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Abstract

The computation of the Kaplan-Yorke dimension is a convenient tool for studying
strange attractors. We will consider the uncertainties of using Lyapunov-exponents
and will suggest an improvement. Illustrations are computed for the systems NE9
and Lorenz attractor.
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1 Introduction

In nonlinear dynamics multifrequency oscillations arise in many applications of various
disciplines. The mathematical equations describing these oscillations contain parame-
ters that upon changing can display many different types of bifurcations; see for instance
[ Kuznetsov (2023)].
A remarkable phenomenon is the emergence of chaotic motion that is often characterised
by geometric structures. There are differences between conservative and dissipative sys-
tems, we will focus here on the latter. One has identified various scenarios leading to chaos
with as a prominent one period-doubling. In this case one starts with a periodic solution
for certain parameter values. Changing the parameters leads to a periodic solution with
double period, changing again redoubles the period and so on ad infinitum. In the limit of
parameter changes one has a bifurcation sequence of parameters producing chaotic motion.
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Figure 1: Left bifurcation sequence showing period doublings in system NE9. Right the
3-dimensional chaotic attractor. Courtesy CHAOS 32, [Bakri. & Verhulst[2022)].

We use an illiustration of system NE9 from [Bakri. & Verhulst[2022)]. In fig. 1 we show
left the period doubling sequence and right the resulting chaotic attractor.
This geometric object has usually a fractal structure with a dimension that is not a natural
number. For an introduction to fractals with both geometric and dynamical aspects see
[ Verhulst (2000)] sections 14.7-9. Analysis of a number of cases shows that it helps if one
can identify a map that shows more details of the dynamics. In the case of system NE9 in
fig. 1 this would be a Poincaré map of a transversal of the flow into itself. Such a map shows
a Cantor set of returning points in the 2-dimensional transversal. An introduction to qual-
itative and quantitative aspects of chaos in dynamical systems is [Broer & Takens (2011)],
containing many examples and a description of various types of dimensions and entropy.
One can study the geometric aspects of the chaotic attractor by the concepts of limit ca-
pacity and Hausdorff dimension; they represent a purely geometric concept of dimension.
A dimension characterising both the geometry of the attractor and the dynamics is the
correlation dimension. For applications another tool is to compute Lyapunov-exponents
and the Kaplan-Yorke dimension. This quantity, indicated by DKY , was conjectured as
a dynamical dimension in [ Kaplan & Yorke (1979)]. The Lyapunov-exponent generalises
the idea of eigenvalue to show the expansion and contraction near a manifold. To explain
the procedure we consider a 1-dimensional map f : X → X generated by a dynamical
system. The Lyapunov-exponent µ(x0) of a point x0 ∈ X is

µ(x0) = lim
n→∞

ln |dfn(x0)|
n

,

with dfn(x0) denotes the derivative of the n times iterated map at x0 and the condition
that the limit exists.
We can generalise this to n-dimensional maps to obtain n Lyapunov exponents. For in-
troductions see [Guckenheimer & Holmes (1996)] or [ Verhulst (2000)]. However, at this
point we immediately have a problem. For a smooth manifold we can obtain tangent maps,
we expect the limit to exist. For a manifold with a fractal dimension the limit will not
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exist or if it does, it will critically depend on the choice of the initial points. What we can
expect in general and at best is a range of Lyapunov exponents with certain uncertainties
dependent on the initial values.

In [Kuznetsov et al. (2019)], [Stankevich et al (2020)] and [Bakri & Verhulst (2025)] the
Kaplan-Yorke dimension is computed for the construction of charts of Lyapunov-exponents
for interacting systems depending on parameters. Important analytic tools for such calcula-
tions are mathematically sound approximation techniques, see for instance [ Verhulst (2023)]
(ch. 9), and bifurcation theory, see for instance [ Kuznetsov (2023)]. Such analysis is sup-
plied by numerical bifurcation tools, see [ Matcont (2019) ].
In applications the dynamics of strange attractors can be characterised by the presence of
negative Lyapunov-exponents and one or more positive ones. A seminal paper on the anal-
ysis of strange attractors and the characterisation of geometric and dynamical dimensions
by Lyapunov-exponents is [ Grassberger & Procaccia (1983)].
Discussions on the meaning and use of Lyapunov-exponents started somewhat later, see for
instance [Takens (2010)], [Boyd (2020)], and [Simó(1989)]. In a discussion of attractors of
certain maps in [Gräger. & Jäger (2013)] it is noted that taking suitable limits for t → ∞
to obtain exponents and dimensions it might be useful to obtain upper and lower limits for
the large time behaviour. As stated before the problem with the existence of these limits
is that we have no suitable tangentspace.
Interesting cases arise if we have autonomous equations of motion. A manifold like a torus
in such a system has at least one Lyapunov-exponent zero. An additional periodic solu-
tion on such a manifold will add another Lyapunov-exponent zero. J.C. Sprott noted in
[Sprott (2013)] that in the case of a torus uncertainties may arise in the numerical compu-
tation of Lyapunov- exponents that are zero or very close to zero. A number of examples
are given in [Bakri & Verhulst (2025)] with special interesting case a torus flattened by
canards; this case is both qualitatively and numerically remarkable.

2 Discussion of examples

If we have a smooth 2-torus we can linearise locally and computation of the Lyapunov-
exponents will present no problem as we have locally the dichotomy in linear spaces. If the
manifold is fractal we cannot simply characterise local spaces. To obtain the Kaplan-Yorke
dimension we can make an interpolation using the Lyapunov-exponents, but especially
with exponents near zero this may add to the earlier mentioned numerical uncertainties.

System NE9

We illustrate these problems by system (1) that contains interactions between the chaotic
NE9 system from [Jafari et al. (2013)], the first 3 equations, and the well-known Van der
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Figure 2: Left the unperturbed phase-plane of the Van der Pol- equation with b = c = 0 in
system (1). Right the perturbed case with a = 0.55, b = −1, c = 1. The initial conditions
for NE9 are x(0) = 0.5, y(0) = 0, z(0) = 1, for the perturbed Van der Pol-equation
u(0) = 2, v(0) = 0.

Pol-equation (containing a unique periodic solution). The system is:

x′ = y,

y′ = −x− yz,

z′ = −xz + 7x2 − a,

u′ = v + bx,

v′ = −u+ (1− u2)v + cy.

(1)

If b = c = 0 the systems NE9 and Van der Pol-equation are decoupled. From [Jafari et al. (2013)]
we have if a = 0.55 in the NE9 system for the Lyapunov-exponents 0.0504, 0,−0.3264 and
Kaplan-Yorke dimension Dky = 2.154.
The 2 decoupled systems produce each at least 1 Lyapunov-exponent zero so we have 2
Lyapunov-exponents zero in the unperturbed case b = c = 0. In fig. 2 right we show a
solution of system (1) with b = −1, c = 1. What is the Kaplan-Yorke dimension DKY

of the limiting solution? The fluctuations of the dimension are shown in fig. 3 for two
different time intervals but with the same initial conditions. The fluctuating dimension
values DKY are within the same bounds and illustrate the fractal and irregular character
of the attractor.

The Lorenz attractor

For the Lorenz system there is a wealth of literature. The system is a highly simplified
description of the dynamics of Rayleigh-Bénard convection that describes the instability of
rising air on a relative warm Earth surface with an atmosphere where air moves to cooler
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Figure 3: Left the Kaplan-Yorke dimension with b = −1,= c = 1 for system (1) starting
with 75 different initial conditions, x(0) runs from 0.5 to 1, z(0) from 1 to 1.5. The time
interval is 105. Right the dimension DKY for the same system with the same 75 initial
conditions but on a longer time interval 106. In both cases the fluctuations satisfy 2.215 <
DKY < 2.250 (apart from some outliers). [Jafari et al. (2013)] Produces DKY = 2.154.

regions. The equations for the system with the Lorenz attractor are:
ẋ = 10(−x+ y),

ẏ = −xz + 28x− y,

ż = xy − 8
3
z.

(2)

In [ Viswanath (2004)] a Hausdorff dimension of 2.0627160 is computed based on analysing
Cantor sets on a suitable Poincaré map. According to [ Sprott (2003)] we have by quadratic
interpolation DKY = 2.112. We find the value DKY = 2.062 (see fig. 4) that is very close
to the Hausdorff dimension.

3 Conclusions and discussion

1. Our analysis of the Kaplan-Yorke dimension was stimulated by considering interac-
tions of quasi-periodic oscillations in a dissipative setting, see [Bakri & Verhulst (2025)].
In these problems clustering of Lyapunov-exponents near zero, cascading period dou-
blings, chaos and hyperchaos were observed.

2. The Hausdorff dimension is geometric and represents an upper bound for the corre-
lation dimension. In [ Grassberger & Procaccia (1983)] it is stated that the Kaplan-
Yorke dimension DKY can be considered as an improved upper bound for the corre-
lation dimension and so yields a more precise description of the dynamics near the
strange attractor. For such estimates we have to take into account a certain spreading
of DKY values for fractal manifolds. This claim is made explicit for our calculation
of the Kaplan-Yorke dimension of the chaotic Lorenz system.
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Figure 4: Kaplan-Yorke dimension for the Lorenz system (2) starting with 100 different
initial conditions. The dimension DKY shows very small fluctuations near 2.062.

3. We conjecture that in the case of a Hausdorff dimension close to a natural number
the Kaplan-Yorke dimension will be close to the geometric dimension.
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