lab.cs.uu.nl/orpheus/). The vantage indexing made it possible to
identify anonymous incipits (beginnings of pieces, for example twenty notes long)
from the RISM A/II collection [19] consisting of about 480,000 incipits [20]. All
80,000 anonymous incipits were compared to the remaining 400,000 ones, giving
a total of 32,000,000,000 comparisons. Should a single comparison take 1 ms,
this would have taken about 370 days. The vantage indexing made it possible to
do this within a day on a 1 GHz PC. A total of 17,895 incipits were identified.
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