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ABSTRACT
To evaluate similarity between two images, the layout or
configuration of the shapes is an important feature besides
geometrical shape similarity. In particular, trademark im-
age retrieval is an application domain where layout sim-
ilarity is important, and in many cases overlooked. In
this paper, we present a graph-based encoding of layout,
in which both directional and topological layout informa-
tion is stored. A Hermitian matrix is associated to each
graph, and contains all the information that is present in the
graph. The spectra of these Hermitian matrices are used for
indexing purposes. By obeying several constraints on the
construction of the Hermitian matrices, we can mimic the
spectral behaviour of Laplacian matrices, which are proven
to be successful representations in retrieval environments.
Experiments show the improved representational power of
the proposed approach over spectral methods using Lapla-
cian matrices.
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1. Introduction

The key function of any indexing algorithm is to speed up
content-based retrieval of objects or models that are stored
in a database, by selecting a small set of candidate ob-
jects that are either presented to the user, or passed on to a
more refined matching unit in the retrieval pipeline. At this
matching level, more accurate and more expensive match-
ing algorithms can be deployed because of the reduced size
of the set of objects that is under inspection. At the in-
dexing level however, comparison of objects should be ef-
ficient and it must be possible to prune the database, i.e.
the database must be partitioned in such a way that simi-
lar models are positioned close to each other. Only then
objects that are far from the query object can be discarded
without further inspection.

Naturally, the representation of the objects in the in-
dex and the accuracy and efficiency with which non-similar
objects can be discarded are closely related. The objects
that are under investigation in this work are logo and trade-
mark images, or any kind of image in general where the
layout of the individual image components (as opposed to

their shape characteristics) is important for similarity eval-
uation [10]. In content-based trademark image retrieval,
layout can play a large role in identifying trademark in-
fringement. See for an example Figure 1, where the con-
figuration of the individual shapes is one of the most impor-
tant properties. Suppose that in all three cases the five cir-
cles are returned as a result of image segmentation (which
would be the ideal segmentation), it is impossible to distin-
guish between the images without any notion of layout in
the representation. In this case, indexing algorithms (with-
out layout information) will be less efficient because the
set of candidate models will be unnecessary large. More
importantly, indexing algorithms can be less accurate by
ignoring layout. See Figure 2 for an illustration of a case
where a low similarity score will be calculated for similar
images, if only shape similarity is taken into account. If
one of these images is a query, neither of the other two will
be returned based on shape similarity. However, according
to trademark experts, if these image were to be registered
as real trademarks within similar product or service cate-
gories, a conflict of uniqueness may arise [10].

Within the area of content-based image retrieval, a
lot of work has been devoted to spatially oriented retrieval.
One of the most popular techniques often used for this pur-
pose is based on string matching. To produce the strings
that encode layout, the centres of mass of all objects are
projected on the x and y axes. By taking objects from left
to right and from below to above, and by representing these
objects by a class identifier, two one-dimensional strings
are formed that together form the 2D-String [3]. A num-
ber of modifications and extensions to this idea have been
presented, see [9, 6, 2] for a some examples. A major draw-
back of these symbolic projection methods is that in general
they are not rotation invariant.

In this paper, we propose a new spectral encoding for
layout of shapes that can be represented and compared ef-
ficiently. Recent studies [11] have shown how spectral rep-
resentations of layout can be used to index trademark col-
lections. With the proposed encoding however, that follows
some of the ideas of [12], we are able to discriminate better
between different configurations, as we take into account
more information without sacrificing any efficiency.
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Figure 1. Example of different configurations of the same
primitive shapes, with decreasing layout similarity

from lefttoright.

Figure 2. Three trademarks with similar layouts, but dis-
similar primitive shapes.

1.1 Our contributions

The main contribution of this paper is a new method for ef-
ficient retrieval of trademark images, or images in general,
that is based on the layout of the different shapes the image
is composed of.

To this end, a graph is constructed for each image in
which the layout of the trademark is encoded. After asso-
ciating a matrix with each graph, the spectra (sorted sets of
eigenvalues) of these matrices are compared for similarity
evaluation. However, unlike most spectral methods, that
usually focus on connectivity, several types of additional
information are taken into account as well. For this pur-
pose, we will use the spectrum of a Hermitian matrix. In
Section 2 details about Hermitian spectra and how to match
them are given.

This work proposes a way to encode both precise
directional and topological relations between the compo-
nents. These additional (graph) properties are reflected in
the spectrum that is used for similarity evaluation during
indexing. Details on the graph construction and calcula-
tion of attributes are given in Section 3. By obeying several
constraints on the definition of the graph’s topology and
geometry measurements, and by encoding these values in a
Hermitian matrix, we can mimic the spectral behaviour of
the Laplacian matrix. The obtained spectrum can therefore
be used for efficient retrieval, as the Laplacian spectrum
has been proven to be reliable for this purpose in recent
studies [11, 4]. Finally, in Section 4, experiments show the
increase in representational power of the encoding over ex-
isting methods.

2. Hermitian spectral representation

One of the most natural and informative algebraic struc-
tures to associate with a graph is its Laplacian matrix. This
matrix is defined as L(G) = D(G) − A(G), where D(G)

is the diagonal matrix containing node degrees, and A(G)
is representing G’s connectivity; the entry Ai,j is 1 if nodes
i and j are connected, 0 otherwise. As a result, for all rows
in L(G) the sum of the entries is 0. The spectrum of the
Laplacian matrix can be used as a signature representation
for the graph, and thus for the model that is represented by
the graph. This signature representation can be used for ef-
ficient retrieval purposes (indexing), [4]. One of the main
reasons for this is that many graph properties and invari-
ants are implicitly or explicitly reflected by the Laplacian
spectrum [8]. Moreover, cospectrality for non-isomorphic
graphs tends to be rare [13] and similar Laplacian matrices
have similar spectra due to the interlacing theorem for two
graphs where one is a slightly modified version of the other
[7].

In the case of a weighted graph, Lw(G) = DwG −
AwG can be obtained. In this case, Dw(G) is a diagonal
matrix containing for each node the sum of edge weights
of its incident edges. Correspondingly, in the adjacency
matrix the entry Ai,j represents the weight associated with
nodes i and j, which is 0 if there is no connecting edge be-
tween them. Therefore, all information with respect to the
graph’s connectivity is still present in Lw(G), since every
non-zero entry indicates the existence of an edge between
the corresponding nodes.

In order to preserve the useful properties of a normal
Laplacian spectrum, every edge weight wa,b should satisfy
the following conditions:

Wa,b = Wb,a, where a, b ∈ V (1)
Wa,b ≥ 0, where a, b ∈ V (2)
Wa,b 6= 0, iff a and b are adjacent in G (3)

Equation 1 ensures a symmetric matrix, whereas
equation 3 ensures that the connectivity of the graph re-
mains unchanged after weighting the edges.

Unfortunately, it is not possible to store more infor-
mation in a Laplacian matrix than the graph’s connectiv-
ity together with the edge weights. As a consequence, a
spectral representation using this matrix will suffer in most
cases from significant information loss, since other graph
characteristics such as node labels, node locations (planar
graphs, 3D graphs) or additional edge measurements are
not captured by the encoding.

Therefore, following the ideas of [12], we use a Her-
mitian matrix to store graph characteristics. However, to
really mimic the spectral behaviour of a Laplacian matrix,
we added two additional constraints to the construction of
the Hermitian matrices. First, we give a brief theoretical
background on Hermitian matrices, and then we impose the
constraints for mimicking Laplacian spectral properties.

A Hermitian matrix H (or self-adjoint matrix) is a
square matrix with complex entries that is equal to its own
conjugate transpose. In other words, Hi,j is equal to the
complex conjugate of Hj,i. Fortunately, every Hermitian
matrix has a real valued spectrum. The corresponding
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eigenvectors however contain complex entries. By adding
several additional constraints to the construction of H, we
can mimic the spectral behaviour of a Laplacian matrix, i.e.
we can construct a property matrix H(G) for G = (V,E)
in such a way that we can use its spectrum for retrieval pur-
poses equally well as the Laplacian spectrum.

To this end, the off-diagonal elements of H are chosen
to be complex numbers written in polar form using Euler’s
formula:

Ha,b = −Wa,be
iya,b (4)

where each edge has the pair of observations (Wa,b, ya,b).
The second observation, represented as the phase of the
complex matrix entry, must satisfy the following condi-
tions:

ya,b = −yb,a (5)
−π < ya,b < π (6)

The first condition (5) ensures that H is equal to its
own conjugated transposed matrix. By obeying the second
constraint (6), phase wrapping can be avoided.

The on-diagonal entries (that are required to be real)
are chosen to be

Haa =
∑
b6=a

Wa,b (7)

In this way, the entries in each row of the matrix now sum
up to zero. This on-diagonal entry is necessary, because
all edge weights Wa,b (magnitudes) are inserted as −Wa,b,
see (4). By summing up the edge weights and inserting this
sum as on-diagonal entry, the sum of the entries in each
row is zero. We would like to stress that this is a neces-
sary property to correctly mimic the spectral behaviour of
Laplacian matrices, contrary to the Hermitian matrix that is
used in [12] (where additional node measurements on the
diagonal are allowed). Furthermore, edge weights (magni-
tudes of the complex entries) should be calculated in such a
way that an edge between two nodes can never be weighted
0, for it would destroy the connectivity of the graph.

2.1 Retrieval based on spectra

It is the key function of any indexing algorithm to speed
up the retrieval process by selecting a small set of candi-
date models that are either presented to the user, or passed
on to a more refined matching unit in the retrieval pipeline.
The representation used here during indexing is a spectral
one, which is basically a d-dimensional vector of features
where d is the number of nodes in the graph, or the size
of the Hermitian matrix. Therefore, to evaluate similarity
between two objects, we calculate the Euclidean distance
between their feature sets, i.e. between their Hermitian
spectra. When trademarks are of different size, the spectra
are of different dimension. There are several ways to deal
with this problem. It is possible to enlarge the spectrum of
the smaller trademark by inserting zeros. This is semanti-
cally correct, since it means isolated nodes are added to the

graph. Another possibility is to decompose the graph into
several subgraphs, and match only subgraphs of the same
size. For more details on how to handle graphs of differ-
ent sizes, we refer to [11]. In the rest of this paper we will
assume graphs are of the same size.

In order to index a large data set efficiently,
the vectors can be accessed through a Balanced-Box-
Decomposition Tree (BBD-Tree), as introduced in [1].
This data structure is proven to be optimal for (1 + ε)-
approximate nearest neighbour searching 1, where k ap-
proximate nearest neighbours in a d-dimensional space can
be reported in O(kd log n) time.

3. Graph attributes

With the goal to describe a trademark, we construct the
graph whose nodes represent the shapes of the trademark
revealed after the segmentation phase. We connect each
node with its six nearest neighbours based on the dis-
tance between the barycenters of the corresponding shapes.
There are many possible attributes that can be used to en-
rich a graph structure with additional shape information.
To name a few, the attributes can be the area, perimeter,
curvature of the corresponding segment, whereas the edges
can be weighted with the distance or the angle between the
shapes. The scope of our work is to represent the layout
of the trademark. To this end, we will use the information
about the location and intersection of shapes with respect
to each other. Moreover, the use of the Hermitian matrix
for the graph encoding imposes the constraints (1)-(3), (5)
and (6) which the graph attributes should satisfy.

3.1 Directional attributes

For the description of the position of one shape with re-
spect to the other we chose the angular measure. Precisely,
we compute the angle between the two lines formed by the
end points of an edge and the barycenter of the trademark.
See Figure 3 for an example. This attribute satisfies the
conditions (5) and (6) and thus can be used as the phase of
the complex off-diagonal entries of the Hermitian matrix.

3.2 Topological attributes

Egenhofer and Franzosa [5] pointed out that there are 8 ba-
sic topological relations: disjoint, contains, inside, meet,
equal, covers, covered-by and overlap. These relations, or
intersection types, can be partially captured with one inter-
section measure on two components, which we define as

Wab =
Areaab

Areaa + Areab

1An object is a (1 + ε)-approximate k-nearest neighbour of the query
if its distance to the query is within a factor of (1 + ε) to the distance
between the query and its true k-nearest neighbour.
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Figure 3. Computation of directional attributes: angle be-
tween lines formed by connecting the two end points of

each edge to the trademark’s barycenter.

(a) (b) (c) (d)

A

B

A
B B

A A

B

where Areaab is the area of the union of the components a
and b. The area of a component is measured by the num-
ber of pixels occupied including boundary pixels. For two
separated segments the intersection measure is equal to one
and decreases as the intersection area increases. Figure 4
illustrates different types of the intersections. The intersec-
tion measure satisfies the conditions (1)-(3) and thus can
be used as the magnitude of the complex elements of the
Hermitian matrix.

4. Experiments

To evaluate the effectiveness of the proposed approach, we
focus on comparing several typical examples of shape con-
figuration. Therefore, in this section we will assume that
segmentation reveals the individual shapes, and calculates
the angular and topological values. Furthermore, we will
assume that the graphs that are compared are of the same
size, i.e. they have the same number of vertices. For de-
tails on an appropriate segmentation technique, and on how
to work with graphs of different sizes we refer to a recent
study [11].

In this Section, we will evaluate how distances be-
tween pairs of trademarks change when topological and di-
rectional changes in the configuration occur. At this point,
we would like to point out that every distance will be 0,
should each image be represented by the spectrum of its
normal Laplacian matrix. When a weighted Laplacian ma-
trix is chosen as associated structure, angular or directional
changes in the configuration are not revealed during simi-
larity evaluation.

Table 1. Distance matrix for different topological configu-
                               rations of 12 circles.

dist

0 0.023 0.107 1.067 5.441

0.023 0 0.084 1.044 5.420

0.107 0.084 0 0.960 5.343

1.067 1.044 0.960 0 4.474

5.441 5.420 5.343 4.474 0

In the first experiment, all pairwise distances between
5 configurations of 12 circles are calculated. The angles
between the circles are the same in all images, the overlap
varies from disjoint to touching, overlapping, more over-
lapping and inclusion. See Table 1 for the results of this
experiment together with the images that are used for cal-
culation. The results clearly show how distances increase
when overlap increases. The experiment is repeated with
configurations of four squares in Table 2. Again, the angles
between the squares remain constant, while the overlap in-
creases from no overlap to inclusion. For these examples,
distances grow proportionally with increasing overlap as
well. Furthermore, this experiment shows that calculation
of the topological attributes is dependent on the shape of
the components. For instance, a larger distance is found
for configurations of squares than of circles between a dis-
joint configuration and a touching configuration (first row,
second column of both Tables 1 and 2).

The third experiment, of which the results are given
in Table 3, shows the benefit of the directional information
in the encoding. All these distances would have been 0 us-
ing normal or even weighted Laplacian matrices as a rep-
resentation. The distances listed in Table 3 coincide with
the perceived similarity between the images. For example,
the first and the third images both appear to have a smaller
distance to each other than to all other images, which is a
desired result in this case.

The images used for the final experiment have varia-
tions in both topological and directional configuration. As
the results show in Table 4, even with these combined al-
terations, distances reflect the similarity in layout. Take for
instance the pair of the first and fourth images, that have
a closer distance to each other than to all other images.
Furthermore, the influence of the enclosing frame in the
fifth image is clearly present, since it has a large distance to
all other models. Finally, the two images containing only

Figure 4. Different intersection types for the shapes
AreaA = 4, AreaB = 1. (a) separate shapes WAB = 1,
(b) touching shapes WAB ≈ 1, (c) intersecting shapes
WAB = 0.91, (d) shape a includes shape b WAB = 0.8.
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Table 2. Distance matrix for different topological configu-
                           rations of 4 squares.

dist

0 0.036 0.167 0.489 1.046

0.036 0 0.161 0.453 1.014

0.167 0.161 0 0.333 0.899

0.489 0.453 0.333 0 0.643

1.046 1.014 0.899 0.643 0

Table 3. Distance matrix for different angular configura-
                            tions of 5 circles.

dist

0 1.119 0.531 1.933 1.24

1.119 0 0.917 0.875 0.237

0.531 0.917 0 1.782 1.108

1.933 0.875 1.782 0 0.716

1.24 0.237 1.108 0.716 0

Table 4. Distance matrix for different configurations 4 of 
                    shapes with mixed properties.

dist

0 0.446 0.922 0.173 1.446

0.446 0 0.582 0.513 1.208

0.922 0.582 0 0.902 0.695

0.173 0.513 0.902 0 1.356

1.446 1.208 0.695 1.356 0

disjoint components (second and third image) are close to
each other, but still have a nonzero distance because of dif-
ferences in directional attributes.

5. Conclusion

In this paper we have presented a new approach for encod-
ing layout between image components that, together with
the shapes of the components, is important for evaluating
similarity between images. Both directional and topologi-
cal relations between image components that are near each
other, are encoded in a rich graph structure. By associ-
ating a Hermitian matrix to the graph, and by obeying sev-
eral constraints on the computation of edge weights, we are
able to capture more edge information (together with the
connectivity) in a spectral representation that mimics the
behaviour of Laplacian spectra. Therefore, similarity eval-
uation is efficient and accurate, and the proposed approach
can be successfully applied as an indexing mechanism.

The next step will be to evaluate the new approach
within the context of a real retrieval environment. Al-
though it was shown before that spectral representations are
well suited for this kind of retrieval purposes, and we have
shown in this paper that the new Hermitian spectral repre-
sentation is more discriminating and provides distance val-
ues that reflect layout similarity better, it is important to
investigate retrieval performance on a real data set of trade-
mark images. To do so, we will make use of a large col-
lection of real trademark images that has been classified by
trademark experts who evaluate trademark similarity on a
daily basis. We will compare our results to other meth-
ods using popular and representative performance mea-
sures such as Average Dynamic Precision, Mean Cumula-
tive Gain Vectors and Mean Discounted Cumulative Gain
Vectors.
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Furthermore, it is one of our interests in the near fu-
ture to explore part-based similarity between graphs using a
spectral approach. Since the eigen decomposition of a Her-
mitian matrix reveals the eigenvectors as well as the spec-
trum, we automatically obtain the eigenvector associated
with the second smallest eigenvalue (the so-called Fiedler
vector and Fiedler value respectively) [8]. The Fiedler vec-
tor can be used for partitioning the graph in sensible parts,
avoiding the computationally expensive inspection of all
possible subgraphs of all different sizes. These subgraphs
can be represented again by their Hermitian spectra. A vot-
ing schema will be necessary to combine search results for
complete and partial graphs.
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