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Abstract—Recognition of pain in animals is essential for their welfare. However, since there is no verbal communication, this

assessment depends solely on the ability of the observer to locate visible or audible signs of pain. The use of grimace scales is proven

to be efficient in detecting the pain visually, but the assessment quality depends on the level of training of the assessor and the validity is

not easily ensured. There is a clear need for automating the pain assessment process. This work provides a system for pain prediction

in horses, based on grimace scales. The pipeline automatically determines the quantitative pose of the equine head and finds facial

landmarks before classification, proposing a novel scale-normalisation approach for equine heads. The pain estimation is achieved for

each facial region of interest separately, following the clinical pain estimation procedure. We introduce a database of horse images,

annotated by professional veterinarians for training and assessment. We also propose a data augmentation method to alleviate the

data scarcity issues, which relies on generating realistic 3D equine face models based on 2D annotated images. We show that the data

augmentation method improves the performance of both quantitative pose estimation and landmark detection. Our results establish a

strong baseline for automatic equine pain estimation.

Index Terms—Pain estimation, animal behavior analysis, horses

Ç

1 INTRODUCTION

RECOGNITION and quantification of pain in equines are
essential to maintain their welfare and improve their

convalescence [20]. However, contrary to humans, where
verbal communication facilitates pain assessment, in ani-
mals, this process depends on the observer’s ability to locate
and quantify the pain, based on perceptible behaviour
changes [4]. In particular, facial analysis is used for pain esti-
mation in horses [19], but also in mice [33], rabbits [32] and
sheep [41]. Enabling continuous monitoring of signs of pain
in animals is useful for studying disease progression and
effects of medication, for objective pain assessment, and to
improve the time response of the care-givers, minimising
animal suffering and the economic impacts of diseases.

Several frameworks were proposed for horse pain esti-
mation from faces, the most important ones being the Horse
Grimace Scale (HGS) [16] and the Equine Utrecht University

Scale for Facial Assessment of Pain (EQUUS-FAP) [55], [56].
Although the use of grimace scales to assess pain is proven
to be efficient, it requires the training of observers and the
manual assessment of the pain score for each facial region
described. There is an evident necessity for automation,
which can also help provide timely information about the
animal.

The primary aim of this work is the development of an
automatic equine pain assessment system based on facial
expressions. The model we propose is robust to different
coat colours (such as bay, chestnut, black) and markings, as
well as to the existence or absence of a bridle in the equine’s
head.

This paper is an extension of previous work in equi-
nes [24] where a simple qualitative pose classifier was com-
bined with an automatic landmark detection system for face
based pain estimation. However, the data scarcity is a sig-
nificant problem for automatic approaches. In this work, we
improve the classification pipeline, and propose a 3D-based
synthesis module to create larger training sets. Given a sin-
gle horse face with pain indicators, we are able to synthesize
a 3D face and produce many more 2D appearances with dif-
ferent textures (i.e., coat colouring), obtained from other
horses in our database. Furthermore, we use transfer learn-
ing to leverage earlier work on sheep pain estimation. We
focus on images, rather than videos, which are more infor-
mative in pain dynamics, but frame-level analysis is essen-
tial for video processing as well.

In sum, the main contributions of the present work are:

� We introduce a unique horse dataset with manually
annotated landmarks and detailed, feature-level pain
score ground truth, given by a veterinarian expert.

� We provide a hierarchical system for automatic pain
prediction on equine faces from images.
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� We introduce novel methods for accurate head pose
estimation and scaling for equines.

� We show that multiple models should be trained in
parallel for different poses of the animal’s head.

� We improve both pose and landmark estimation
with synthetic data generated with a 3D horse
model.

� We illustrate the benefit of transfer learning for
leveraging early work on sheep pain estimation for
equine pain estimation.

2 COMPUTER VISION BASED ASSESSMENT OF

PAIN FROM ANIMAL FACES

Automatic assessment of subjective states in animals
requires the recording of related behavioural and internal
indicators via sensors, and computational modeling to link
these observations to a target variable, which will ideally be
a validated clinical measurement of the state. More elabo-
rate models will incorporate more information, including
for instance representations of the context of the behaviour,
or acquire and integrate signals from multiple modalities.
Pain is defined as “an unpleasant sensory and emotional
experience associated with, or resembling that associated
with, actual or potential tissue damage,” [47]. While it is a
subjective experience, it causes visible signs of distress in
animals, which can be used to infer its presence to a certain
extent in the absence of verbal communication.

Manual pain assessment in animals requires clinical
expertise, can be time-consuming, and human assessment
can introduce biases. A computer vision based approach for
pain assessment is appealing, because even if it is not as
accurate as humans, it can be used for pre-screening ani-
mals, for long-term observations, and for quantification of
certain observed indicators.

In this section, we focus on behavioural expressions of
pain, and on computer vision based analysis methods that
try to estimate whether an animal is in pain or not, automat-
ically, from their facial appearance. Different species will
pose different challenges for computer vision approaches,
and consequently require different methods. For example,
in horses, different skin colours and the possible presence
of a bridle cause issues, which are absent for pain estimation
in, say, mice. We first shortly describe some important
related work on pain assessment from human faces, which
is a much broadly studied problem in affective computing,
and inspired models for animals. We then describe
approaches for detecting and quantifying pain via facial
expressions in other animals, like mice and sheep. Finally,
we focus on specific challenges of assessing pain in horses.

2.1 Pain in Human Faces

A lot of works that look at animal faces for pain indicators
are inspired by decades of work on human facial analysis.
For objective measurement of facial expressions of humans,
the Facial Action Coding System (FACS) was developed to
describe movements of facial muscles, in terms of facial
action units (AUs) [18]. In a similar spirit, coding systems
were developed for other animals, such as EquiFACS for
equines [58], and CatFACS for cats [14].

In humans, verbal communication facilitates the assess-
ment of pain. Nevertheless, some circumstances like severe
illness, speech impediments, or other communication issues
(including deception) may hinder verbal reporting. These
have motivated the design of pain assessment scales based
on human facial expressions [21], [37], [57], [61]. Research
found that closed eyes, raised cheeks, wrinkled nose, low-
ered brow, raised upper lip, and parted lips are some exam-
ples of facial expressions associated with pain [59].

Computer vision methods have been explored in the lit-
erature for automatic assessment of facial pain expressions.
In one of the early works, neonatal facial expressions were
used to detect pain [10]. Using computer vision based analy-
sis of AUs, Bartlett et al. were able to automatically detect
whether pain expressions were real or faked [7]. Videos are
typically more informative than single images for pain esti-
mation, as they provide the possibility to leverage spatio-
temporal cues [17], [26]. However, many video-based
approaches initially used image-based analysis at the frame
level [29]. More recent deep neural network approaches can
be directly trained on videos, but require much larger train-
ing sets [6].

One of the main challenges of this field is collecting large
amounts of data, due to the ethical implications of recording
pain. Lucey et al. introduced the influential UNBC-McMas-
ter pain database of patients suffering from shoulder pain
doing range-of-motion tests [37], which spurred a range of
computer vision based approaches for pain estimation. This
research also illustrated an important issue in automatic
pain analysis; the participants were suffering from different
causes of pain, including “arthritis, bursitis, tendonitis, sub-
luxation, rotator cuff injuries, impingement syndromes,
bone spur, capsulitis and dislocation”, and over half of
them were using medication. These differences are difficult
to assess just from facial expressions, and often, the auto-
matic analysis looks at a simple indicator, such as pain ver-
sus no pain.

The most common practice found in “pain datasets” con-
sists of inducing pain in healthy individuals [57], [61] or
resorting to recording posed pain expressions [40]. These
practices affect the generalisation of the resulting pain mod-
els, since the models end up being mainly trained on
healthy adult faces. Furthermore, the characteristics of pain
expression will be different when comparing acute pain
due to a short stimulation and chronic pain. A comprehen-
sive survey that collects over 100 methods for human facial
pain estimation is given in [22].

2.2 Pain in Animal Faces

Grimace scales to analyse pain from animal faces were
developed for several species. An early work for semi-auto-
matic analysis of animal faces was [52], where rat faces
were automatically detected and cropped from videos with
a computer vision based approach inspired by face detec-
tion models for humans. However, pain assessment was
done by humans, following the Rat Grimace Scale. Fully
automatic approaches for pain detection on animal faces are
fairly recent, and their target variable is either a binary
annotation (e.g., “pain” versus “no pain”), or based on a
pain scale. An example is action unit based estimation of
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sheep pain [38], using Sheep Pain Facial Expression Scale
(SPFES) [41].

Modern computer vision pipelines often use convolu-
tional neural networks (CNN), which are powerful, but
require large datasets for training. One CNN approach was
used in [53] for detecting “pain” or “no pain” from faces of
mice, on a dataset with 5771 images. Broom�e et al. [13] used
a Convolutional Long Short Term Memory (LSTM) method
to simultaneously process the spatial and temporal features
on horse faces from video. The model predictions surpassed
the expert performance, but the performance had a high
variance across subjects. This was partially due to the small
size of the dataset, which only contained six horses. More
recently, hourglass-shaped models were assessed to pro-
vide self-supervision to deal with the sample size prob-
lem [48]. Further work explored the possibility of domain
transfer between different pain types in horses, in particu-
lar, the potential of transferring features from a dataset of
horses with acute pain (which is less ambiguous) to help the
assessment of prolonged or more complex pain [12].

A complete pipeline for pain estimation for sheep faces
was proposed in [45], combining a fine-tuned model for
face detection, with a CNN-based pose estimation system,
followed by facial landmarking, which is the detection of
anchor points on faces to simplify subsequent analysis. His-
togram of Oriented Gradient (HOG) features, as well as geo-
metric features and the pose values were used to train a
binary support vector machine (SVM) classifier, adapted to
different head rotations for dealing with self-occlusions. In
this paper, we follow a similar pipeline and add pose esti-
mation as a step before facial landmarking.

Horse images pose specific challenges for visual process-
ing, such as the high variations in colour and overall
appearance between individual horses and between breeds.
Following the approach introduced by Mahmoud et al. [38],
previous work on horses suggested a classification model
based on a combination of features, namely edges, colour
histograms and HOG [27]. However, the extracted features
were not sufficiently discriminative to achieve a satisfactory
performance. Additionally, pose variations affected the per-
formance significantly, with self-occlusion being an aggra-
vating factor.

Our early work in pain estimation in equines investi-
gated extracting HOG, scale invariant feature transform
(SIFT), local binary pattern (LBP) and deep neural network
based features, and combining them with SVM classi-
fiers [24]. In this approach, a grimace scale was used to score
pain levels of facial regions-of-interest (ROI) separately (see
Table 2 for this image based assessment, which will also be
used in this work). The total pain score was a combination
of these indicators. Additionally, a three class HOG-SVM
based head pose classifier (“frontal”, “tilted,” and “profile”,
respectively) was introduced. Knowing the head pose can
improve both landmark detection and pain estimation,
since the face appearance varies widely with the pose.
In [34], three separate CNNs were used to assess three
regions on the horse’s face (ears, eye, and mouth and nos-
trils, respectively), which avoids pose related difficulties to
a certain extent. Andersen et al. offer an extensive analysis
of the challenges of machine recognition of facial expression
of pain in horses [2].

Table 1 summarizes recent datasets on automatic facial
pain estimation in different species. Some of these are
based on images, and some on videos. As stated before,
videos are more informative for pain estimation, but the
processing of videos requires more computational resour-
ces, and typically makes use of image-based approaches at
the frame level. Another advantage of videos is that a sin-
gle frame may not contain many indicators of pain, and it
may be necessary to extend the analysis to frames collected
over a period to provide improved analysis [49]. Pain data-
sets are particularly challenging to create, due to the ethi-
cal issues associated with the induction of pain. In
datasets where the pain stimulus is known, typically the
pain is caused by a particular disease or surgical proce-
dure, or it is induced moderately, without irreversibly
damaging the animals. The first scenario is preferable,
since the pain expressions will be comparable with the
ones found in “real world” (i.e., in-the-wild) situations
and it avoids hurting animals for experimental purposes.
To the best of our knowledge, the dataset introduced in
the present work (see Section 3) is the most extensive col-
lection with grimace scale annotations for automatic pain
estimation in animals.

TABLE 1
Summary of Datasets Containing Facial Expressions of Pain Used for Automatic Animal Pain Estimation

Reference Animal Pain stimulus Data Annotations (labels)

Pessanha et al. [45] Sheep Mastitis and pregnancy
toxaemia

86 individual frames; 4 sets of
videos of pain evolution

Sheep Pain Facial
Expression Scale (SPFES)

Noor et al. [44] Sheep Unknown 2350 images of sheep ”Normal” or ”Abnormal”
Tuttle et al. [53] Mice Laparotomy sham surgery 5771 unique images (2444 ”pain”

and 3327 ”no pain”)
”Pain” or ”No Pain”

Andresen et al. [3] Mice Castration Recordings of 124 unique
animals over time

”Post-anesthetic/surgical
effect” vs. ”No effect”

Broom�e et al. [13] Horses Moderate induced pain 60 videos of 6 different horses ”Pain” or ”No Pain”
Ask et al. [5] and
Broom�e et al. [12]

Horses Induced orthopaedic pain 90 videos of 7 different horses Composite Pain Scale (0 - 39)

Hummel et al. [25] Equine Partly induced, partly
unknown

1854 images of horses; 531
images of donkeys

Adapted EQUUS-FAP

Lencioni et al. [34] Horses Castration 3000 images from 7 different
horses

“No pain present”,
“Moderate pain”, “Obvious
pain”
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2.3 Quantifying Facial Pain in Equines

Veterinarians can quantify the existence of facial pain indi-
cators in equines using certain clinically validated scales. In
these scoring systems, various pain states are described
based on audio-visual cues. We base our automatic assess-
ment in this paper on such scales.

Dalla Costa et al. proposed the Horse Grimace Pain Scale
(HGS) for pain assessment in horses undergoing castration,
based on still images extracted from video recordings [16].
This procedure is performed routinely, with studies show-
ing evidence of acute and chronic pain after the procedure.
The castration post-procedural pain is rated from mild to
severe [46], which is reflected on the HGS. In contrast,
abdominal disorders like obstipation or strangulation very
often lead to severe pain, and are frequently diagnosed in
horses [42]. Subsequently, creating tools for identifying colic
pain is valuable for the quality of patient care and overall
equine welfare.

van Loon et al. proposed the Equine Utrecht University
Scale for Facial Assessment of Pain (EQUUS-FAP) for horses
suffering from acute colic [56]. While most of the indicators
in this scale are based on images, sound and video dynamics
are also used to identify certain indicators, such as the
amount of head movements, focus of the horse, and the
flehming behaviour, which is when the horse bares its upper
front teeth for a short duration and inhales, showing a spite-
ful appearance. For behavioural assessments, EQUUS-FAP
can be complementedwith other indicators [54].

The dataset introduced in this paper is composed of still
images, and subsequently excludes analysis of movement
and sound-based features. This limits the usage of EQUUS-
FAP. We employ here a practical grimace scale called
Equine Utrecht University Scale for Automated Recognition
in Facial Assessment of Pain (EQUUS-ARFAP) [27] that has
been created by (some of) the original creators of the
EQUUS-FAP, and combines all the static features of the
EQUUS-FAP and HGS systems into a single list of six fea-
tures (see Table 2 and Fig. 1). While not a clinically

validated tool per se, this scale produces useful indicators
for pain states. The limitations are that deeper insight into
pain is lacking, and it is not possible to infer duration and
intensity of pain expressions, unless the method is applied
to sequences.

3 THE UU EQUINE PAIN FACE DATASET

The UU Equine Pain Face Dataset consists of a total of 1855
images of horses and 531 images of donkeys, respectively.
The images focus on the face region, but have different
poses, with different facial landmark visibility. It is impor-
tant to note that in horses, face pose has a greater effect on
facial landmark visibility compared to human faces, and
both the database and the processing methodology will
reflect this. All images in the database have pain scores and
landmarks annotations following the criteria described in
Section 2.3. The data comes from three sources (see below,

TABLE 2
Score Sheet for Facial Pain Score Assessment in Still Images [64]

Data Categories Score

Ears Both ears turned forwards 0
At least one ear lateral position or further to backwards 1
Both ears turned backwards 2

Orbital Tightening Relaxed 0
A bit tightening of the eyelids 1
Obviously tightening of eyelid / eye closed 2

Angulated upper eyelid Relaxed 0
A bit more visible 1
Obviously more visible 2

Visibility of the sclera Sclera is not visible 0
An edge of the sclera is visible 1
Obviously more visible 2

Corners mouth / lip Relaxed 0
Lifted a bit 1
Obviously lifted / strained 2

Nostrils Relaxed 0
A bit more opened 1
Obviously more opened (dilated mediolaterally) 2

Total ... / 12

Fig. 1. Example images of the pain score sheet used in the present work.
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and Fig. 2), but except for our preliminary work, these data
were not published for computer vision analysis. We re-
purpose the data, providing landmarks and ground truth
annotations. We describe each subset separately, and only
use the horse subsets in the present study.

� Horses from the Netherlands - HFN (1520 images):
Images provided by horse owners all over the coun-
try. The photographs are very diverse, showcasing
an extensive set of backgrounds, breeds, and image
resolution. 873 images have bridle, 647 do not.

� Horses with clinically induced injuries - HWI (334 images):
Images collected as part of a project running in the Fac-
ulty of Veterinary Medicine of the Utrecht University,
where clinical procedures were applied to create
reversible lameness and pain [9]. The study design
and experimental protocol to induce acute orthopae-
dic pain on a set of horses under controlled conditions
were approved by the Ethics Committee on the Care
and Use of Experimental Animals in compliance with
Dutch legislation on animal experimentation (permis-
sion number: AVD108002015307WP16), and pictures
were taken in different time-periods. The images have
similar backgrounds with comparable illumination
and resolution. There are multiple pictures of the
same horsewith different head poses andwith several
timestamps.

� Donkeys from a Donkey Sanctuary - DFS (531 images):
Images provided by a donkey sanctuary in the UK,
with multiple photographs per donkey. These are
not used in the present work.

During the following sections, the HWI and HFN subsets
will be used as a combined dataset for horse pose estimation
and landmark detection.

3.1 Landmark Ground Truth Annotations

We follow the landmark annotation scheme from [27],
which described the head shape and facial features in great
detail. In this annotation method, three different landmark
schemes were established considering a qualitative evalua-
tion of the head pose. These landmarking schemes use 54,
44 and 45 points for frontal, tilted and profile views, respec-
tively (see Fig. 2). The landmarking was completed with a
follow up work [24] and the landmarks are publicly
available.

3.2 Pose Distribution

We used a weak perspective projection method to define the
quantitative head pose ground truth. We divided the land-
mark annotations into two sets. The first set is called “stable
landmarks”, and contains the points whose position doesn’t
change with rotation, and the second set is called “relative
landmarks”, which are outline landmarks that will change
with pose variations (Fig. 2). We only used the first set to
estimate the head pose. Since the images are cropped, the
camera intrinsic parameters have limited use in solving the
pose automatically from landmark positions. For this rea-
son, all observations were checked manually, and images
with uncertain poses were excluded from training. The
resulting dataset has 370 frontal images, 952 tilted images
and 348 profile images.

The yaw values are restricted to the ½�25; 25� degrees
range for the “frontal” class, and have an absolute value
predominantly in ½50; 90� degrees range for the “profile”
class. The “tilted” class overlaps with these classes, with
yaw values ranging from an absolute value of 10 to 75
degrees. The roll and pitch distributions are similar in all
classes, with higher variance in the profile class. Some of
this variance may be due to noise, as we have less land-
marks for pose assessment in the profile images, where the
2D-3D correspondence is more difficult to assess.

3.3 Pain Annotations Distribution

The images were annotated for potential signs of pain by
expert raters according to the adapted EQUUSFAP scale
presented in Table 2. Three distinct raters (one senior expert
researcher, and two graduate students in the veterinary
masters program, trained by the senior expert) scored the
entire dataset according to the previously mentioned scale,
using full images. In developing our pipeline, we used the
pain score annotations of the senior research and we present
the distribution of these annotated pain scores in Fig. 3,
where we observe that the dataset is not completely bal-
anced, with very few instances of class “2” in all regions-of-
interest. The predominant class will alternate between “0”
and “1”. We further note a few important issues in this
figure. The corners of the mouth are not always visible, and

Fig. 2. Faces extracted from each subset with marked points of interest.
First column - Frontal view; Second column - Tilted view; Third column -
Profile view; Green points indicate the stable landmarks; Red points indi-
cate the relative landmarks. HFN - Horses from the Netherlands; HWI -
Horses with clinically induced injuries; DFS - Donkeys from a Donkey
Sanctuary.
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subsequently have fewer annotations than the rest of the
facial areas. Most importantly, the distribution of the scores
per area are not completely aligned. This points out to a fun-
damental difficulty in equine pain assessment.

Note that the used grimace scale (adapted EQUUS-FAP)
is not explicitly head-pose dependent, except in the case of
occluded regions of interest. As a result, a 3-fold cross-vali-
dation set and a separate test set were defined, maintaining
the proportion of pain score combinations and quantitative
yaw values in each subset. The complete training set (i.e., all
three validation folds) contains 259 frontal faces, 666 tilted
faces, and 243 profile faces, and the test set contains 111
frontal faces, 286 tilted faces, and 105 profile faces.

4 METHODS

Fig. 4 illustrates the automatic pain estimation pipeline. One
of the contributions of the present work is a data augmenta-
tion approach that we use in training. We first discuss this
approach, followed by the individual steps of the estimation
pipeline, namely, pose estimation, landmarking, and pain
estimation, respectively.

4.1 Data Augmentation

Part of the difficulty of pain estimation in equines comes
from data scarcity. To address this issue, we propose an
approach for data augmentation, based on 3D modeling of
the horse face, where each existing horse face in the training
set is used to provide more images in different poses.

There is a vast amount of 3D resources for synthesising
human faces, with data collected via multi-view stereo cam-
eras and commercial depth sensors. Several approaches
addressed how these resources can be leveraged for facial
landmark detection on 2D images [28], [62]. These
approaches typically require 3D ground truth or a pre-
trained 3D morphable model. Unfortunately, when working
with animal faces, such 3D resources are not readily avail-
able. Collecting 3D-scans from an animal is more difficult
and the applications are perhaps more restricted, compared
to the work on human faces. 3D models available in datasets
such as TOSCA [11] have limited realism. At the moment,
there are no realistic, parametric, publicly available and
flexible 3D horse face models that can be used to synthesize
large amounts of data.

In this paper, we follow an approach that combines a sin-
gle 2D image and a generic 3D model. Cashman et al. used
images for 3D modeling of animals [15]. In their work, they
defined a 3D morphable model based on a set of images,
with silhouette and landmark annotations. Given an initial
3D model and a set of images of the same class, a deformed
3D model was created. Building on these ideas, Kanazawa
et al. improved the deformation strategy by considering the
local stiffness of each area, specific for the class [30]. The
final model tried to minimize the deformation energy, the
location variation between the points in the 3D and 2D and
the local stiffness, only distorting the less stiff “tets” (i.e., a
tetrahedron of the mesh). More recent work by Zuffi et al.
produced a small dataset based on 3D scans of toy figures
in arbitrary poses, and, after pose normalisation, learned a
statistical shape model to fit a combination of 2D keypoints
and 2D silhouettes [63]. Texture transfer was not imple-
mented in any of the previous studies. Furthermore, the
final shape was a rough estimate of the silhouette and not a
direct point-to-point match between the image and the
projection.

In this paper, we propose a textured 3D horse head gen-
eration system to augment the training data for pose estima-
tion and landmarking. Our approach works with a simple
3D horse head model, which is not adequate for generating
pain expressions, which are too subtle. In future, if more
detailed 3D models become available, the proposed method
can be extended to generate pain expressions as well.

In our approach, we use profile images and correspond-
ing landmarks to deform a pre-existing 3D horse head
model from the TOSCA dataset (see Fig. 5). Assuming that
the horse head is approximately symmetrical, the occluded
side will have a similar shape and texture as the visible side.

For this purpose, we annotated the 3D model with the
same landmarking system as the profile faces, using the sta-
ble landmarks. The training data we augmented already
had manually annotated landmarks, but matching the 3D
model automatically to these 2D images was not straightfor-
ward. The contour landmarks were further processed to
prevent alignment issues in the texture transfer approach.
First an edge detector was used to correct the position of the
contour landmarks, which were replaced with the closest
edge points. Next, we estimated the quantitative head pose
based on the 3D-2D point correspondence. Considering a
field-of-view of 60 degrees to define the focal length, we
used an iterative approach based on Levenberg-Marquardt
optimization [35], [39] to solve the Perspective-n-Point prob-
lem. The resulting rotation matrix, R, and translation vector,
t, allowed the projection of the 3D model points onto the
image plane:

wx
wy
w

0
@

1
A ¼ K½Rjt�X ¼ KXcam; (1)

with ðx; yÞ corresponding to the pixel coordinates of the
world point X projected onto the image.

Assuming the w parameter of each ground truth land-
mark projection in the image is the same as the one of the
corresponding projected 3D point, the image point in the
camera frame is

Fig. 3. Distribution of the pain scores in the dataset.
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Xcam ¼ K�1
wx
wy
w

0
@

1
A: (2)

Next, we projected the landmarks according to the sym-
metry plane and applied a Thin Plate Spline approach [8] to
deform the 3D model initialised according to the ground
truth landmarks and their projections. This method interpo-
lates surfaces over scattered data by having a fixed set of
nodes in the plane (in this case, the landmarks), and mini-
mizes the bending energy by warping the surface to fit the
ground truth. The landmark points are warped exactly to fit
the targets, and the rest of the points are interpolated
according to their distance to the landmarks.

After deforming the 3D face model, we obtain the corre-
spondence between the vertices in both sides of the symme-
try plane for further texture transfer from the 2D image to
the 3D model. By projecting the final 3D model onto the
image, we define a mean colour for each triangle. This value
corresponds to the average between the vertices and the
centroid colour, and we attribute the same colour to sym-
metrical triangles that are not visible in the 2D image. We
save the resulting colour map, allowing the interchange of
texture between the different horse head shapes in the sub-
set (see Fig. 6). In total, we collected 29 different colour
maps, from which horse faces can be synthesized in any
pose.

To generate synthetic images with a common reference,
the 3D points were converted to the world frame

X ¼ ½Rjt��1Xcam: (3)

The rotation matrix, R, was then defined as

Rða;b; gÞ ¼ RzðaÞRyðbÞRxðgÞ; (4)

with the yaw being the counterclockwise rotation of a about
the y-axis, the pitch being the counterclockwise rotation of b
about the x-axis and the roll being the clockwise rotation of
g about the z-axis.

Finally, the background was replaced with images
extracted from Flickr under the tags “farm”, “field”, “barn”
and “stable” (see Fig. 7) to complete the 2D image synthesis.

4.2 Quantitative Pose Estimation

Head pose variations cause evident changes in the facial
appearance of equines due to self-occlusion. For this reason,
head pose-specific methods for landmark detection and fur-
ther pain estimation should be preferred, allowing for a bet-
ter description of the areas of interest visible from a specific
pose. We divide the training set into pose bins, and train a
regressor for estimating the pose.

To estimate the quantitative head pose, we use a multi-
loss convolutional neural network for head pose estima-
tion [50]. This approach combines a ResNet50 architec-
ture [23] with the Mean Squared Error and Cross Entropy
Loss.

We used transfer learning by initialising our models with
models pre-trained on more extensive data collections.
Since early layers of deep neural networks learn basic fea-
tures, using pre-trained models from other tasks helps in
reducing the required samples for training. We experi-
mented with 1) a model trained on the 300W-LP dataset on
human faces, and 2) a model trained on a sheep facial data-
set. Although horses and sheep have significant anatomical
differences, they pose similar challenges for pose estima-
tion, such as an elongated nose, which led us to expect a bet-
ter performance from the second approach.

Fig. 5. Full horse and head model with respective axes [11] (red: x axis,
green: y axis, blue: z axis).

Fig. 4. Proposed pipeline for horse pain estimation based on facial features.
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For data augmentation, we pay attention to the distribu-
tion of images for different ranges of yaw, as this is the most
important parameter that affects landmark visibility. Differ-
ent amounts of data augmentation were tested, introducing
synthetic images on the training set. We performed 3-fold
cross-validation with an un-augmented validation set. Since
there are some differences in appearance between the syn-
thetic and real images, it is desirable to maintain a high per-
centage of real images in the training set to avoid overfitting
to the visual appearance of synthetic images. Subsequently,
the number of synthetic images generated per yaw angle
bin (naug) was defined as the number of images in the train-
ing set in that bin (nbin), multiplied by an augmentation fac-
tor determined as a function of the maximum number of
images in a pose bin in the training set (nmax). The pose bins
with the maximum number of images will not be aug-
mented. The data was augmented according to the yaw
representation in the training set

naug ¼ nbin �
h�nmax

nbin

�a

� 1
i
: (5)

4.3 Facial Landmarking

For facial landmarking, we compared two state-of-the-art
landmark detection algorithms, namely, Ensemble of
Regression Trees (ERT) [31] and Supervised Descent Model

(SDM) based on SIFT features [60], respectively. These were
formerly proposed for detecting landmarks on human faces.
Additionally, a mean shape model was calculated for each
pose class based on the training set shapes.

Measuring landmarking accuracy is difficult because of
scale differences in the images. In the human facial land-
mark localisation literature, automatically located land-
marks within 10% of the inter-ocular distance to the ground
truth location are considered to be accurate [36], [51]. Since
there is not a standard normalisation factor for landmark
analysis in horses, we proposed the use of the distance
between the centre of an eye and the centre of the underly-
ing nostril. These two features are present in every pose of
the horse face (unlike the two eyes), and their distance is
sufficiently long to make it robust against errors. The 10%
threshold in human facial landmarking designates an error
margin that will result in a good alignment, and no land-
mark overlaps. With the same concern, we empirically
define a threshold of 6% for the eye-nostril distance [24].
The performance measures we use for landmarking are the
Mean Normalised Error (MNE), corresponding to the
euclidean distance between the prediction and the ground
truth normalised by the eye-nostril distance, and the Suc-
cess Rate (SR), referring to the percentage of predictions
with a distance lower than 6% of the eye-nostril distance.
Still, variations in pose (especially, changes in pitch) will dis-
tort the eye-nostril distance, and if dealing with a dataset
with diverse breeds, the nose length in proportion to the
face will vary.

To assess the landmarking algorithms, we assume that
the face detection is correctly performed. The horse faces
were cropped based on the ground truth landmark loca-
tions and resized according to the face proportions in each
of the three classes (i.e., “frontal”, “tilted” and “profile”) of
the training set. For each pose bin, the height of the face was
scaled to 600 px, with the width being defined according to
the training set aspect ratio. This resulted in 600� 270
“frontal” images, 600� 330 “tilted” images and 600� 380
“profile” images. Furthermore, we rotate all faces according
to the absolute yaw angle.

We use the Mempo project’s python package for imple-
menting the ERT and SDM models and to introduce uni-
form perturbations in each bounding box for data
augmentation [1]. We performed 3-fold cross-validation to
adjust the number of perturbations to apply in each pose
class. We use only the “stable landmarks” to determine the

Fig. 6. Examples of deformation and further texture transfer of the 3D model. The images on the first row are the originals, and the images on the sec-
ond row are the synthesized image.

Fig. 7. Examples of synthetic images produced using the described
method. Examples of different head shapes with the different head pose
with the same texture are presented, showing the effects of texture transfer.
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optimal number of perturbations. These landmarks do not
change with the head position (i.e., the outline landmarks
are excluded, as rotating the head changes the absolute
position of the head contour). After the simple geometric
data augmentation, we also use synthetic images to aug-
ment the training set further, and to have a balanced set of
poses across the training set. This is particularly important,
because we will train pose-specific pain estimators next.

4.4 Pain Score Estimation

To observe the potential of both appearance and geometric
features, we use SVM models trained with the quantitative
pose, the local rotation angle of each region-of-interest
(ROI), and HOG features [45]. Since there is no clear divi-
sion between the different qualitative head pose bins, we
proposed a unique pose specific model per ROI.

First, we normalised each ROI by rotating the ears and
nostrils into a vertical position and the eyes and mouth into
a horizontal position. The rotation angles were also used to
train the pain classification model. Each ROI was resized
based on the mean ratio in the training set, with the longer
side set to 128 px. We tested different values for the HOG
parameters (orientations, cells-per-block, pixels-per-cell) in
3-fold cross-validation, as well as different kernels for the
SVM model (linear, RBF and polynomial). Each model was
trained with HOG features, angles and head pose from both
right and left ROI. In case a ROI was not visible, it was
replaced by a (200,200,3) zero array, with rotation equal to
zero.

As shown in Section 3, the dataset is highly unbalanced.
In addition to training SVMs with a balanced set, the perfor-
mance measures are calculated for each class separately and
the average weighted value is reported.

We trained the final model in the complete training set
(1168 images) and evaluated it on the test set (502 images).
The number of occurrences of each ROI is variable.

5 EXPERIMENTAL RESULTS

5.1 Pose Estimation

The performance measures used for pose estimation are the
Mean Absolute Error (MAE), calculated in degrees,
Pearson’s Correlation Coefficient (PCC), which measures
the correlation between predictions and the ground truth,
and the Signal Agreement (SAGR), which is defined for two
vectors x and y of equal length n as [43]

SAGRðxÞ ¼ 1

n

Xn
i¼1

dðsignðxiÞ; signðyiÞÞ; (6)

with dðx; yÞ denoting the Kronecker delta. It is desirable to
achieve low MAE and high PCC and SAGR values.

We contrast two versions of the Hopenet [50] model for
head pose estimation. The original model was trained on
the 300W-LP dataset, and it needs to be fine-tuned for
equine heads. We propose to use an initial fine-tuning on
the Sheep dataset [45], which is more similar to equine faces
than human faces. A mean model is used as the baseline,
predicting for each sample the mean angle of the training
set.

As expected, there is a significant improvement in the
model’s performance after transfer learning from the sheep-
based model (see Table 3), particularly in the yaw values, as
the Sheep dataset was augmented for different yaw values.
The sheep faces have similar appearance changes as horse
faces when changing pose, with similar problems related to
the elongated nose and consequent self-occlusion. We sug-
gest that the lower performance for the roll and pitch angles
can be justified by the reduced diversity of these values in
the dataset.

Next, we have evaluated the effect of data augmentation.
A 3-fold cross-validation was performed to define the ideal
number of epochs and a (see Eq. (5)). When compared to
the results in Table 3 there is an improvement in perfor-
mance for the target yaw angle, with a decrease of MAE and
an increase of PCC. Although the MAE for the roll and pitch
angles is similar to the yaw, their PCC is significantly lower.
This observation can be explained by the smaller range of
values for the pitch and roll (mainly between ½�25; 25�
degrees instead of ½�90; 90� degrees). Considering the diver-
sity of poses in the dataset, and the error associated with the
ground truth pose estimation, the presented results are sat-
isfactory, with a high signal agreement and a PCC of 97%.

5.2 Landmarking

The Ensemble of Regression Trees (ERT) model has shown
promising results for the landmark localisation, outper-
forming both the Mean Shape model and the Supervised
Descent Model (Table 4). Overall, extreme angles, combined
with a lack of representation of these angles in the dataset,
resulted in incorrectly located landmarks. Additionally, not
all outline landmarks are associated with strong changes in
appearance, which leads to deviations in their prediction.
It’s also important to note that there is a clear performance
improvement when applying a train-test split based on the
yaw angle values, with a decrease in the MNE of around
2.5% in both the ERT and SDMmodels and an improvement
of 0.15 in the success rate of the ERT classifier compared
with previously published work [25]. This fact reflects a
decrease of the MNE for regions-of-interest (ROIs).

TABLE 3
Quantitative Pose Estimation Results in the Test Set Transfer
Learning From the Model Trained on the 300W-LP [62] and the

Sheep Datasets [45]

Model Yaw Pitch Roll

MAE Baseline 37.24 11.15 9.41
300W-LP 23.41 12.10 9.63
Sheep 9.30 9.35 7.17
Sheep + data aug 8.95 9.83 7.55

PCC Baseline 0.00 0.00 0.00
300W-LP 0.76 0.30 0.24
Sheep 0.96 0.61 0.58
Sheep + data aug 0.97 0.60 0.60

SAGR Baseline 0.51 0.70 0.71
300W-LP 0.82 0.70 0.70
Sheep 0.85 0.79 0.81
Sheep + data aug 0.85 0.76 0.83

LowMAE and high PCC and SAGR values are preferred.
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Since the outline landmarks are highly variable and do
not have a direct appearance correlation, we trained an ERT
model with solely the “stable landmarks”. The results
obtained with this landmark scheme were similar to the
ones presented for the full landmark scheme (Table 4). This
also enabled the use of synthetic images for data augmenta-
tion. There is significant MNE difference between poses.
We used a 3-fold cross-validation to define the augmenta-
tion factor, applying inverse data augmentation based on
the MNE in each fold. Then, a full model was trained using
the complete training set and augmenting the data accord-
ing to the average MNE per yaw bin in the cross-validation
(Table 5). Small to moderate performance improvement is
observed for most of the ROIs, illustrating the potential of
the data augmentation method. Having three separate land-
marking systems based on the qualitative pose annotation
is not ideal. There are errors related to manual pose annota-
tion, and ambiguity of images in pose transition areas is an
issue (Fig. 8). However, a single landmarking system that
will work on all poses, and with varying numbers of land-
marks, will be more complex to design and train. The strong
structural constraints of the ERT models may affect the per-
formance when landmarking less represented horse breeds,
for which the facial proportions can vary widely. Lastly,
regarding the ears, the lack of “anatomical” points associ-
ated with the annotations for the base of the ears, make
these landmarks particularly difficult to assess, especially
for the “tilted” and “profile” poses.

5.3 Pain Scores Estimation

In the dataset, the score “2” has much fewer examples com-
pared to “1” and “0”. We present the performance of the
best model for each ROI in both the 3-class pain estimation
task and the binary pain estimation task combining class
“1” and “2” into one class, in Table 6. Note that the problem
of unbalanced data is not solved entirely with binarisation.
Furthermore, the F1-score of the underrepresented class is
significantly lower than that of the majority class, suggest-
ing that there is room for improvements.

While the pain score estimation results are very promis-
ing, it is clear that significant challenges still exist. There is
an overall ambiguity in classifications, with significant dis-
agreement among experts (Fig. 9), and a noticeable data
imbalance, even after combining the pain classes. Lastly, the
dataset has a lot of different breeds with different face mor-
phology and proportions, which makes the comparison
between facial features more difficult. As an example,

TABLE 5
Mean Normalised Error per Region-of-Interest (ROI) in the Test

Set With a Model Trained on Stable Landmarks

ROI Data aug. Frontal Tilted Profile Average

Ears no 0.067 0.062 0.083 0.067
yes 0.067 0.62 0.083 0.068

Nose no 0.069 0.073 0.039 0.065
yes 0.071 0.071 0.040 0.065

Left Eye no 0.049 0.031 0.047 0.039
yes 0.049 0.031 0.043 0.038

Right Eye no 0.046 - - 0.046
yes 0.044 - - 0.044

Mouth no - 0.069 0.037 0.061
yes - 0.065 0.037 0.058

The highest error for each ROI is highlighted. Missing values indicate that the
ROI is not defined for that pose class.

Fig. 8. Examples of ERT-based landmark predictions compared to the
ground truth. The last column shows an image with large error due to
the ears being cropped in the original image. The white lines connect the
predicted point with the ground truth landmark location.

TABLE 6
Performance of the 3-Class and Binary Pain Estimation Models

n. classes Precision Recall F1-Score Baseline

Ears 3 0.65 0.74 0.68 0.66
2 0.72 0.74 0.72 0.66

Nostrils 3 0.50 0.53 0.52 0.48
2 0.58 0.59 0.58 0.58

Orbital 3 0.79 0.83 0.81 0.83
2 0.81 0.85 0.83 0.83

Eyelid 3 0.44 0.46 0.45 0.33
2 0.49 0.50 0.50 0.37

Sclera 3 0.59 0.62 0.60 0.61
2 0.60 0.60 0.60 0.61

Mouth 3 0.61 0.65 0.62 0.61
2 0.65 0.68 0.66 0.63

The performance metrics are weighted according to the number of samples of
each class. The last column corresponds to the weighted F1-score for a majority
class classifier (baseline). The highest F1-score value for each classification is
highlighted.

TABLE 4
Mean Normalised Error (MNE) and Success Rate (SR) Using
ERT, SDM and a Baseline Mean Shape Model for Both Land-

marking Systems

Landmark system ERT SDM Mean Shape

MNE Relative + Stable 0.061 0.067 0.116
Stable 0.060 0.063 0.115

SR Relative + Stable 0.629 0.577 0.236
Stable 0.637 0.604 0.232

Presented values are weighted average results for the test set for the three quali-
tative pose classes. SR indicates the ratio of landmarks with a location error
less than 6% of eye-nostril distance.
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different breeds can have very distinct nostril shapes, which
makes it difficult to assess whether they are “relaxed” or
“open” when using a mixed dataset.

6 CONCLUSION

In this paper, we have provided a unique image based
equine pain dataset with feature-level expert annotations,
and implemented a complete system to provide a strong
baseline for automatic estimation of pain indicators.

Automatic landmark detection is an important step to
identify the regions of interest presented in the grimace
scale. Yet, variations in the head pose, in particular, the
yaw angle, will lead to significant changes in visibility
and overall head silhouette. We show that a CNN-based
quantitative pose estimation system can be used to deal
with this issue. For dealing with scale normalisation of
horse facial landmarks, we have proposed a novel head-
nostril distance.

To deal with data sparsity, as well as varying coat color-
ing in horses, a novel data augmentation system was pro-
posed, deforming a simple 3D-horse head model according
to 2D landmarks with texture transfer from the images. This
allowed the creation of diverse synthetic images with pre-
cise landmarking and known pose and after data augmenta-
tion, the CNN-based pose estimator achieved a high
performance and decreased the error in the majority of
regions-of-interest. Lastly, a pain estimation system was
developed, introducing an SVM model for each region-of-
interest trained based on geometric features, the head pose
and the HOG features extracted from the bounding box
defined by the landmarks.

Potential sources of error are the subtle appearance asso-
ciated with several landmarks, especially near strong edges
and the limitations coming from the 3D model. Addition-
ally, shape constraints of the model may be too strong for
the variations in head morphology observed in the dataset
due to different breeds. Clearly, more labeled data will help
to improve the image-based system, and going to video
analysis will provide more visual evidence, along with pos-
sibilities of evaluating sounds and dynamics. The results
presented in this paper advance the state of the art in horse
pain estimation.
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