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Abstract
Bifurcations of periodic solutions to tori and bifurcations of tori, producing many different phenomena,
are natural in parametric dynamics. We start with a discussion of the role of timescales, followed by
some observations for a system of three coupled oscillators. This system is very rich in bifurcations
leading in some cases to chaos.

INTRODUCTION

For equations of the form dx/dt = f(t, x) with f(t, x) T -periodic in time, a one dof freedom
system requires already knowledge of 2-dimensional maps. So, it is not surprising that one
needs in general extended bifurcation theory as codimension one and higher bifurcations, tori
and torus-bifurcations, strange attractors, dissipation induced instability etc. But complexity
is not exclusive for high-dimensional systems. Detailed studies of low-dimensional, paramet-
rically excited systems are essential for better understanding.

The quantitative tools are various types of normal form analysis, numerical bifurcation theory
using packages like AUTO, CONTENT and MATCONT [2], and direct numerical integration .
About normal forms there is some confusion which we will discuss first.

NORMAL FORMS AND TIMESCALES

Considering the scientific literature, one observes that the use of asymptotic series to approx-
imate solutions of differential equations takes all kind of different forms: averaging, multiple
timing, renormalization etc. In this respect it has been very important to have comparative and
unifying studies as [5], [7], to name a few. A basic aspect of the discussion is of course that
there is some freedom in using perturbation methods as asymptotic expansions are not unique.

In [5], the equivalence of the averaging method and multiple timing was established for stan-
dard equations like ẋ = εf(t, x) on intervals of time of order 1/ε. See also the extensive
discussions in [3] and [7].

It is easy to show that for perturbation problems of the form

ẋ = f(x, t, ε) = f0(x, t) + εf1(x, t) + ε2 . . . , (1)

the timescales t and εt play a part. A basic problem of the multiple timescales method, how-
ever, is that one has to anticipate the timescales that rule the solutions. Such a guess can be
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correct for simple, or even more complex, but well-understood problems. However, for most
research problems the anticipation of timescales is an unnecessary and dangerous restriction.
We discuss briefly two classes of problems where multiple timing may be deficient and aver-
aging and other normal form methods give the correct result.

• In bifurcation problems one encounters, after linearization, structural stability problems
of matrices, this is characteristic for such problems. A n×n matrix is called structurally
stable if it is nonsingular and all eigenvalues have nonzero real part. If we have a zero
eigenvalue or purely imaginary eigenvalues, we can expect bifurcations. Apart from
this, the presence of multiple eigenvalues affects the form of the expansions and the
timescales. In such cases unexpected algebraic timescales can not be avoided. A simple
example is the Mathieu-equation, discussed in detail in [8]:

ẍ + (1 + εa + ε2b + ε cos 2t)x = 0, (2)

a and b are free parameters independent of ε. To first order in ε, the instability tongue
is found for a2 = 1/4. Choosing the boundary of the tongue for a = 1/2, we find to
second order b = 1/32. The timescales characterising the flow near the Floquet tongue
are to second order

t, εt, ε
3
2 t, ε2t.

• Problems with resonance manifolds (or zones) may arise in systems of the form

ẋ = εX(x, φ) + ε2 . . . ,

φ̇ = Ω(x) + ε . . .

with x a Euclidean n-vector, φ an angle-vector; the order functions multiplying the right-
hand sides are different, but the choice of size here is just an example. Such problems
arise in Hamiltonian systems and in dissipative systems; see for instance [7] or [8] and
references there. Typical resonance zones are of size O(

√
ε) with timescale of the dy-

namics in the resonance zone
√

ε t.

Normal form methods, averaging and renormalization have no need to anticipate the timescales
that are relevant for the approximations. Multiple timing, on the other hand, makes restricting
choices of timescales but this method is safe to use if we confine the analysis to time intervals
of order 1/ε and in general if we understand apriori the nature of the solutions. Extension of
validity of approximations beyond order 1/ε is usually not expedient for the multiple timescale
method; see the discussions in [7] and [3].

THE MECHANICAL TONDL-MODEL

The model, see fig. 1, considered here, has three degrees of freedom. The equations of motion
are studied in [1] and are:





m1ÿ1 + εbẏ1 + k0(1 + ε cos ωt)y1 − k1(y2 − y1) = 0,

m2ÿ2 − εβ0(1− γ0ẏ
2
2)ẏ2 + 2k1y2 − k1(y1 + y3) = 0,

m3ÿ3 + εbẏ3 + k0(1 + ε cos ωt)y3 − k1(y2 − y3) = 0.

(3)
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Figure 1. Flow-induced vibrations with linear energy-absorbers

The yi represent the deflections of the masses mi, i = 1, 2, 3. We have damping or energy-
absorbing parameters k0, k1, β0 > 0. The self-excitation (Rayleigh term) is nonlinear, it mod-
els the flow-induced excitation; the springs are linear. The masses are chosen such that we
have for the basic frequencies the 1 : 2 : 3-synchronization resonance (the other resonances
represent open problems).

Apart from the equilibrium at the origin, we find two nontrivial periodic solutions. In the
analysis, the combination of averaging-normalization and numerical bifurcation techniques is
very profitable as an equilibrium (critical point) of a normal form corresponds with a periodic
solution. A Hopf bifurcation of an equilibrium in a normal form corresponds with a Neimark-
Sacker bifurcation. In its turn, a Neimark-Sacker bifurcation of a periodic solution of a normal
form corresponds with a 3-torus; see fig. 2.

Figure 2. Projection on a plane of a double torus with Lyapunov exponents λ1 ≈ λ2 ≈ 0, λ3 =
O(10−4), λ4 = O(10−3), λ5, λ6 < 0. As λ3 decreases, the torus looses normal hyperbolicity.

This is an enormous advantage as it lifts the analysis to one dimension higher; direct numer-
ical continuation of tori is rather difficult. A bifurcation diagram arising from the periodic
solutions shows in general 2- and 3-tori, also torus doubling. One finds Neimark-Sacker, Fold,
Chenciner, Fold-Neimark-Sacker, Branching Point, Bogdanov-Takens and Saddle-Node ho-
moclinic bifurcations. The 1 : 2−, 1 : 1− and 1 : 4−resonances play a part. In a typical
scenario, a torus contains stable and unstable periodic solutions. Changing the parameters,
transverse intersection of stable and unstable manifolds produces non-smoothness of the torus
and transition to chaos; see fig. 3. It is interesting to note, that this scenario agrees with that in
the visionary paper by Ruelle and Takens [6].
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Figure 3. Transition to chaos of a double 3-torus; projection on a plane with Lyapunov exponents
λ1 ≈ λ2 ≈≈ λ3 = 0, λ4 = O(10−4), λ5, λ6 < 0.
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