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Abstract. Adjacency and Laplacian matrices are popular structures
to use as representations of shape graphs, because their sorted sets of
eigenvalues (spectra) can be used as signatures for shape retrieval. Un-
fortunately, the descriptiveness of these spectra is limited, and handling
graphs of different size remains a challenge. In this work, we propose a
new framework in which the shapes (3D models in our test corpus) are
represented by multi-labeled graphs. A Hermitian matrix is associated
to each graph, in which the entries are defined such that they contain all
information stored in the graph edges. Additional constraints ensure that
this Hermitian matrix mimics the well-studied spectral behaviour of the
Laplcian matrix. We therefore use the Hermitian Fiedler vector as shape
signature during retrieval. To deal with graphs of different size, we effi-
ciently reuse the calculated Fiedler vector to decompose the graph into
a limited number of non-overlapping, meaningful subgraphs. Retrieval
results are based on both complete matching and subgraph matching.

1 Introduction

Although more and more 3D models populate the Internet nowadays, content
based searching that is driven by shape matching remains a challenge. This
research area can be divided in to areas: shape descriptors and corresponding
matching algorithms at one hand, and indexing algorithms that facilitate efficient
querying and database pruning on the other hand. In this paper we propose a
shape descriptor that can be used as input for indexing algorithms directly. For
more information about shape descriptors in general, see [1, 2].

Among all shape descriptors, graph based descriptors have an advantage of
providing the possibility to detect both partial and overall similarity between
shapes. In particular we would like to mention Reeb graphs, which represent the
topological structure of 3D model and can store local geometrical characteristics.
Reeb graphs for shape description and retrieval were proposed in [3–7]. However,
it is still a challenge to perform (sub)graph matching. Different heuristics are
used to reduce the NP-hard problem of finding (sub)graph isomorphism, e.g.
bipartite graph matching through minimizing the distance between node labels
[6], matching based on graph hierarchy [4, 7] and maximum common subgraph
computation based on the node attributes [5]. An alternative approach to reduce
the complexity of graph matching is to use the spectrum or eigenvectors of an
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Fig. 1. ERG construction. (a) Shape segmentation. (b) Merging simple adjacent com-
ponents. (c) ERG with edge attributes: shape index and segment weight.

associated matrix [8–12]. Unfortunately, the descriptiveness of the used matrices
is limited, and it’s often unclear how to handle graphs of different sizes.

Contributions. First, we propose a reeb-graph based shape descriptor that
encodes topological and geometrical features of the model. Second, we propose
to represent this descriptor by the complex-valued Fiedler vector of a Hermitian
property matrix. This property matrix is constructed to contain all the features
that are stored in the graph, while mimicking the well-known Laplacian matrix
from a spectral point of view. Third, the calculated Fiedler vector is reused to
partition the graph into non-overlapping, meaningful subgraphs that are used
for partial similarity and to overcome the problem of graphs of different size. We
show that our method outperforms existing spectral based indexing methods.

2 Segmentation

The Extended Reeb Graph (ERG) gives a notion about the structure of a model,
and depending on the function which is used to construct the graph, it can be
invariant to the position of a model in space as well as to posture variation.
The ERG can be additionally enriched with geometrical shape characteristics,
so that it gives a more complete shape description.

We define a mapping function f which is used to represent the manifold of a
model, in our case the integral geodesic distance function [4]. The values of the
mapping function are computed for each vertex of the triangular mesh.

Next, we specify N levelsets f−1
i = {x|f(x) = fmin + i fmax−fmin

N+1 } for
i = 1..N , and the intervals of the mapping function

⋃N
i=0[fi, fi+1]. These in-

tervals define the decomposition of the model into connected components, see
Figure 1a). The components can be divided into three groups, having one, two
or more boundaries. In this context, a boundary is a levelset f−1

i shared by two
adjacent components. The components with one boundary represent minimum
or maximum regions, components with two boundaries are regular regions, and
components with more than two boundaries correspond to saddle regions of the
mapping function [13]. We call the components with one and two boundaries
simple. Their shape can be characterized by several geometric features [14, 15].
Adjacent simple components are merged into ons segment, see Figure 1b.
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To construct the ERG, each component obtained after the described segmen-
tation and merging process, is represented by a graph node. There is an edge
between two nodes if the corresponding components are adjacent. If two saddle
components are adjacent, we insert an intermediate node between them (body
part): see Figure 1c. Simple and intermediate nodes are connected only to saddle
nodes and vice versa.

constant smooth sharp multiple flat
increasing/decreasing increasing/decreasing

straight single bending multiple bending

Fig. 2. Variations of the two shape criteria cross section alteration and bending.

To enrich the topological structure of the ERG with geometric characteristics,
we use a recently proposed shape analysis of simple components that uses two
criteria [15]. The first criterion is the change in area of the cross sections. All
simple components are classified in one of the following seven shape classes:
constant, smooth/sharp increasing/decreasing, cross area alterations and flat
components. The second shape criterion is component bending, and defines three
classes: zero, single and multiple bending. See figure 2 for prototypes of shape
classes; see the top row for cross area alteration and the bottom row for bending.

Combined, these two criteria define 19 different shape classes, together with
the intermediate nodes there are 20 shape types. Each class is represented by a
unique index. Additionally, we calculate the relative size of each segment, defined
as the ratio of the surface area of the segment to the surface area of the whole
model. The index of the shape classification and the segment size are stored as
attributes of the edge that connects the simple node with a saddle node.

3 Graph property matrices

We store the graph characteristics in a Hermitian matrix because it provides
space for all topological information and the edge properties. A more popular
and well-studied matrix, is the Laplacian matrix. We therefore take the Laplacian
matrix as our starting point, and show how this matrix can be extended to a
Hermitian matrix to contain more information, without losing the validity of
known theorems. The Laplacian matrix is defined as L(G) = D(G) − A(G),
where D(G) is the diagonal matrix containing node degrees, and A(G) is the
adjacency matrix; entry Ai,j is 1 if nodes i and j are connected, 0 otherwise. The
spectrum of the Laplacian matrix can be used as a signature representation for
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the graph, and thus for efficient retrieval purposes (indexing) [8]. One of the main
reasons for this is that many graph properties and invariants are reflected by
the Laplacian spectrum [16]. Moreover, cospectrality for non-isomorphic graphs
tends to be rare [12] and similar Laplacian matrices have similar spectra due to
the interlacing theorem for two graphs where one is a slightly modified version
of the other [17].

In the case of a weighted graph, Lw(G) = Dw(G)−Aw(G) can be obtained,
by storing edge weights in the matrices instead of the number of edges. In order
to preserve the useful properties of a normal Laplacian, every edge weight wa,b

should be positive, it may only be zero if a and b are not adjacent, and should
be equal to wb,a (symmetry).

3.1 Hermitian matrices

In order to encode more information about the graph in a matrix, we extend
the ideas of [11] and use a Hermitian matrix to store graph characteristics. By
imposing several constraints on the elements of the Hermitian matrix, we will
define a complex analogue of the Laplacian matrix, such that it posesses all the
properties reported in [16], [12] and [17].

A Hermitian matrix H (or self-adjoint matrix) is a square matrix with com-
plex entries that is equal to its own conjugate transpose. Every Hermitian matrix
has a real valued spectrum; the corresponding eigenvectors are complex. To im-
pose the necessary constraints on H, it’s off-diagonal elements are complex num-
bers written in polar form using Euler’s formula, defined as Ha,b = −Wa,be

iya,b ,
where each edge has the pair of properties (Wa,b, ya,b). The first property, Wa,b,
is used as the magnitude of the entry and should satisfy the same constraints as
the edge weights of a Laplacian matrix. The second property, used as the phase
of the complex matrix entry, must satisfy the following conditions:

ya,b = −yb,a (1)
−π < ya,b < π (2)

The first condition (1) ensures that H is equal to its own conjugated trans-
posed matrix. By obeying the second constraint (2), phase wrapping can be
avoided. The real-valued on-diagonal entries are defined as Haa =

∑
b 6=aWa,b.

In this way, the entries in each row of the matrix sum up to zero. We would
like to stress that this is a necessary property to correctly mimic the spectral
behavior of Laplacian matrices, contrary to the Hermitian matrix that is used
in [11] (where additional node measurements on the diagonal are allowed). Fur-
thermore, magnitudes should be calculated in such a way that an edge between
two nodes can never be weighted 0, for it would destroy the connectivity of the
graph.

As was described in section 2, an edge in the graph connects a saddle node and
a simple node. As a consequence, the calculated shape index and the weight of
the simple component can be stored as the attributes of the edge incident to the
corresponding simple node. All 20 possible shape classifications are represented
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by one unique shape index. The index range is mapped to the interval (0; 1]
to allow their use as magnitudes of complex entries of the Hermitian matrix.
The positive shape index of the segment is invariant to edge direction, thus
satisfying the edge weight constraints. We choose the values of shape indices
based on visual shape similarity as well as on the alteration of one or both
criteria used for shape analysis, assigning a greater influces to the variation of
cross area than to the bending criterion. This choice can be explained by the
fact that semantically equivalent subparts of articulated models frequently have
different bending properties, e.g. straight and bended arms.

The relative size of the segment can be used as the phase value yab for the
complex entries of the Hermitian matrix. To obey the antisymmetric condition
(1) we set yab as the relative size SizeSab

of the segment Sab if deg(a)>deg(b) and
as −SizeSab

if deg(a)<deg(b). The value of SizeSab
is bounded by the interval

(0; 1). Scaling this interval up to (0;π) and using the above definition of yab

we satisfy the constraint (2) for the phase value of the complex entries of the
Hermitian matrix.

4 Retrieval through complex Fiedler vectors

The Hermitian matrix with attributes calculated as described above, mimics the
spectral behavior of the Laplacian matrix. We propose to use the eigenvector
associated to the second smallest eigenvalue (i.e. the first non-zero eigenvalue)
as a signature for the graphs. These graph entities are known as Fiedler eigen-
value and Fiedler eigenvector, they encode probably the most important graph
information [16].

In order to preserve permutation invariance of the representation, the en-
tries of the Fiedler vector need to be sorted. Therefore, before evaluating the
similarity between two n-dimensional Fiedler vectors, they are transformed into
2n-dimensional vectors, by sorting them lexicographically (first based on the
real part, then on the imaginary part) and interleaving the real and imaginary
parts. The similarity between graphs with n nodes, can then be defined as the
Euclidean distance between their 2n-dimensional, interlaced and sorted Fiedler
vectors. In practice however, models are often represented by graphs of different
sizes. Furthermore, partial similarity is not taken into account by this approach.
We therefore propose to base retrieval both on complete and partial graphs.

4.1 Retrieval of complete graphs

A common solution to the problem of comparison of differently sized graphs
through their spectra or eigenvectors is padding with zeros: enlarge the smaller
spectrum or eigenvector to the size of the larger spectrum by inserting zeros.
This is a semantically sensible approach, since it means that the smaller graph
is enlarged by inserting isolated nodes. In the context of a given database, all the
graphs are brought up to the maximum size present in that database, by inserting
isolated dummy nodes. When all Fiedler vectors are of the same dimension, a
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simple range search or nearest neighbor search among these vectors produces a
ranked list of relevant database objects with respect to a query. The distance
between two graphs g1 and g2 (based on the complete graphs) is then defined as

dfull(g1, g2) =

√√√√ 2n∑
i=1

(F1(i)− F2(i))2 (3)

Although this is correct semantically, it can possibly distort the retrieval
results. Suppose two similar graphs are of different size as a consequence of a
different level of detail that was revealed during segmentation. When dummy
nodes are inserted in the coarsely segmented graph simply to enlarge the dimen-
sion of its Fiedler vector, a larger distance to the finer segmented graph is found
as a consequence of matching entries related to dummy nodes with entries re-
lated to real nodes. Despite this phenomenon, the approach still produces good
results for similar graphs of nearly equal size or when difference between different
graphs should be magnified. We therefore propose to use it, but in combination
with a method for retrieving database models based on parts of the graphs.

4.2 Subgraph decomposition

Evaluating similarity of subgraphs is used to account for partial similarity. It
also helps in solving the problem of handling graphs of different sizes, because
combining similarity of parts may reduce the influence of a finer segmented
region. Only subgraphs of the same size are used for similarity evaluation. The
problem that remains, is to find subgraphs that are appropriate for this purpose.
One proposed approach is extracting all possible subgraphs of all possible sizes,
and match only subgraphs of the same size [8]. This is, however, a time consuming
approach, and requires calculation of distances between many subgraphs that are
not meaningful or irrelevant to the original graph. Therefore, we propose to use
a graph partitioning based on [18] to find small, non-overlapping and meaningful
subgraphs. The proposed partitioning approach reuses valuable information that
is already calculated, i.e. the complex Fiedler vector. The approach is as follows:

1. Sort the entries of the Fiedler vectors lexicographically in decreasing order.
2. Associate a score with every node in the graph: F (i) = α × degree(i) +

β/rank(i), where rank(i) is the position of the node in the sorted Fiedler vector,
and α and β are two balancing factors to increase influence of either rank or
degree. In our experiments, they are both set to 0.5.

3. Traverse through the list of the sorted Fiedler vector and select center
nodes. A node is a center node if its score is higher than the scores of all its
neighbors.

4. Remove the center node and its adjacent nodes from the list; together they
form a subgraph. Continue processing the graph this way until all nodes are in
a subgraph.

5. Decompose each subgraph s even further into every possible combination
of the center node and its adjacent nodes of size 2 up to the size of s.
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Steps 1-4 of the above procedure partition the graph in non-overlapping mean-
ingful subgraphs. For an example, see Figure 3, where a segmented model of a
goat is displayed, together with a view of its 3D graph and extracted meaningful
subgraphs (back part, middle part and head part).

Fig. 3. Subgraph decomposition of a model of a goat.

To be even more robust against small alterations in the graph structure
that are caused by segmentation and/or analysis differences, step 5 of the above
procedure decomposes the subgraphs even further. To calculate the subgraph-
based distance between two graphs g1 and g2, all their subgraphs are represented
by their Fiedler vectors as described in the beginning of Section 4. The distance
between g1 and g2, based on their subgraphs, is then defined as the normalized
and weighted sum of all pairwise subgraph distances, where the distance between
two subgraphs is calculated only if they are of the same size. For a given subgraph
size s, the average is taken of all pairwise distances of subgraphs of this size:

dsg s =
1

n×m

n∑
i=1

m∑
j=1

dfull(gi
1, g

j
2) (4)

where gi
1 and gj

2 are the i− th and j− th subgraphs of size s of graphs g1 and g2,
and where n and m are the number of subgraphs of size s that were extracted
from g1 and g2.

A subgraph distance contributes more to the total similarity if the size of the
subgraphs is larger. The total subgraph based distance between g1 and g2 is

dsg(g1, g2) =
1

MaxS× (|g1|+ |g2|)

MaxS∑
d=1

s× dsg s (5)

where |g1| and |g2| are the number of nodes in g1 and g2 respectively, and where
MaxS is the size of the smallest maximal subgraph that could be decomposed
from either g1 or g2.

Using this distance function, a ranked list of all the database objects can
be produced for a given query. Together with the ranked list based on the
comparison of complete graphs (see Section 4.1), two complementary ranked
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lists are produced for one query. These ranked lists need to be aggregated into
one. For this purpose, each database object is assigned a score i, calculated as
score(i) = log(rsg(i)) + log(rfull(i)), where rsg(i) and rfull(i) are the ranks of ob-
ject i in the ranked lists according to subgraph matching and complete matching
respectively. Database objects are then re-ordered based on the scores. By taking
the logarithms, a higher priority is given to the top of both ranked lists. By look-
ing at ranks rather than distances while calculating the scores, the aggregation
doesn’t suffer from a difference in distance range or scale.

5 Experimental results

We tested our framework on the dataset that was used in the Watertight 3D
Models track of the SHape REtrieval Contest 2007 (SHREC ’07) [19]. This
dataset consists of 400 models, divided over 20 classes of 20 models each. All
models were preprocessed using the described segmentation and shape analysis
software. After preprocessing, the implemented framework ranks the complete
database of 400 models with respect to one query in around 0.2 seconds on a
3.00 Ghz Intel Xeon processor. Each model was used as a query once; the goal
is to to see the complete class of the query at the top of the ranking.

However, before running the experiments on the whole dataset, we investi-
gated the ability of the approach to discriminate between topologically similar,
but geometrically and semantically different models. To this end, we have chosen
the class of human and the class of Teddy bear models. Figure 4 shows retrieval
results for some sample queries when only this subset of 40 models is consid-
ered. As can be seen from these results, the Teddies can be separated from the
topologically similar humans, by means of the encoded shape analysis.

To be able to compare the results to other participants of this contest, the
same performance measures are used. These are precision and recall rates when
the scope is set to 20, 40, 60 or 80 items; Average Dynamic Recall 3; success rates
for the first (PF) and second (PS) items; Average Ranking and Last Place Rank-
ing 4 Unfortunately, our method does not perform as well as most of the SHREC
participants. Table 1 displays the above performance values for our method (ab-
breviated as CFV, for Complex Fiedler Vectors) and the method that performed
best in SHREC 2007, a method by Tung et al. [7]. At this point however we would
like to emphasize that our method is an indexing method rather than a matching
method; all participating methods in SHREC are matching methods encoding a
large amount of shape information. This means that with our method, parts of
the database can be discarded upon querying time, whereas the matching meth-
ods need an exhaustive search through the database to obtain the ranking. Our
method does improve with respect to other spectral based indexing methods; we
compared it to using the Fiedler vectors of adjacency and Laplacian matrices.

3 ADR = 1
20

∑20
i=1

RI(i)
i

, where RI(i) is the number of relevant retrieved items in the
top i of the ranking. ADR ∈ [0, 1], where 1 is the best retrieval result.

4 LPR = 1− Rank−20
380

, where Rank is the rank of the last relevant item. ADR ∈ [0, 1],
where 1 is the ideal retrieval result.
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Fig. 4. Retrieval results when only the subset of human and Teddy bear models is
considered: top 20 retrieved items are displayed. Colored border means successful hit.

Table 1. Performance comparison of the proposed approach (CFV), using Laplacian
matrices (Lapl), using Adjacency matrices (Adj) and the approach by Tung et al.

Measure CFV Lapl Adj Tung et al. Measure CFV Lapl. Adj. Tung et al.

P20 0.42 0.22 0.20 0.71 R20 0.42 0.22 0.20 0.71
P40 0.29 0.16 0.16 0.41 R40 0.57 0.33 0.31 0.83
P60 0.22 0.14 0.14 0.29 R60 0.66 0.43 0.41 0.87
P80 0.18 0.12 0.12 0.23 R80 0.72 0.50 0.48 0.90
PS1 1 1 1 1 ADR 0.58 0.36 0.31 0.86
PS2 0.65 0.33 0.17 0.98 AVG 77 125 132 31

LPR 0.48 0.25 0.17 0.74

6 Concluding remarks

In this paper we presented a new shape retrieval method using complex Fiedler
vectors of Hermitian property matrices. These matrices represent the graph
based shape descriptor, in which both topology and geometry of the models
is encoded, such that the matrix mimics the Laplacian matrix from a spectral
point of view. By combining partial and complete retrieval, the framework shows
strong performance on a benchmark of 400 watertight 3D models with respect
to other spectral based retrieval techniques.

It is one of our interests in the future to test the proposed approach on other
domains. After the Hermitian matrix has been constructed with features of a
certain database object (regardless its modality), the framework is fixed. It is
interesting to see how this approach extends to retrieval of other multimedia
objects, such as music or 2D images. Furthermore, we intend to investigate the
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how this method can be used as an efficient prefiltering step in combination with
other methods to in order to increase performance and save computing time.
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