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We review a number of methods to prove nonintegrability of Hamiltonian systems and focus
on 3 Degrees-of-Freedom (DoF) systems listing the known results for the prominent resonances.
Associated with the Hamiltonian systems are the averaged-normal forms that provide us with
geometric insight, approximations of orbits and measures of chaos. Symmetries do change the
qualitative and quantitative pictures; we illustrate this for the 1:2:1 resonance with discrete
symmetry in the 1st and 3rd DoF. In this case, the averaged-normal form is still nonintegrable,
but it becomes integrable when adding discrete symmetry in all DoF. Apart from the short-
periodic solutions obtained by averaging, we find many periodic solutions. There is numerical
evidence of the presence of Šilnikov bifurcation which clarifies the presence of nonintegrability
phenomena qualitatively and quantitatively.

Keywords: Hamiltonian resonance; nonintegrability; symmetry; averaging-normalization;
Šilnikov bifurcation; algebraic method.

1. Introduction

Time-independent Hamiltonian systems with n
Degrees-of-Freedom (DoF) are generally noninte-
grable for nondense sets of the parameters (coef-
ficients of the Hamiltonian function) with positive
measure; see [Broer & Sevryuk, 2010]. The standard
formulation for Hamiltonian systems is after intro-
ducing an analytic function H(p, q) of 2n variables
on a suitable domain:

H(p, q), p = (p1, . . . , pn), q = (q1, . . . , qn) (1)

inducing equations of motion:

ṗ =
∂H

∂q
, q̇ = −∂H

∂p
. (2)

System (2) has at least one integral of motion,
H(p, q). Orbits starting at p(0), q(0) will remain
on the energy manifold H(p(0), q(0)) = E0 with
E0 a constant. We call n the number of DoF. We
suppose that near stable equilibria, we can expand
H = H2 + H3 + H4 + · · · with Hj , j = 2, 3, 4, . . .
homogeneous polynomials of degree j. H2(p, q) is
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supposed to be a Morse function, if H2 is positive
definite in a neighborhood of the origin, the energy
manifold will be compact near the origin of phase-
space.

Normalizing the Hamiltonian near stable equi-
librium gives us explicit estimates of the dynamics
determined by the equations of motion. Equivalent
methods are Birkhoff–Gustavson normalization, see
[Gustavson, 1966] and averaging methods keeping
the equations of motion conservative, see [Sanders
et al., 2007]. An important question then is whether
the normalized system is integrable or not. In
addition, we have the basic question what nonin-
tegrability of the normalized Hamiltonian means
dynamically.

There are many aspects of the formulation of
Hamiltonian normal forms that can be found in
[Sanders et al., 2007, Chapter 10]; we will pre-
suppose the formulations of this material.

In the case of 2 DoF, the normal form near a
stable equilibrium will always be integrable. A con-
sequence is that intersections of stable and unstable
manifolds in this case will always have very small
angles, sometimes vanishing at any order of normal-
ization. Interesting dynamics in 2 DoF happens at
somewhat larger values of the energy with respect
to stable equilibrium as can be shown by the anal-
ysis using Melnikov integrals.

This motivates us to consider Hamiltonian sys-
tems with 3 DoF near stable equilibrium. We will
summarize the results for first-order resonances and
discuss examples with symmetry later. The numer-
ical value of H2 (for given initial conditions) is indi-
cated by E0; near stable equilibrium, we can rescale
p → εp, q → εq with ε a small positive parameter.
Dividing by ε2, we obtain from Hamiltonian (1) the
Hamiltonian H2 + εαH3 + ε2βH4 with H3, a cubic
polynomial in (p, q), H4 quartic in (p, q), etc. We
clearly have the energy H(p(0), q(0)) = E0 + O(ε)
for all times.

The normal form H to cubic and quartic terms
is indicated by

H3 = H2 +H3,

H4 = H2 +H3 +H4.
(3)

Note that according to [Weinstein, 1973], an n DoF
Hamiltonian system near a stable equilibrium con-
tains at least n families of periodic solutions param-
eterized by the energy. We will keep this in mind

when looking for periodic solutions in particular
systems.

1.1. Coordinate transformations
for approximations

Suppose we consider an n DoF Hamiltonian system
with Hamiltonian H = H2 + H3 as in (3). As we
shall see, one can devise transformations to simplify
the quadratic nonlinear terms in the equations of
motion. As indicated above, we obtain a simplified
system of equations of the form H = H2 +H3 +R.
The term R will consist of quartic and higher-
order degree elements, the corresponding equations
of motion will in general be as difficult to analyze
as the original system. The next step is well known
and often applied: we truncate the system to H3 =
H2 + H3 and try to analyze the truncated system.
Very rarely the relations between the solutions of
the truncated system and the original one are inves-
tigated. We have here very basic questions. Do peri-
odic solutions found in the truncated system persist
in the original system? Does chaos persist? On what
time intervals do we have mathematical approxi-
mations of the original system? The questions on
periodic solutions have been answered in [Poincaré,
1892, 1893, 1899, Vol. 1] using the implicit function
theorem; for Hamiltonian systems, we have to con-
sider the periodic solutions on a fixed energy mani-
fold. Explicit approximation estimates can be found
in [Sanders et al., 2007; Verhulst, 2023]; the estima-
tion theory is technically complicated. Chaos in the
normal form describes phenomena that cannot be
destroyed by higher-order ε-terms.

It can be confusing that different coordinate
systems play a part in Hamiltonian systems, for
introductions, see [Arnold, 1978, 1983]. Apart from
the canonical variables (p, q), one uses action-angle
variables τj ,Φj defined by

qj =
√

2τj sin Φj , pj =
√

2τj cos Φj ,

τj ≥ 0, Φj ∈ S1, j = 1, . . . , n.
(4)

Action-angle coordinates are again canonical in
the sense that they can be written in the form
(2). We will also use amplitude-phase coordinates,
see Sec. 3. They are related to action-angles and
are conservative but not canonical; they have the
advantage of a more direct physical meaning.
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In many special problems, especially in celestial
mechanics, many other coordinate systems can be
useful.

1.2. The order of resonance and
combination angles

For the quadratic part of the Hamiltonian H2, we
usually write

H2 =
1

2

n∑
j=1

(p2j + ω2
jq

2
j ), or

H2 =
1

2

n∑
j=1

ωj(p
2
j + q2j ), ωj > 0.

The parameters ωj are called the (linear) frequen-
cies. We have a resonance if we can find natural
numbers a1, . . . , am 6= 0 such that

m∑
j

ajωj = 0

for a number of frequencies from the set ω1, . . . , ωn.
As we shall see in Sec. 2, the presence of reso-
nances causes the importance of effective combina-
tion angles and interesting nonlinear dynamics.

1.3. Methods signaling
nonintegrability

An important step in the analysis of a Hamilto-
nian system is to establish whether the system is
integrable or not. What nonintegrability means for
the dynamical system is a second question. In the
important case of near-integrability, we have the
KAM theorem that gives general conditions for per-
turbed n DoF integrable Hamiltonian systems to
contain an infinite number of n-tori, the measure
of which tends to 1 as the perturbation tends to
zero. For precise formulations and an extensive dis-
cussion of the theory, see [Broer & Sevryuk, 2010].
Basic results for 2 DoF Hamiltonian systems are
discussed in [Levi, 2010].

Two DoF systems
As a typical example, we consider 2 DoF Hamil-
tonian systems close to the basic 2:1 resonance.
To restrict the number of parameters, we consider

potential problems H = H2 + εH3 with
H2 =

1

2
(ẋ2 + ω2x2 + ẏ2 + y2), ω2 = 4 + εd,

H3 = −(a1x
3 + a2y

3 + a3x
2y + a4xy

2).

(5)

The parameter d allows for detuning of the exact
resonance. If a3 = a4 = 0, the Hamiltonian
(5) is integrable; we assume that the parameters
a1, . . . , a4 are nonzero. After normalization, we find
for the normalized Hamiltonian H:

H = H2 + εH3,

H3 =
1

4
a4(2xy

2 − x(ẏ2 + y2) + ẋẏy).
(6)

The normalized Hamiltonian (6) is integrable with
integrals H2, H3. The solutions of the equations of
motion induced by H approximate the solutions
of the equations of motion induced by the original
Hamiltonian (5) with error O(ε) on the timescale
1/ε. Hamiltonian (5) will not be integrable in gen-
eral, its parameter space is four-dimensional, it can
be seen as a perturbation of Hamiltonian (6). In
this case, integrability in parameter space has mea-
sure zero (a3a4 6= 0). However, although we have
nonintegrability of Hamiltonian (5), the measure of
invariant 2-tori near stable equilibrium tends to 1 if
ε→ 0.

Poincaré introduced a map characterizing the
phase-flow of a Hamiltonian system near stable
equilibrium. The orbits move on energy manifolds
that are topologically equivalent to spherical sur-
faces. In the case of 2 DoF, an energy manifold is
S3. As the flow is recurrent, for an introduction and
references, see [Verhulst, 2023], we can construct
a two-dimensional transversal to the flow and,
because of the recurrence, the flow induces a map of
the transversal into itself. A periodic solution will
produce a fixed point of the map, orbits near a sta-
ble periodic solution will generally be organized on
2-tori surrounding the periodic solution producing
closed curves on the transversal. The 2-tori separate
the flow on S3. Evidence of this example and other
cases, see [Holmes et al., 1988], suggest that near
stable equilibrium of 2 DoF Hamiltonian systems,
the distance between the tori and the asymptotic
estimates from the normalization is exponentially
small (like exp(−1/ε)).
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The analysis will be qualitatively and quantita-
tively different for 3 DoF Hamiltonian systems.

Three DoF systems
Near stable equilibrium, the energy manifolds will
be S5. A transversal of the flow on a fixed energy
manifold will still be four-dimensional, the KAM
theorem guarantees the presence of invariant 3-tori
containing quasi-periodic solutions. However, the 3-
tori will not separate the orbits of S5, there is more
space for chaotic solutions.

The consequence of this geometric argument is
that the integrability of the normalized Hamiltonian
system is an important question as it directly affects
the presence of chaotic solutions. This means that
we have to look for a third integral of the normalized
Hamiltonian, independent of H2 and H3.

We will review a number of methods signal-
ing nonintegrability. The first three techniques lead
also to insight in the dynamics. The last two leave
interesting questions open on the relation between
nonintegrability and the corresponding dynamics;
this question has been settled for specific Hamil-
tonian systems like the Hénon–Heiles system, see
[Kozlov, 1996; Morales-Ruiz, 2000]. More details
will be given in the following section for the first-
order resonances in 3 DoF.

(1) Intersection of manifolds
The original idea was conceived by Poincaré
and can be found in [Poincaré, 1892, 1893, 1899,
Vol. 3]. Considering a saddle point of a Poincaré
map, one can identify stable and unstable man-
ifolds emerging from the saddle. The complex-
ity of transversal crossings of the manifolds
produces the wild behavior that nowadays is
identified as chaos and horseshoe dynamics.
Most applications of the idea are a mixture
of analytic and numerical dynamics, see also
[Holmes et al., 1988]. The use of the so-called
Melnikov integral is based on the same ideas.

(2) Devaney’s adaptation of Ŝilnikov bifurcation
This extends both the ideas of Poincaré and
Ŝilnikov, see [Devaney, 1976]. Suppose we have
a Hamiltonian system containing an isolated
periodic solution that is complex unstable. A
Poincaré map of the system shows for this solu-
tion a fixed point with two adjoint complex
eigenvalues. If one can find an isolated homo-
clinic of this periodic solution, this will contain
a horseshoe map and we have chaos near this
periodic solution. Again, most applications of

the idea are a mixture of analytic and numerical
dynamics.

(3) Laskar’s frequency method
Consider a Hamiltonian system that is close to
an integrable one. Assume that the system sat-
isfies the conditions of the KAM theorem, pro-
ducing an infinite set of tori around a stable
periodic solution. If the system is actually inte-
grable there will be periodic and quasi-periodic
solutions on the tori. If the system is nonin-
tegrable, a frequency analysis on the tori will
show jumps in the frequencies between the tori,
see [Laskar, 1993]. They will correspond to gaps
between the tori containing chaotic solutions.
Using the frequency method is technically dif-
ficult, it was used in 1990 by Laskar to demon-
strate chaos in a Solar System model. It can
also be used in dissipative systems with symme-
tries that allow infinite sets of tori, see [Bakri &
Verhulst, 2022].

(4) Analysis of singularities. Duistermaat [1984]
discusses the 1:2:1 resonance for 3 DoF Hamil-
tonian systems. It turns out that H3 = 0 con-
tains a family of periodic solutions and it is
possible to analyze the period function P of
this family. Complex continuation of P shows
infinite branching of the period function which
excludes integrability. The approach is different
from Ziglin–Morales–Ramis theory to be dis-
cussed next. The author discusses the dynam-
ics by looking at possible intersections of stable
and unstable manifolds of the family of periodic
solutions; he needs H4 terms to obtain transver-
sal intersection.

(5) An algebraic method (Ziglin–Morales–Ramis
theory). We will use an observation by Lya-
punov in 1894, see [Kozlov, 1996, Chapter 5]
for extensive discussions of the background; see
also [Morales-Ruiz, 2000]. Lyapunov’s result is
that if we find multivalued solutions from a
variational equation of a periodic solution, this
result extends to the original Hamiltonian sys-
tem; a modern treatment involves monodromy
groups. According to Lyapunov, if the gen-
eral solution of the variational equations is not
single-valued, then the solutions of the orig-
inal nonlinear equations are also not single-
valued; this excludes integrability. In a more
recent formulation, one uses the Galois group;
for details on this use of differential Galois the-
ory, see [Morales-Ruiz, 2000]. Non-Liouvillian
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or closed-form solutions imply a noncommuta-
tive differential Galois group, which violates the
necessary condition of Morales and Ramis the-
ory for integrability of Hamiltonian systems. In
this case, the solution is multivalued, so, there
is no additional analytic first integral and in
most cases, not even a meromorphic integral.
An application is given in Appendix A.

Integrability of Hamiltonian systems is excep-
tional. Important questions concern the description
of the dynamics in the case of nonintegrability and
the measure of chaos in nonintegrable systems. For
both questions, the theory of normalization and
averaging plays a crucial role.

2. The First-Order Resonances
in 3 DoF

From [Sanders et al., 2007, Chapter 10], we list the
first-order resonances in 3 DoF. We add the general
normal forms and the results on integrability. Note
that for special values of the coefficients, systems
that are in general nonintegrable may be integrable.
This may also happen by assuming symmetries.

2.1. Integrability results of normal
forms

We leave out the ε in the expressions. The Hamilto-
nian H2 +H3 has 56 free parameters, the reduction
to normal forms is impressive.

• The 1:2:2 resonance.

The normal form is in action-angle coordinates τ, ψ
to third order:

H3 = τ1 + 2τ2 + 2τ3

+ 2[a1
√

2τ2 cos(2ψ1 − ψ2 − a2)

+ a3
√

2τ3 cos(2ψ1 − ψ3 − a4)], (7)

with constants a1, . . . , a4. For potential problems,
we have a2 = a4 = 0. The actions and the two
combination angles are slowly varying.

The normal form H3 in (7) is integrable, see,
for potential problems, [Martinet et al., 1981] and,
for the general Hamiltonian case, [van der Aa &
Verhulst, 1984]. The proofs are by inspection of the
equations of motion.

It was shown in [Christov, 2020] by algebraic
methods that for an open set of parameters, the

normal form H4 is not integrable. The implication
is that generically, the 1:2:2 resonance behaves to
O(ε) integrable and on smaller subsets to O(ε2)
dynamically nonintegrable. High precision numer-
ics in [Christov, 2020] shows chaotic behavior in
Poincaré sections.

• The 1:2:1 resonance.

The normal form is in action-angle coordinates τ, ψ
to third order:

H3 = τ1 + 2τ2 + 2τ3

+ 2
√

2τ2[a1 cos(2ψ1 − ψ2 − a2)

+ a3
√
τ1τ3 cos(ψ1 − ψ2 + ψ3 − a4)

+ a5τ3 cos(2ψ3 − ψ2 − a6)]. (8)

We have three combination angles and 56 parame-
ters in H2 + H3, reduced to six parameters in the
normal form. In the case of potential problems, we
have a2 = a4 = a6 = 0.

It was shown in [Duistermaat, 1984] that for an
open set of parameters in the Hamiltonian, the nor-
mal form H2 +H3 is nonintegrable. The technique
used in [Duistermaat, 1984] was that in certain sub-
sets, one can identify solutions and continue time
analytically into the complex domain. This leads to
the presence of an essential singularity in the sense
of complex analysis. Duistermaat [1984] remarks on
the nonintegrable dynamics of this resonance, these
observations are interesting but far from complete.

Using Ziglin–Morales–Ramis theory based on
differential Galois theory, the nonintegrability of the
normal form (8) was also shown in [Christov, 2012].
No explicit dynamics was indicated for this reso-
nance but the algebraic method is also useful for
other resonance problems.

• The 1:2:3 resonance.

The normal form is in action-angle coordinates τ, ψ
to third order:

H3 = τ1 + 2τ2 + 3τ3

+ 2
√

2τ1τ2[a1
√
τ1 cos(2ψ1 − ψ2 − a2)

+ a3
√
τ3 cos(ψ1 + ψ2 − ψ3 − a4)]. (9)

We have two combination angles and four param-
eters in the normal form. In the case of potential
problems, we have a2 = a4 = 0.

It was shown in [Hoveijn & Verhulst, 1990] that
the normal form (9) is nonintegrable for open sets of
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the parameters. The analysis is based on [Devaney,
1976] where one has to identify a complex unstable
periodic solution. One has to identify a transversal
homoclinic orbit with inward and outward spiraling
orbits. The dynamics near the homoclinic fits into
the theory of Šilnikov showing that in such a case,
the dynamics contains locally a horseshoe map. The
system induced by Hamiltonian (9) contains a com-
plex unstable periodic solution associated with the
τ2 normal mode, two heteroclinic orbits and a con-
tinuous set of homoclinics. This complicates the
application of Devaney’s theory in [Devaney, 1976].
In [Hoveijn & Verhulst, 1990], this is solved by
extending to the normal form H4; it is shown by
precise numerics that the infinite set of homoclin-
ics breaks up to produce a transversal homoclinic
orbit. This implies the presence of Šilnikov dynam-
ics corresponding to chaotic behavior. A Poincaré
section in [Hoveijn & Verhulst, 1990] illustrates the
dynamics.

It should be noted that a horseshoe map is
a structurally stable phenomenon in the context
of symplectic maps, so, the nonintegrability also
extends to the original Hamiltonian.

Interestingly, when using Ziglin–Morales–
Ramis theory and special solutions of the equations
of motion, the nonintegrability of the normal form
(9) for open sets of the parameters was shown in
[Christov, 2012] by studying the dynamics of the
normal form (9) without the need of H4. On the
other hand, the use of Šilnikov bifurcation provides
knowledge of the dynamics.

• The 1:2:4 resonance.

The normal form is in action-angle coordinates τ, ψ
to third order:

H3 = τ1 + 2τ2 + 4τ3

+ 2[a1τ1
√

2τ2 cos(2ψ1 − ψ2 − a2)

+ a3τ2
√

2τ3 cos(2ψ1 − ψ3 − a4)]. (10)

We have two combination angles and four param-
eters in the normal form. In the case of potential
problems, we have a2 = a4 = 0.

Identifying particular solutions and their
characteristics using Ziglin–Morales–Ramis theory,
nonintegrability of normal form (10) was shown for
open sets of the parameters in [Christov, 2012].

2.2. Models and symmetries

In mathematics, one usually aims at general results
but in applications, one meets special cases. A spe-
cial case that arises very often is the presence of
symmetries. One can think of the symmetry of
a swinging pendulum in the angle of deflection
with respect to a symmetry-axis. Another case is
the spherical symmetry induced by gravitational
forces. Interesting examples are also found in sys-
tems of coupled oscillators as in the Fermi–Pasta–
Ulam problems, see for instance [Fermi et al., 1955;
Verhulst, 1979; Rink & Verhulst, 2000]. So, exam-
ples that are nongeneric from a mathematical point
of view are sometimes of utmost importance in
applications.

We will consider the consequences of symme-
try assumptions for 3 DoF Hamiltonian systems in
1:2:1 resonance leading to a possible degeneration of
the normal forms. The implication is that in appli-
cations, we have to check the analysis of Sec. 2.1 for
special cases.

3. A Symmetric 1:2:1 Resonance

Consider the Hamiltonian:

H(p, q) = H2 + εH3 + ε2H4, (11)

for b2 6= 0, b9 6= 0:

H2 =
1

2
(p21 + q21) +

1

2
(p22 + 4q22) +

1

2
(p23 + q23),

−H3 = b2q
2
1q2 + b9q

2
3q2.

The Hamiltonian shows mirror-symmetry (discrete
symmetry) in two of the DoF, q1, q3. The equations
of motion are for H2 + εH3:

q̈1 + q1 = ε2b2q1q2,

q̈2 + 4q2 = ε(b2q
2
1 + b9q

2
3),

q̈3 + q3 = ε2b9q3q2.

(12)

It has been shown by Christov, see Appendix A,
that system (12) is not integrable.

3.1. The case b2 = b9

If we have b2 = b9, then apart from the Hamilto-
nian, we have a second integral of motion:

q3q̇1 − q1q̇3 = C, (13)
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with C, a constant. The integral implies conserva-
tion of angular momentum between the first and
third mode. In this case, we can reduce the system
to 2 DoF, the normal form will be integrable. In the
sequel, we will assume b2 6= b9.

3.2. Periodic solutions of a
symmetric 1:2:1 resonance

System (12) has a q2 normal mode P1, it is
harmonic:

q2(t) = ei2t, p1 = q1 = p3 = q3 = 0. (14)

The normal mode can also be written as q2(t) =
r0 cos(2t + φ0) with amplitude r0 and phase φ0
constant. We can apply averaging-normalization to
system (12) by canonical transformations or by
amplitude-phase averaging. The second approxima-
tion approach keeps the approximating system con-
servative and is mathematically equivalent to stan-
dard canonical normalization; see [Sanders et al.,
2007, Chapter 10] or [Verhulst, 2023]. We transform

q1(t) = r1 cos(t+ φ1(t)),

q̇1(t) = −r(t) sin(t+ φ1(t)),

q2(t) = r2(t) cos(2t+ φ1(t)),

q̇2(t) = −2r2(t) sin(2t+ φ1(t)),

q3(t) = r3(t) cos(t+ φ3(t)),

q̇3(t) = −r3(t) sin(t+ φ3(t)).

(15)

Substituting in system (12) and assuming q2(t) 6= 0,
we find the following after averaging:

ṙ1 = −ε
2
b2r1r2 sin(2φ1 − φ2),

φ̇1 = −ε
2
b2r2 cos(2φ1 − φ2),

ṙ2 =
ε

8
(b2r

2
1 sin(2φ1 − φ2)

+ b9r
2
3 sin(2φ3 − φ2)),

φ̇2 = − ε

8r2
(b2r

2
1 cos(2φ1 − φ2)

+ b9r
2
3 cos(2φ3 − φ2)),

ṙ3 = −ε
2
b9r3r2 sin(2φ3 − φ2),

φ̇3 = −ε
2
b9r2 cos(2φ3 − φ2).

(16)

Amplitude-phase averaging has to be handled with
care at the zeros of the amplitudes. For r1, r3, the
singularity is removed in system (16), we have to
exclude r2 = 0.

System (16) has the first integral:

1

2
(r21 + 4r22 + r23) = E0, (17)

with E0, a constant. The second independent inte-
gral of the normalized system (16) is H3:

H3 = b2r
2
1r2 cos(2φ1 − φ2) + b9r

2
3r2 cos(2φ3 − φ2).

(18)

With reference to [Duistermaat, 1984], we present
the second integral of system (16) also in standard
canonical coordinates:

H3 = q2[b2(q
2
1 − p21) + b9(q

2
3 − p23)]

+ p2(b2q1p1 + b9q3p3). (19)

Note that in [Duistermaat, 1984], the roles of q2 and
q3 have been exchanged. It is remarked in [Duister-
maat, 1984] that the submanifold H3 = 0 contains
a set of periodic solutions. However, on the reduced
Hamiltonian, they have nodal eigenvalues, so they
are not useful to apply the [Devaney, 1976] scenario
for nonintegrability. We will return to the integra-
bility problem.

The normal mode q2(t) = r0 cos(2t + φ0) is
unstable. This can be proved by perturbing q2(t) =
r0 cos(2t+φ0) +u, inserting in system (12) and lin-
earizing at q1 = q3 = 0. The linearized system is

q̈1 + q1 = ε2b2r0 cos(2t+ φ0)q1, ü+ 4u = 0,

q̈3 + q3 = ε2b9r0 cos(2t+ φ0)q3,

with for q1, q3 the well-known Mathieu equation
with prominent instability Floquet-tongue. We find
near the normal mode nodal instability (two posi-
tive and two negative real eigenvalues of the reduced
Hamiltonian at the normal mode).

System (16) contains at least two invariant
manifolds: M1 given by q3(t) = 0, t ≥ 0 and M2

given by q1(t) = 0, t ≥ 0; M1 and M2 show 2
DoF dynamics that can be analyzed by averaging.
We find in M1 the unstable normal q2-mode from
q1 = 0. Putting

χ1 = 2φ1 − φ2
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we note that the amplitude is constant if χ1 = 0, π.
The equation for χ1 is

dχ1

dt
= εb2

(
−r2 +

r21
8r2

)
cosχ1. (20)

χ1(t) is stationary if r21 = 8r22. From the integral
(17), we find for the periodic solutions indicated by
P2, P3:

r21 =
4

3
E0, r22 =

1

6
E0, r3 = 0. (21)

Similar results are found for manifold M2 with peri-
odic solutions P4, P5:

r23 =
4

3
E0, r22 =

1

6
E0, r1 = 0. (22)

In M1 and M2, we find apart from the normal mode
two periodic solutions that are stable within the
manifolds, altogether five periodic solutions. The 2
DoF stability follows from the well-known analy-
sis of the 1:2 resonance, see, for instance [Sanders
et al., 2007, Chapter 10]. The stability analysis in
M1 (and in M2) takes place by considering the nor-
malized (averaged) system on the energy manifold
and identifying periodic solution with the second
integrals of motion as critical points. The critical
points have for 2 DoF systems generically two real
or two purely imaginary eigenvalues, in this case
purely imaginary.

Are the periodic solutions given by (21) and
(22) stable or unstable in the full 3 DoF system?

Consider the periodic solutions in M1. It is no
restriction of generality to put φ1(0) = 0, so we have
for the two periodic solutions from system (12):

q1(t) = 2

√
E0

3
cos t,

q2(t) = ±
√
E0

6
cos 2t.

(23)

Putting

q1 = 2

√
E0

3
cos t+ u1,

q2 = ±
√
E0

6
cos 2t+ u2,

q3 = u3,

substituting in system (12) and linearizing, we find
for u3:

ü3 + u3 = ±ε2b9u3

√
E0

6
cos 2t.

So, we have for u3 after linearization the Mathieu
equation with parametric forcing in the main Flo-
quet instability tongue. The periodic solutions (23)
are unstable in 3 DoF. With an analogous reason-
ing, we have instability for the two periodic solu-
tions with q2 > 0 in M2. Solutions that are close to
P2, P3 with q3(0) small will leave a neighborhood of
M1 rotating around an unstable invariant manifold
that serves as guiding center. A similar observation
holds for P4, P5.

3.3. Phase-locked invariant
manifolds

Special solutions of system (16) are obtained by
choosing

cos(2φ1 − φ2) = 0, cos(2φ3 − φ2) = 0, (24)

resulting in four possible choices: 2φ1 − φ2 = π/2,
3π/2, 2φ3 − φ2 = π/2, 3π/2.

For the amplitudes, we have the equations

ṙ1 = ∓ε
2
b2r1r2,

ṙ2 = ±ε
8
b2r

2
1 ±

ε

8
b9r

2
3,

ṙ3 = ∓ε
2
b9r3r2,

(25)

that can be integrated.

3.4. The complexity of
nonintegrability

We will use the recurrence theorem for system (12)
to demonstrate complexity, see [Verhulst, 2016; Ver-
hulst, 2023, Chapter 8.3]. We start near to the nor-
mal mode q2(t) and will use the Euclidean distance
d(t) to indicate the distance from the initial point in
phase-space. For a Hamiltonian system with energy
O(1), we have by requiring a distance d0 an upper
limit L for the recurrence time Tr:

Tr ≤ O
(

1

d2n−10

)
, (26)
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Fig. 1. Recurrence indicated by Euclidean distance d(t) for system (12) starting near the normal mode q2(t) (left figure)
with q1(0) = 0.1, q2(0) = 1, q3(0) = −0.1, b2 = 1, b9 = −2 with initial velocities zero. We choose ε = 0.1 and d0 = 0.1. We
need 2390 time-steps for recurrence. On the right is the case near the periodic solution P2 in M1 starting at q1(0) = 2/

√
3,

q2(0) = 1/
√

6, q3(0) = 0.1 and initial velocities zero.

with n the number of DoF, see [Verhulst, 2016].
To the left of Fig. 1, we have d(t) for system (12)
starting near the q2 normal mode. Choosing d0 =
0.1, we have an upper limit for 3 DoF of 105 time-
steps. The recurrence time depends on the presence
of periodic solutions, tori and the repeated passage
through resonance zones. For this case, we have
recurrence at 2390 time-steps.

To the right of Fig. 2, we start near a peri-
odic solution P2 in M1 with r1(0) = 2/

√
3, r2(0) =

1/
√

6, r3(0) = 0.1. The solution is stable in M1 but
unstable by coupling to the q3-mode. The recur-
rence is much stronger as we have stability with
respect to the q1, q2 modes.

Numerical explorations show that there are
many other periodic solutions in the region near P2,
see also Appendix B. We give an example in Fig. 2,
where we show Poincaré sections near a periodic
orbit with nearby chaotic behavior.

We will turn now to a periodic solution in gen-
eral position using again Poincaré maps, see Fig. 3.
The eigenvalues of the fixed point of the Poincaré
map are [0.8923391 + 0.45136562i, 0.8923391 −
0.45136562i, 1.03766315, 1., 0.96370388], so, two
complex and one positive. We computed the 1D
unstable manifold of the Poincaré map correspond-
ing with an unstable manifold. This orbit follows
oscillatingly a homoclinic solution as the guiding

Fig. 2. Poincaré section for fixed energy at q2 = 0 for system (12) near periodic solution P2 in M1. The section is four-
dimensional, we show two projections with dots indicating chaos. We have chosen b2 = 1, b9 = −1.1756926, ε = 0.1 with
q1(0) = 2/

√
3, q2(0) = 1/

√
6, q3(0) = 0.011 and initial velocities zero.

2450168-9

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

4.
34

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
ua

nr
on

g 
C

he
n 

on
 1

0/
30

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



October 29, 2024 15:7 WSPC/S0218-1274 IJBC 2450168

F. Verhulst & T. Bakri

Fig. 3. Poincaré section for fixed energy at q2 = 0 for system (12) near a numerically detected saddle periodic solution
in general position with a one-dimensional unstable manifold. We have chosen b2 = 1, b9 = −1.1756926, ε = 0.1 with
q1[0] = −0.81151; p1[0] = −0.8091; q2[0] = 0; p2[0] = 0.79038; q3[0] = 0.17045; p3[0] = −0.15606. On the left, we show a
projection of the periodic orbit on the p2, q3 plane (closed green curve). Starting near the saddle in the direction of the unstable
eigenvector v = [−0.11750252, −0.18952268, 0, −0.03178473, −0.7913451, 0.56836342] yields the red curve as orbit. On the
right, we numerically computed the 1D unstable manifold of the saddle fixed point of the Poincaré map corresponding with
the unstable cycle and show Ŝilnikov-like behavior. The solution on the unstable manifold follows oscillatingly a homoclinic
solution as the guiding center.

center in Fig. 3 with an interval of nearly 250 time-
steps. This is the right scenario for Ŝilnikov bifur-
cation leading to chaos; it remains a conjecture as
one has still to show that the orbit is a transversal
homoclinic.

3.5. The manifold H3 = 0

We return to the observation that periodic solutions
exist on the manifold H3 = 0. From the expres-
sion (18), we have that H3 = 0 if r2 (or q2) van-
ishes and if r1 = r3 = 0, the case of the q2 normal
mode (14) that we discussed earlier. Until now, we
have not discussed the dynamics for q2 = 0 and
solutions that are ε-close to q2 = 0. To avoid singu-
larities in the variational system, see (16), we use
for q2 the co-moving transformation:

q1(t) = r1 cos(t+ φ1(t)),

q̇1(t) = −r(t) sin(t+ φ1(t)),

q2(t) = y1 cos 2t+
1

2
y2 sin 2t,

q̇2(t) = −y12 sin 2t+ y2 cos 2t,

q3(t) = r3(t) cos(t+ φ3(t)),

q̇3(t) = −r3(t) sin(t+ φ3(t)).

(27)

Substitution in system (12) and averaging over t
produce

ṙ1 = −εb2
2
r1

(
y1 sin 2φ1 +

1

2
y2 cos 2φ1

)
,

φ̇1 = −εb2
2

(
y1 cos 2φ1 −

1

2
y2 sin 2φ1

)
,

ẏ1 =
ε

8
(b2r

2
1 sin 2φ1 + b9r

2
3 sin 2φ3),

ẏ2 =
ε

4
(b2r

2
1 cos 2φ1 + b9r

2
3 cos 2φ3),

ṙ3 = −εb9
2
r3

(
y1 sin 2φ3 +

1

2
y2 cos 2φ3

)
,

φ̇3 = −εb9
2

(
y1 cos 2φ3 −

1

2
y2 sin 2φ3

)
.

(28)

To find periodic and other special solutions, we will
look for zeros on the right-hand sides of system (28).
Solutions of system (28) with y1(t) = y2(t) = 0
can have stationary amplitudes r1, r3 and phases
φ1, φ3. Nontrivial solutions for r1, r3 arise from the
equations for y1, y2 if

sin 2(φ1 − φ3) = 0, (29)

or φ1 − φ3 = 0, π/2. If φ1 − φ3 = 0, we require
b2/b9 < 0, if φ1 − φ3 = π/2, we should have
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b2/b9 > 0, so, we have families of solutions satisfy-
ing r21+r23 = 2E0, q2(t) = 0, t ≥ 0 and E0 a positive
fixed constant.

We find two families of special solutions, in a
different formulation, this result was noted already
in [Duistermaat, 1984].

We linearize near the critical points of sys-
tem (28); we find a 6 × 6 matrix with two eigen-
values as zero, as the periodic solutions are fami-
lies parametrized by the energy. Consider the case

φ1 = φ3 = 0, b2 = 1, b9 = −1, r1 = r3 = 1. The

eigenvalues are ±0.5 εi,±0.5 εi, 0, 0. On choosing

φ1 = π/2, φ2 = 0, b2 = b9 = 1, r1 = r2 = 1, we find

the same eigenvalues, a Hamiltonian Hopf or Krein

bifurcation.

These first-order results point at neutral sta-

bility of the special solutions. We have to obtain

second-order averaging-normalization to discuss the

possibility of a break-up of the families. For second

order, we find for the ε2 terms:

ṙ1 : − 1

64
b2b9ε

2r1r
2
3 sin[2(φ1 − φ3)],

φ̇1 : − 1

64
b2ε

2(8b9r
2
3 + 6b1(4y

2
1 + y22) + b2(9r

2
1 + 4y21 + y22) + b9r

2
3 cos[2(φ1 − φ3)]),

ẏ1 : − 1

256
ε2y2(24b1(b2r

2
1 + b9r

2
3) + 4(b22r

2
1 + b29r

2
3) + 15b21(4y

2
1 + y22)),

ẏ2 :
1

64
ε2y1(24b1(b2r

2
1 + b9r

2
3) + 4(b22r

2
1 + b29r

2
3) + 15b21(4y

2
1 + y22)),

ṙ3 :
1

64
b2b9ε

2r21r3 sin[2(φ1 − φ3)],

φ̇3 : − 1

64
b9ε

2(8b2r
2
1 + 9b9r

2
3 + 24b1y

2
1 + 4b9y

2
1 + (6b1 + b9)y

2
2 + b2r

2
1 cos[2(φ1 − φ3)]).

(30)

We find

d

dt
(φ1(t)− φ2(t))

= − 1

64
ε2[8b2b9(r

2
3 − r21) + 9(b22r

2
1 − b29r23)

+ b2b9(r
2
3 − r21) cos 2(φ1 − φ3)]. (31)

Using that the right-hand side of Eq. (31) vanishes,
cos 2(φ1 − φ3) = ±1 and from the integral (17)
r21 + r23 = 2E0 we find r1 = r3.

We have no evidence for change of stability.

4. The 3 DoF Symmetric 1:2:1
Resonance

In a number of applications, we have discrete sym-
metry in 3 DoF. In this case, we have b1 = b2 =
b9 = 0 or H3 vanishes, which, in fact is in an expan-
sion of the Hamiltonian, and all Hm terms with m
odd vanish. We put

−H4 =
1

4
c1q

4
1 +

1

4
c2q

4
2 +

1

4
c3q

4
3 +

1

2
c5q

2
1q

2
3. (32)

We have for H4 (32) only the quartic terms (O(ε2)
terms), so, the singularities of amplitude-phase
transformation (15) vanish. Averaging produces:

ṙ1 = −ε2 1

8
c5r1r

2
3 sin 2(φ1 − φ3),

φ̇1 = −ε2
[

3

8
c1r

2
1 +

1

4
c5r

2
3

×
(

1 +
1

2
cos 2(φ1 − φ3)

)]
,

ṙ2 = 0,

φ̇2 = −ε2 3

16
c2r

2
2,

ṙ3 = −ε2 1

8
c5r

2
1r3 sin 2(φ1 − φ3),

φ̇3 = −ε2
[

3

8
c3r

2
3 +

1

4
c5r

2
1

×
(

1 +
1

2
cos 2(φ1 − φ3)

)]
.

(33)
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The 1:1 resonance between the q1 and q3 modes
plays a part with periodic solutions found from
the zeros of the right-hand sides of system (33).
The periodic solutions are located in so-called reso-
nance manifolds. We have the condition sin 2(φ1 −
φ3) = 0 and require for the combination angle
χ1 = φ1 − φ3:

dχ1

dt
= −ε

2

4

(
3

2
(c1r

2
1 − c3r23) + c5(r

2
3 − r21)

×
(

1 +
1

2
cos 2χ1

))
, (34)

with cos 2χ1 = ±1. We conclude that H2 + H4 is
integrable with integrals:

H2 = E0, H4 = H4(p0, q0), r2(t) = r2(0).

(35)

An extended analysis would include the H6 terms,
or, in the sense of approximation theory, O(ε4)
terms. This kind of analysis involves interac-
tion between low- and higher-order resonances, an
approach has been formulated in [Verhulst, 2023,
Chapter 8]. In general, we expect from H6 new phe-
nomena induced by terms q41q

2
2, q

4
3q

2
2 in the reso-

nance zones arising from the 1:1 resonances induced
by H4. We demonstrate this for the simplified but
typical case:

−H4 =
1

2
c5q

2
1q

2
3, −H6 =

1

4
d1q

4
1q

2
2 +

i

4
d2q

2
2q

4
3.

(36)

According to averaging-normalization with c1 =
c2 = c3 = 0, system (33) produces the presence
of the 1:1 resonance. We have for the combination
angle χ1 = φ1 − φ3:

χ̇1 = −ε2
[

3

8
(c1r

2
1 − c3r22) +

1

4
c5(r

2
3 − r21)

×
(

1 +
1

2
cos 2(φ1 − φ3)

)]
. (37)

The amplitudes r1, r3 satisfying Eq. (37) will be
constant with t ≥ 0, sin 2(φ1 − φ3) = 0. The corre-
sponding solutions of system (33) will be periodic.
For a fixed value of the energy E0, there are two
periodic solutions located in two resonance zones.
The zones are small neighborhoods of the resonance
manifolds determined by Eq. (37) and φ1 = φ3

or φ1 − φ3 = π/2. The solutions of system (33)
approximate the solutions of the Hamiltonian sys-
tem [Eq. (32)] with precision O(ε2) on the timescale
1/ε2.

In the resonance zones where the right-hand
sides of system (33) vanish, the O(ε4) terms may be
of importance. The equations of motion induced by
Hamiltonians (36) are

q̈1 + q1 = ε2c5q1q
2
3 + ε4d1q

3
1q

2
2,

q̈2 + 4q2 = ε4
1

2
d1q

4
1q2 + ε4

1

2
d2q2q

4
3,

q̈3 + q3 = ε2c5q
2
1q3 + ε4d2q

2
2q

3
3.

(38)

System (38) has three manifolds governed by 2 DoF,
q1(t) = 0, q2(t) = 0, q3(t) = 0, t ≥ 0. The three nor-
mal modes exist as exact solutions, in addition, we
have the 2:4 resonances in the q1, q2 and the q2, q3
manifolds. If c5 = 0, we have after averaging for the
H6 terms

ṙ1 : −ε4 1

32
d1r

3
1r

2
2 sin(4φ1 − 2φ2),

φ̇1 : −ε4 1

32
d1r

2
1r

2
2 cos(4φ1 − 2φ2),

ṙ2 : ε4
1

128
(d1r

4
1r2 sin(4φ1 − 2φ2)

+ d2r2r
4
3 sin(4φ1 − 2φ2)),

φ̇2 : −ε4 1

64

[
d1r

4
1

(
3 +

1

2
cos(4φ1 − 2φ2)

)

+ d2r
4
3

(
3 +

1

2
cos(4φ3 − 2φ2)

)]
,

ṙ3 : −ε4 1

32
d2r

3
3r

2
2 sin(4φ3 − 2φ2),

φ̇3 : −ε4 1

32
d2r

2
3r

2
2 cos(4φ3 − 2φ2).

(39)

The 2:4 resonance produces periodic solutions with
different frequencies. The solutions are obtained
slightly differently as q2(t) = 0, t ≥ 0 satisfies the
averaged H6 terms with arbitrary initial conditions
for the q1, q3 modes.
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5. Discussion and Conclusions

In general, Hamiltonian systems with two or more
DoF are nonintegrable. This is an important state-
ment but the problem is the condition “in gen-
eral”. Models in the natural sciences are never “gen-
eral” but have specific assumptions, in particular
the assumptions of certain symmetries. There is a
second important issue. If a Hamiltonian is non-
integrable, this can be a major dynamics affair or
a small-scale localized phenomenon. The theory of
averaging and normal forms clarifies this issue quan-
titatively. A third important issue arises when we
ask ourselves what the nature of nonintegrability is,
and what the dynamical consequences are.

In this paper, we reviewed the methods of
demonstrating nonintegrability and focus on 3 DoF
systems at the first-order resonances near stable
equilibrium. The 1:2:1 resonance is one of the com-
plicated systems, which got attention in the lit-
erature. We show that if the system has discrete
symmetry in the first and third DoF, we have
nonintegrability characterized by Šilnikov bifurca-
tion. Apart from the short-periodic families, we find
many other periodic solutions. If the 1:2:1 resonance
has discrete symmetry in the 3 DoF, the normal
form is integrable. In this case, nonintegrability of
the original system, if present, will be dynamically
a small-scale affair.
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Painlevé, Ziglin and the differential Galois theory,”
Regul. Chaotic Dyn. 5, 251–271.

2450168-13

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

4.
34

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 G
ua

nr
on

g 
C

he
n 

on
 1

0/
30

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

https://orcid.org/0000-0002-6473-0948
https://orcid.org/0009-0009-8225-1033


October 29, 2024 15:7 WSPC/S0218-1274 IJBC 2450168

F. Verhulst & T. Bakri

Morales-Ruiz, J. & Ramis, J. P. [2010] “Integrability of
dynamical systems through differential Galois theory:
Practical guide,” Contemp. Math. 509, 143–220.
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Appendices

Appendix A

The 1:2:1 Nonintegrability

Consider Hamiltonian (11) with H4 omitted. The
nonintegrability of the symmetric 1:2:1 resonance
with equations of motion (12) was proved by [Chris-
tov, 2023] assuming b2 6= 0, b9 6= 0. The proof of
nonintegrability of system (12) runs as follows.

As shown in Sec. 3, a solution of the equations
of motion (12) is the q2 normal mode:

q2(t) = ei2t, p2 = q̇2,

p1(t) = q1(t) = p3(t) = q3(t) = 0, t ≥ 0.
(A.1)

Putting q1 = ζ, q2 = ζ2+ei2t, q3 = ζ, the variational
equations along the normal mode (A.1) are

ζ̈1 + (1− 2b2e
i2t)ζ1 = 0,

ζ̈2 + 4ζ2 = 0,

ζ̈3 + (1− 2b9e
i2t)ζ3 = 0.

(A.2)

The equations for ζ1, ζ3 are of the form

ζ̈ + (1− 2bei2t)ζ = 0, b 6= 0. (A.3)

Changing the independent variable by

τ = ei2t, (A.4)

and indicating differentiation with respect to τ by
accent ′ we find

ζ ′′ +
1

τ
ζ ′ +

2bτ − 1

4τ2
ζ = 0. (A.5)

Equation (A.5) is a complex valued equation with
complex time. After transforming ζ = z/τ1/2, we
have the standard form:

z̈ +
b

2τ
z = 0. (A.6)

The double confluent Heun equation is of the form

Z̈ + r(τ)Z = 0,

r(τ) =
α2

4
− γ

τ
− δ

τ2
− β

τ3
+

α2

4τ4
,

(A.7)

see [Duval & Loday-Richaud, 1992, pp. 236–237]. In
the case of Eq. (A.6), we have

α = β = δ = 0, γ = − b
2
.

The analysis of Eq. (A.7) is based on the Kovacic
algorithm in [Duval & Loday-Richaud, 1992]. It says
that for the double confluent Heun equation, there
are two cases for the differential Galois group to be
solvable:

(1) α = β = γ = 0 which implies b = 0.
(2) α = βγ = 0 and there exists m ∈ Z such that

δ = (3+2m)(1−2m)
16 .

In our case, b 6= 0 and there is no m ∈ Z to match
δ = 0, hence Eq. (A.6) does not admit Liouvil-
lian solutions. In fact, the solutions of Eq. (A.6)
can be expressed as Bessel functions. The implica-
tion is that the Galois group is SL(2,C), obviously
noncommunitative. Extending this to Eq. (A.5) and
using the Morales–Ramis theorem, see [Morales-
Ruiz & Ramis, 2010] for a survey, we conclude that
the Hamiltonian system (12) is nonintegrable.
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Appendix B

Numerically Detected Periodic
Orbits of System (12) in the Case
b2 6= b9

One of the most straightforward ways to numeri-
cally detect periodic orbits of a continuous dynam-
ical system is to compute the fixed points of
its corresponding Poincaré return map P (x) and
its powers Pn(x), n ∈ N>0. In this setting, we

used the following parameters: ε = 0.1, b1 = 0,
b9 = −1.1756926 and b2 = 1. The Poincaré section
in this experiment is the five-dimensional vector
space q2 = 0. Starting with initial values of q1, p1, p2
varying between 0 and 1 with stepsize equal to 0.01
and using the discrete symmetry of system (12),
many periodic orbits were detected that are spa-
tially distributed in a nonrandom way. The stability
of the computed cycles was determined as well. See
Fig. 4.

Fig. 4. Numerically computed fixed points obtained by continuation of the Poincaré return map (with cross-section Σ : q2 = 0)
of system (12) with different projections. Each dot represents a periodic solution. Green dots correspond with (Lyapunov)
stable cycles. The red dots represent unstable periodic orbits.
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