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A basic paradox

General ‘knowledge’: dissipation stabilizes.

Example: mathematical pendulum without

friction swings forever.

With friction: return to equilibrium position.

However for more than one degrees of free-

dom the situation is more complicated.

Example: the solar system. Tidal friction is

hardly observable on a timescale of centuries,

on longer timescales it may destabilize.

Examples: coupled pendula, rotor systems
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Ziegler’s paradox ,1952

Original drawings from the Ziegler’s work of

1952:

(a) double linked pendulum with constant

follower load p,

(b) stability interval of the undamped and

damped pendulum (damping parameter b).

The phenomenon was known much earlier:

Thomson and Tait, Darwin, Poincaré.
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Whitney’s umbrella (1943)

Whitney’s original sketch of the umbrella.

Consider the Ck map f : E2 7→ E3 After

transformation we have near the origin

y1 = x2
1, y2 = x2, y3 = x1x2, (1)

so that y1 ≥ 0 and on eliminating x1 and x2:

y1y2
2 − y2

3 = 0.

Linear ODEs with constant coefficients may

produce (eigenvalue) characteristic equations

with such singularities.
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Bottema solved the paradox, 1956
Consider a linear system with two degrees of
freedom, constant coefficients, near x = y =
0:

ẍ + a11x + a12y + b11ẋ + b12ẏ = 0,

ÿ + a21x + a22y + b21ẋ + b22ẏ = 0.

The ruled surface is the bifurcation manifold.
There is a reduction of the 8 parameters to
3 for the bifurcation manifold

a1a2a3 = a2
1 + a2

3.
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A particle on a rotating vessel

Brouwer (1918) considered the equilibrium of

a point mass moving under gravity on a sur-

face S that is rotating with uniform angular

velocity ω around a vertical axis l.

Consider O: point of S that is equilibrium.

Linearized equations near O with damping:

ẍ− 2ωẏ + c1ẋ + (gk1 − ω2)x = 0,

ÿ + 2ωẋ + c2ẏ + (gk2 − ω2)y = 0.

k1 and k2 are the curvatures in O, k2 ≤ k1.

−2ωẏ,2ωẋ represents Coriolis force

gk1x, gk2y represents gravity

−ω2x,−ω2y represents centrifugal force.
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A particle on a rotating vessel

No damping c1 = c2 = 0

If k2 ≤ k1 < 0 (bump): instability

Two other cases:

• 0 < k2 < k1 (indentation of S).

Stability iff 0 < ω2 < gk2 (slow rotation)

or ω2 > gk1 (fast rotation).

• k2 < 0 and k1 > 0, k1 > −k2 (saddle).

Stability iff ω2 > gk1.
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Adding internal damping

Two cases (Bottema, 1976):

• 0 < k2 < k1 (indentation of S).

Stability iff 0 < ω2 < gk2.

The fast rotation branch ω2 > gk1 has

vanished.

• A geometric saddle is always unstable with

damping small or large.
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Quenching the unstable saddle motion

In the engineering context, quenching of in-

stabilities by a practical physical mechanism

is important. Intuitively it is not clear what

to propose but based on earlier studies we

choose:

modulation of the vessel rotation.

Consider the rotation of a saddle, unstable by

dissipation for any rotational velocity ω and

put (to reduce the number of parameters)

k2 = k > 0 and k1 = −k

Assume

ω2 > gk.

For the friction coefficient put c1 = c2 = c.

Moreover

ω2 := ω2 + 2aε cos νt

with again ω a constant.
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Quenching continued

The equations of motion become with small

dissipation and small ω-modulation:

ẍ− 2ωẏ − ε
2a

ω
cos νtẏ + εcẋ− β2x = 0,

ÿ + 2ωẋ + ε
2a

ω
cos νtẋ + εcẏ − α2y = 0.

Two basic frequencies:

α2 = ω2 + gk, β2 = ω2 − gk.

To perform averaging-normalization we trans-

form (variation of constants) to a slowly vary-

ing system.
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Using the transformation in the eqs of motion

we find with MATHEMATICA (Theo Ruij-

grok)

Ȧ = −ε
α sinαt

α2 − ω2
F1 + ε

ω cosαt

β2 − ω2
F2,

Ḃ = ε
α cosαt

α2 − ω2
F1 + ε

ω sinαt

β2 − ω2
F2,

Ċ = ε
ω2 sinβt

β(α2 − ω2)
F1 + ε

ω cosβt

ω2 − β2
F2,

Ḋ = −ε
ω2 cosβt

β(α2 − ω2)
F1 + ε

ω sinβt

ω2 − β2
F2.

We have in our quenching model

F1 = −cẋ +
2

ω
ẏ cos νt + 2ax cos νt,

F2 = −cẏ − 2

ω
ẋ cos νt + 2ay cos νt.
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Applying averaging-normalization we have to

make assumptions about the frequencies α, β, ν.

We have the following 5 resonances:

• 2α = ν. This is a Mathieu resonance that

does not contribute to stabilization.

• 2β = ν, also a Mathieu resonance making

matters worse.

• The sum-resonance α = β + ν.

• The sum-resonance α + β = ν.

• Special resonance α = 3β = β + ν.
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Eigenvalue calculation

• Mathieu resonances: unstable.

• Special resonance α = 3β = β + ν: un-

stable equilibrium.

• Sum-resonances α = β+ν and α+β = ν.

Stability if

c < a
K

ω
√

4−K2
with K =

gk

ω2
.

The sum-resonances correspond with a

synchronization of the basic vessel fre-

quencies and the modulation of the vessel

rotation.
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The single-well in the unstable case

Basic frequencies:

ω ±
√

gk.

Stabilizing combination resonance 2
√

gk = ν.

a = 0 a = 0

a = a1

a = a1
P

a > a2

a = a2

Movement of the eigenvalues near equilib-

rium at the single-well with dissipation and

small modulation of the rotation ω.
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Nonlinear extensions

Damping

ε(cẋ− dẋ3), ε(cẏ − dẏ3).

d > 0 softening damping, d < 0 hardening

damping.

The unstable case was ω2 > gk. Will non-

linear damping increase the instability or will

there be stabilization at some distance of the

origin?

It turns out nonlinearities do not stabilize but

there are new phenomena, like quasi-periodic

motion.
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Conclusions

• Mathematically, the bifurcational behav-

ior is described by the Whitney umbrella

as indicated. In mechanical terms, the

enlarging of the instability-domains is caused

by the coupling between the two degrees

of freedom which arises in the presence

of damping.

• Bottema’s solution in 1956 was ignored.

Google Scholar gives no citations of the

paper in the period 1956-2008.

• The generality of Bottema’s results en-

able us to discuss the part played by asym-

metric and symmetric damping.
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• In the context of dissipation-induced in-

stability, the influence of asymmetric and

symmetric damping was studied exten-

sively by Kirillov (2005b, 2007), Kirillov

and Seyranian (2005a). In these papers

(see Kirillov and Verhulst, ZAMM 2010)

Bottema’s results were also generalized

to higher (more than 4) dimensions.

• The phenomena described here are basi-

cally linear. Further away from equilib-

rium and in some critical cases, Krein-

collision or small real parts near the um-

brella surface, nonlinear terms may come

into play.

• It is remarkable that one can stabilize

equilibrium as shown in Brouwer’s rotat-

ing vessel.
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