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1 Glossary

Coexistence The special case when all the independent solutions of a linear, T -periodic ODE
are T -periodic.
Hill’s equation A second order ODE of the form ẍ + p(t)x = 0, with p(t) T -periodic.
Instability pockets Finite domains, usually intersections of instability tongues, where the
trivial solution of linear, T -periodic ODEs is unstable.
Instability tongues Domains in parameter space where the trivial solution of linear, T -
periodic ODEs is unstable.
Mathieu equation An ODE of the form ẍ + (a + b cos(t))x = 0.
Parametric resonance Resonance excitation arising for special values of coefficients, fre-
quencies and other parameters in T -periodic ODEs.
Quasi-periodic A function of the form

∑n
i=1 fi(t) with fi(t) Ti-periodic, n finite, and the

periods Ti independent over R.
Sum resonance A parametric resonance arising in the case of at least three frequencies in
a T -periodic ODE.
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2 Definition of subject

Parametric resonance arises in mechanics in systems with external sources of energy and for
certain parameter values. Typical examples are the pendulum with oscillating support and a
more specific linearization of this pendulum, the Mathieu equation in the form

ẍ + (a + b cos(t))x = 0.

The time-dependent term represents the excitation. Tradition has it that parametric res-
onance is usually not considered in the context of systems with external excitation of the
form ẋ = f(x) + φ(t), but for systems where time-dependence arises in the coefficients of
the equation. Mechanically this means usually periodically varying stiffness, mass or load,
in fluid or plasma mechanics one can think of frequency modulation or density fluctuation,
in mathematical biology of periodic environmental changes. The term ‘parametric’ refers to
the dependence on parameters and certain resonances arising for special values of the param-
eters. In the case of the Mathieu equation, the parameters are the frequency ω (a = ω2) of
the equation without time-dependence and the excitation amplitude b; see section 5 for an
explicit demonstration of resonance phenomena in this two parameters system.
Mathematically the subject is concerned with ODEs with periodic coefficients. The study of
linear dynamics of this type gave rise to a large amount of literature in the first half of the
20th century and this highly technical, classical material is still accessible in textbooks. The
standard equations are Hill’s equation and the Mathieu equation (see section 5.1). We will
summarize a number of basic aspects. The reader is also referred to the article ‘Dynamics
of parametric excitation’ by Alan Champneys in this Encyclopaedia (vol. Non-Linear ODEs
and Dynamical Systems).
Recently, the interest in nonlinear dynamics, new applications and the need to explore higher
dimensional problems has revived the subject. Also structural stability and persistence prob-
lems have been investigated. Such problems arise as follows. Suppose that we have found
a number of interesting phenomena for a certain equation and suppose we imbed this equa-
tion in a family of equations by adding parameters or perturbations. Do the ‘interesting
phenomena’ persist in the family of equations? If not, we will call the original equation struc-
turally unstable. A simple example of structural instability is the harmonic equation which
shows qualitative different behaviour on adding damping. In general, Hamiltonian systems
are structurally unstable in the wider context of dissipative dynamical systems.

3 Introduction

Parametric resonance produces interesting mathematical challenges and plays an important
part in many applications . The linear dynamics is already nontrivial whereas the nonlinear
dynamics of such systems is extremely rich and largely unexplored. The role of symmetries
is essential, both in linear and in nonlinear analysis.
A classical example of parametric excitation is the swinging pendulum with oscillating sup-
port. The equation of motion describing the model is

ẍ + (ω2
0 + p(t)) sin x = 0, (1)

where p(t) is a periodic function. Upon linearization - replacing sinx by x - we obtain Hill’s
equation (section 5.1):

ẍ + (ω2
0 + p(t))x = 0.
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This equation was formulated around 1900 in the perturbation theory of periodic solutions in
celestial mechanics. If we choose p(t) = cosωt, Hill’s equation becomes the Mathieu equation.
It is well-known that special tuning of the frequency ω0 and the period of excitation (of p(t))
produces interesting instability phenomena (resonance).
More generally we may study nonlinear parametric equations of the form

ẍ + kẋ + (ω2
0 + p(t))F (x) = 0, (2)

where k > 0 is the damping coefficient, F (x) = x + bx2 + cx3 + · · · and time is scaled so that
p(t) is a π-periodic function with zero average. We may also take for p(t) a quasi-periodic or
almost-periodic function.
The books [49] cover most of the classical theory, but for a nice introduction see [39]. In [37],
emphasis is placed on the part played by parameters, it contains a rich survey of bifurcations
of eigenvalues and various applications. There are many open questions for eqs (1) and (2); we
shall discuss aspects of the classical theory, recent theoretical results and a few applications.

As noted before, in parametric excitation we have an oscillator with an independent source
of energy. In examples, the oscillator is often described by a one degree of freedom system
but of course many more degrees of freedom may play a part; see for instance in section 7
the case of coupled Mathieu-equations as studied in [33]. In what follows, ε will always be a
small, positive parameter.

4 Perturbation techniques

In this section we review the basic techniques to handle parametric perturbation problems.
In the case of Poincaré-Lindstedt series which apply to periodic solutions, the expansions are
in integer powers of ε. It should be noted that in general, other order functions of ε may play
a part; see section 5.1 and [47].

4.1 Poincaré-Lindstedt series

One of the oldest techniques is to approximate a periodic solution by the construction of a
convergent series in terms of the small parameter ε. The method can be used for equations
of the form

ẋ = f(t, x) + εg(t, x) + ε2 · · · ,

with x ∈ Rn and (usually) assuming that the ‘unperturbed’ problem ẏ = f(t, y) is understood
and can be solved. Note that the method can also be applied to perturbed maps and difference
equations.
Suppose that the unperturbed problem contains a periodic solution, under what conditions
can this solution be continued for ε > 0? The answer is given by the conditions set by the
implicit function theorem, see for formulations and theorems [30] and [45].
Usually we can associate with our perturbation problem a parameter space and one of the
questions is then to find the domains of stability and instability. The common boundary of
these domains is often characterized by the existence of periodic solutions and this is where
Poincaré-Lindstedt series are useful. We will demonstrate this in the next section.
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4.2 Averaging

Averaging is a normalization method. In general, the term“normalization” is used whenever
an expression or quantity is put in a simpler, standardized form. For instance, a n×n-matrix
with constant coefficients can be put in Jordan normal form by a suitable transformation.
When the eigenvalues are distinct, this is a diagonal matrix.
Introductions to normalization can be found in [1], [15], [19] and [13]. For the relation between
averaging and normalization in general the reader is referred to [34] and [45].
For averaging in the so-called standard form it is assumed that we can put the perturbation
problem in the form

ẋ = εF (t, x) + ε2 · · · ,

and that we have the existence of the limit

lim
T→∞

1
T

∫ T

0
F (t, x)dt = F 0(x).

The analysis of the averaged equation ẏ = F 0(y) produces asymptotic approximations of the
solutions of the original equation on a long timescale; see [34]. Also, under certain conditions,
critical points of the averaged equation correspond with periodic solutions in the original
system.
The choice to use Poincaré-Lindstedt series or the averaging method is determined by the
amount of information one wishes to obtain. To find the location of stability and instability
domains (the boundaries), Poincaré-Lindstedt series are very efficient. On the other hand,
with somewhat more efforts, the averaging method will also supply this information with in
addition the behaviour of the solutions within the domains. For an illustration see section
5.1.

4.3 Resonance

Assume that x = 0 is a critical point of the differential equation and write the system as:

ẋ = Ax + f(t, x, ε), (3)

with x ∈ Rn, A a constant n × n-matrix; f(t, x, ε) can be expanded in a Taylor series with
respect to ε and in homogeneous vector polynomials in x starting with quadratic terms.
Normalization of eq. (3) means that by successive transformation we remove as many terms
of eq. (3) as possible. It would be ideal if we could remove all the nonlinear terms, i.e.
linearize eq. (3) by transformation. In general, however, some nonlinearities will be left and
this is where resonance comes in.
The eigenvalues λ1, . . . , λn of the matrix A are resonant if for some i ∈ {1, 2, . . . , n} one has:

n∑

j=1

mjλj = λi, (4)

with mj ≥ 0 integers and m1 + m2 + · · ·+ mn ≥ 2.
If the eigenvalues of A are non-resonant, we can remove all the nonlinear terms and so
linearize the system. However, this is less useful than it appears, as in general the sequence of
successive transformations to carry out the normalization will be divergent. The usefulness of
normalization lies in removing nonresonant terms to a certain degree to simplify the analysis.
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4.4 Normalization of time-dependent vectorfields

In problems involving parametric resonance, we have time-dependent systems such as equa-
tions perturbing the Mathieu equation. Details of proofs and methods to compute the normal
form coefficients in such cases can be found in [1], [18] and [34]. We summarize some aspects.
Consider the following parameter and time dependent equation:

ẋ = F (x, µ, t), (5)

with x ∈ Rm and the parameters µ ∈ Rp.
Here F (x, µ, t) : Rm × Rp × R→ Rm is C∞ in x and µ and T -periodic in the t-variable. We
assume that x = 0 is a solution, so F (0, µ, t) = 0 and, moreover assume that the linear part of
the vectorfield DxF (0, 0, t) is time-independent for all t ∈ R. We will write L0 = DxF (0, 0, t).
Expanding F (x, µ, t) in a Taylor series with respect to x and µ yields the equation:

ẋ = L0x +
k∑

n=2

Fn(x, µ, t) + O(|(x, µ)|k+1), (6)

where the Fn(x, µ, t) are homogeneous polynomials in x and µ of degree n with T -periodic
coefficients.

Theorem 4.1
Let k ∈ N. There exists a (parameter- and time-dependent) transformation

x = x̂ +
k∑

n=2

Pn(x̂, µ, t),

where Pn(x̂, µ, t) are homogeneous polynomials in x and µ of degree n with T -periodic coef-
ficients, such that eq. (6) takes the form (dropping the hat):

ẋ = L0x +
k∑

n=2

F̃n(x, µ, t) + O(|(x, µ)|k+1) , (7)

µ̇ = 0.

The truncated vectorfield:

ẋ = L0x +
k∑

n=2

F̃n(x, µ, t) = F̃ (x, µ, t) , (8)

which will be called the normal form of eq. (5), has the following properties:

1. d
dte

L∗0tF̃ (e−L∗0tx, µ, t) = 0, for all (x, µ) ∈ Rm+p, t ∈ R.

2. If eq. (5) is invariant under an involution (i.e. SF (x, µ, t) = F (Sx, µ, t) with S an
invertible linear operator such that S2 = I), then the truncated normal form (8) is
also invariant under S. Similarly, if eq. (5) is reversible under an involution R (i.e.
RF (x, µ, t) = −F (Rx, µ, t)), then the truncated normal form (8) is also reversible under
R.
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For a proof, see [18].

The theorem will be applied to situations where L0 is semi-simple and has only purely imagi-
nary eigenvalues. We take L0 = diag{iλ1, . . . , iλm)}. In our applications, m = 2l is even and
λl+j = −λj for j = 1, . . . , l. The variable x is then often written as x = (z1, . . . , zl, z̄1, . . . , z̄l).
Assume L0 = diag{iλ1, . . . , iλm)} then:

• A term xγ1
1 . . . xγn

m ei 2π
T

kt is in the j-th component of the Taylor-Fourier series of F̃ (x, µ, t)
if:

−λj +
2π

T
k + γ1λ1 + · · ·+ γmλm = 0 . (9)

This is known as the resonance condition.

• Transforming the normal form through x = eL0tw leads to an autonomous equation for
w:

ẇ =
k∑

n=2

F̃n(w, µ, 0) . (10)

• An important result is this:
If eq. (5) is invariant (respectively reversible) under an involution S, then this also
holds for eq. (10).

• The autonomous normal form (10) is invariant under the action of the group G =
{g | gx = ejL0T x , j ∈ Z}, generated by eL0T . Note that this group is discrete if the
ratios of the λi are rational and continuous otherwise.

For a proof of the last two statements see [31].

By this procedure we can make the system autonomous. This is very effective as the au-
tonomous normal form (10) can be used to prove the existence of periodic solutions and
invariant tori of eq. (5) near x = 0. We have:

Theorem 4.2
Let ε > 0, sufficiently small, be given. Scale w = εŵ.

1. If ŵ0 is a hyperbolic fixed point of the (scaled) eq. (10), then eq. (5) has a hyperbolic
periodic solution x(t) = εŵ0 + O(εk+1).

2. If the scaled eq. (10) has a hyperbolic closed orbit, then eq. (5) has a hyperbolic
invariant torus.

These results are related to earlier theorems in [3], see also the survey [46]. Later we shall
discuss normalization in the context of the so-called sum-resonance.
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4.5 Remarks on limit sets

In studying a dynamical system the behaviour of the solutions is for a large part determined
by the limit sets of the system. The classical limit sets are equilibria and periodic orbits.
Even when restricting to autonomous equations of dimension three, we have no complete
classification of possible limit sets and this makes the recognition and description of non-
classical limit sets important. In parametrically excited systems, the following limit sets,
apart from the classical ones, are of interest:

• Chaotic attractors. Various scenarios were found, see [31], [32], [43].

• Strange attractors without chaos, see [27]. The natural presence of various forcing
periods in real-life models make their occurrence quite plausible.

• Attracting tori. These limit sets are not difficult to find; they arise for instance as a
consequence of a Neimark-Sacker bifurcation of a periodic solution, see [19].

• Attracting heteroclinic cycles, see [20].

A large number of these phenomena can be studied both by numerics and by perturbation
theory; using the methods simultaneously gives additional insight.

5 Parametric excitation of linear systems

As we have seen in the introduction, parametric excitation leads to the study of second order
equations with periodic coefficients. More in general such equations arise from linearization
near T -periodic solutions of T -periodic equations of the form ẏ = f(t, y). Suppose y = φ(t)
is a T-periodic solution; putting y = φ(t) + x produces upon linearization the T -periodic
equation

ẋ = fx(t, φ(t))x. (11)

This equation often takes the form

ẋ = Ax + εB(t)x, (12)

in which x ∈ Rm; A is a constant m × m-matrix, B(t) is a continuous, T -periodic m × m-
matrix, ε is a small parameter.
For elementary studies of such an equation, the Poincaré-Lindstedt method or continuation
method is quite efficient. The method applies to nonlinear equations of arbitrary dimension,
but we shall demonstrate its use for equations of Mathieu type.

5.1 Elementary theory

Floquet theory tells us that the solutions of eq. (12) can be written as:

x(t) = Φ(t, ε)eC(ε)t , (13)

with Φ(t, ε) a T -periodic m ×m-matrix, C(ε) a constant m ×m-matrix and both matrices
having an expansion in order functions of ε. The determination of C(ε) provides us with the
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stability behaviour of the solutions.
A particular case of eq. (12) is Hill’s equation:

ẍ + b(t, ε)x = 0 , (14)

which is of second order; b(t, ε) is a scalar T -periodic function. A number of cases of Hill’s
equation are studied in [23]. A particular case of eq. (14) which arises frequently in applica-
tions is the Mathieu equation:

ẍ + (ω2 + ε cos 2t)x = 0, ω > 0, (15)

which is reversible. (In [23] one also finds Lamé’s, Ince’s, Hermite’s, Whittaker-Hill and other
Hill equations.) A typical question is: for which values of ω and ε in (ω2, ε)-parameter space
is the trivial solution x = ẋ = 0 stable?
Solutions of eq. (15) can be written in the Floquet form (13), where in this case Φ(t, ε) will
be π-periodic. The eigenvalues λ1, λ2 of C, which are called characteristic exponents and are
ε-dependent, determine the stability of the trivial solution. For the characteristic exponents
of eq. (12) we have:

n∑

i=1

λi =
1
T

∫ T

0
Tr(A + εB(t))dt , (16)

see theorem 6.6 in [45].
So in the case of eq. (15) we have:

λ1 + λ2 = 0. (17)

The exponents are functions of ε, λ1 = λ1(ε), λ2 = λ2(ε) and clearly λ1(0) = iω, λ2(0) = −iω.
As λ1(ε) = −λ2(ε), the characteristic exponents, which are complex conjugate, are purely
imaginary or real. The implication is that if ω2 6= n2, n = 1, 2, . . . the characteristic exponents
are purely imaginary and x = 0 is stable near ε = 0. If ω2 = n2 for some n ∈ N, however, the
imaginary part of exp(C(ε)t) can be absorbed into Φ(t, ε) and the characteristic exponents
may be real. We assume now that ω2 = n2 for some n ∈ N, or near this value, and we shall
look for periodic solutions of x(t) of eq. (15) as these solutions define the boundaries between
stable and unstable solutions. We put:

ω2 = n2 − εβ, (18)

with β a constant, and we apply the Poincaré-Lindstedt method to find the periodic solutions;
see [45], appendix 2.
We find that periodic solutions exist for n = 1 if:

ω2 = 1± 1
2
ε +O(ε2).

In the case n = 2, periodic solutions exist if:

ω2 = 4− 1
48

ε2 +O(ε4) ,

ω2 = 4 +
5
48

ε2 +O(ε4) . (19)
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Figure 1: Floquet tongues of the Mathieu eq. (15); the instability domains are shaded.

The corresponding instability domains are called Floquet tongues, instability tongues or res-
onance tongues, see fig. 1.
On considering higher values of n, we have to calculate to a higher order of ε. At n = 1
the boundary curves are intersecting at positive angles at ε = 0, at n = 2 (ω2 = 4) they
are tangent; the order of tangency increases as n− 1 (contact of order n), making instability
domains more and more narrow with increasing resonance number n.

Higher order approximation and an unexpected timescale
The instability tongue of the Mathieu equation at n = 1 can be determined with more
precision by Poincaré expansion. On using averaging, one also characterizes the flow outside
the tongue boundary and this results in a surprise. Consider eq. (15) in the form

ẍ + (1 + εa + ε2b + ε cos 2t)x = 0,

where we can choose a = ±1
2 to put the frequency with first order precision at the tongue

boundary. The eigenvalues of the trivial solution are from first order averaging

λ1,2 = ±1
2

√
1
4
− a2,

which agrees with Poincaré expansion; a2 > 1
4 gives stability, the < inequality instability.

The transition value a2 = 1
4 gives the tongue location. Take for instance the + sign. Second

order averaging, see [47], produces for the eigenvalues of the trivial solution

λ1,2 = ±
√
−1

4

(
1
32

+ b

)
ε3 +

(
1
64

+
1
2
b

)(
7
64
− 1

2
b

)
ε4.

So, if 1
32 + b > 0 we have stability, if 1

32 + b < 0 instability; at b = − 1
32 we have the second

order approximation of this tongue boundary. Note that near this boundary the solutions are
characterized by eigenvalues of O(ε

3
2 ) and accordingly the time-dependence by timescale ε

3
2 t.
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The Mathieu equation with viscous damping
In real-life applications there is always the presence of damping. We shall consider the effect
of its simplest form, small viscous damping. Eq. (15) is extended by adding a linear damping
term:

ẍ + κẋ + (ω2 + ε cos 2t)x = 0, a, κ > 0 . (20)

ε

2κ

1

2

ω 2

ω =1−ε/2

ω =1+ε/22

instability without
damping

instability domain
with damping

Figure 2: First order approximation of instability domains without and with damping for eq.
(20) near ω2 = 1.

We assume that the damping coefficient is small, κ = εκ0, and again we put ω2 = n2 − εβ to
apply the Poincaré-Lindstedt method.
We find periodic solutions in the case n = 1 if:

ω2 = 1±
√

1
4
ε2 − κ2 . (21)

Relation (21) corresponds with the curve of periodic solutions, which in (ω2, ε)-parameter
space separates stable and unstable solutions. We observe the following phenomena. If
0 < κ < 1

2ε, we have an instability domain which by damping has been lifted from the
ω2-axis; also the width has shrunk. If κ > 1

2ε the instability domain has vanished. For an
illustration see fig. 2.
Repeating the calculations for n ≥ 2 we find no instability domains at all; damping of O(ε)
stabilizes the system for ε small. To find an instability domain we have to decrease the
damping, for instance if n = 2 we have to take κ = ε2κ0.

Coexistence
Linear periodic equations of the form (12) have m independent solutions and it is possible
that all the independent solutions are periodic. This is called ‘coexistence’ and one of the
consequences is that the instability tongues vanish. An example is Ince’s equation:

(1 + a cos t)ẍ + κ sin tẋ + (ω2 + ε cos t)x = 0,

see [23]. An interesting question is whether this phenomenon persists under nonlinear per-
turbations; we return to this question in subsection 6.3.

5.2 More general classical results

The picture presented by the Mathieu equation resulting in resonance tongues in the ω, ε-
parameter space, stability and instability intervals as parametrized by ω shown in fig. 1, has
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been studied for more general types of Hill’s equation. The older literature can be found in
[40], see also [44].
Consider Hill’s equation in the form

ẍ + (ω2 + εf(t))x = 0, (22)

with f(t) periodic and represented by a Fourier series. Along the ω2-axis there exist instability
intervals of size Lm, where m indicates the mth instability interval. In the case of the Mathieu
equation, we have from [16]

Lm = O(εm).

The resonance tongues become increasingly narrow.
For general periodic f(t) we have weak estimates, like Lm = O(ε), but if we assume that the
Fourier series is finite, the estimates can be improved. Put

f(t) =
s∑

j=0

fj cos 2jt,

so f(t) is even and π-periodic. From [22] we have the following estimates:

• If we can write m = sp with p ∈ N, we have

Lm =
8s2

((p− 1)!)2

( |fsε|
8s2

)p

+ O(εp+1).

• If we can not decompose m like this and sp < m < s(p + 1), we have

Lm = O(εp+1).

In the case of eq. (22) we have no dissipation and then it can be useful to introduce canonical
transformations and Poincaré maps. In this case, for example, put

ẋ = y, ẏ = −∂H

∂x
,

with Hamiltonian function

H(x, y, t) =
1
2
y2 +

1
2
(ω2 + εf(t))x2.

We can split H = H0 +εH1 with H0 = 1
2(y2 +ω2x2) and apply canonical perturbation theory.

Examples of this line of research can be found in [6] and [10]. Interesting conclusions can
be drawn with respect to the geometry of the resonance tongues, crossings of tongues and
as a possible consequence the presence of so-called instability pockets. In this context, the
classical Mathieu equation turns out to be quite degenerate.
Hill’s equation in the case of damping was considered in [36]; see also [37] where an arbitrary
number of degrees of freedom is discussed.
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5.3 Quasi-periodic excitation

Equations of the form

ẍ + (ω2 + εp(t))x = 0, (23)

with parametric excitation p(t) quasi-periodic or almost-periodic, arise often in applications.
Floquet theory does not apply in this case but we can still use perturbation theory. A typical
example would be two rationally independent frequencies:

p(t) = cos t + cos γt,

with γ irrational. As an interesting example, in [7], γ = 1
2(1 +

√
5) was chosen, the golden

number. It will be no surprise that many more complications arise for large values of ε, but
for ε small (the assumption in this article), the analysis runs along similar lines producing
resonance tongues, crossings of tongues and instability pockets. See also extensions in [11].
Detailed perturbation expansions are presented in [50] with a comparison of Poincaré ex-
pansion, the harmonic balance method and numerics; there is good agreement between the
methods. Real-life models contain dissipation which inspired the authors of [50] to consider
the equation

ẍ + 2µẋ + (ω2 + ε(cos t + cos γt))x = 0, µ > 0,

γ irrational. They conclude that

• The instability tongues become thinner and recede into the ω-axis as µ increases.

• High-order resonance tongues seem to be more affected by dissipation than low-order
ones producing a dramatic loss of ‘fine detail’, even for small µ.

• The results of varying the parameter µ certainly needs more investigation.

5.4 Parametrically forced oscillators in sum resonance

In applications where more than one degree of freedom plays a part, many more resonances are
possible. For a number of interesting cases and additional literature see [37]. An important
case is the so-called sum resonance. In [17] a geometrical explanation is presented for the
phenomena in this case using ‘all’ the parameters as unfolding parameters. It will turn out
that four parameters are needed to give a complete description. Fortunately three suffice to
visualize the situation.
Consider the following type of differential equation with three frequencies

ż = Az + εf(z, ω0t;λ), z ∈ R4, λ ∈ Rp, (24)

which describes a system of two parametrically forced coupled oscillators. Here A is a 4× 4
matrix, containing parameters, and with purely imaginary eigenvalues ±iω1 and ±iω2. The
vector valued function f is 2π-periodic in ω0t and f(0, ω0t; λ) = 0 for all t and λ. Eq. (24)
can be resonant in many different ways. We consider the sum resonance

ω1 + ω2 = ω0,

where the system may exhibit instability. The parameter λ is used to control detuning δ =
(δ1, δ2) of the frequencies (ω1, ω2) from resonance and damping µ = (µ1, µ2). We summarize
the analysis from [17].
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Figure 3: The critical surface in (µ+, µ−, δ+) space for eq. (24). µ+ = µ1 +µ2, µ− = µ1−µ2,
δ+ = δ1 + δ2. Only the part µ+ > 0 and δ+ > 0 is shown. The parameters δ1, δ2 control
the detuning of the frequencies, the parameters µ1, µ2 the damping of the oscillators (vertical
direction). The base of the umbrella lies along the δ+-axis.

• The first step is to put eq. (24) into normal form by normalization or averaging. In
the normalized equation the time-dependence appears only in the higher order terms.
But the autonomous part of this equation contains enough information to determine
the stability regions of the origin. The linear part of the normal form is ż = A(δ, µ)z
with

A(δ, µ) =
(

B(δ, µ) 0
0 B(δ, µ)

)
, (25)

and

B(δ, µ) =
(

iδ1 − µ1 α1

α2 −iδ2 − µ2

)
. (26)

Since A(δ, µ) is the complexification of a real matrix, it commutes with complex conju-
gation. Furthermore, according to the normal form theorem 4.1 and if ω1 and ω2 are
independent over the integers, the normal form of eq. (24) has a continuous symmetry
group.

• The second step is to test the linear part A(δ, µ) of the normalized equation for struc-
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tural stability i.e. to answer the question whether there exist open sets in parameter
space where the dynamics is qualitatively the same. The family of matrices A(δ, µ) is
parametrized by the detuning δ and the damping µ. We first identify the most degen-
erate member N of this family and then show that A(δ, µ) is its versal unfolding in the
sense of [1]. The family A(δ, µ) is equivalent to a versal unfolding U(λ) of the degenerate
member N .

• Put differently, the family A(δ, µ) is structurally stable for δ, µ > 0, whereas A(δ, 0)
is not. This has interesting consequences in applications as small damping and zero
damping may exhibit very different behaviour, see section 7.2. In parameter space, the
stability regions of the trivial solution are separated by a critical surface which is the
hypersurface where A(δ, µ) has at least one pair of purely imaginary complex conjugate
eigenvalues. This critical surface is diffeomorphic to the Whitney umbrella, see fig. 3
and for references [17]. It is the singularity of the Whitney umbrella that causes the
discontinuous behaviour of the stability diagram in section 7.2. The structural stability
argument guarantees that the results are ‘universally valid’, i.e. they qualitatively hold
for generic systems in sum resonance.

6 Nonlinear parametric excitation

Adding nonlinear effects to parametric excitation strongly complicates the dynamics. We start
with adding nonlinear terms to the (generalized) Mathieu equation. Consider the following
equation that includes dissipation:

ẍ + κẋ + (ω2 + εp(t))f(x) = 0, (27)

where κ > 0 is the damping coefficient, f(x) = x+ bx2 + cx3 + · · · , and time is scaled so that:

p(t) =
∑

l∈Z

a2le
2ilt, a0 = 0, a−2l = ā2l, (28)

is an even π-periodic function with zero average. As we have seen in section 5, the trivial
solution x = 0 is unstable when κ = 0 and ω2 = n2, for all n ∈ N. Fix a specific n ∈ N
and assume that ω2 is close to n2. We will study the bifurcations from the solution x = 0 in
the case of primary resonance, which by definition occurs when the Fourier expansion of p(t)
contains nonzero terms a2ne2int and a−2ne−2int. The bifurcation parameters in this problem
are the detuning σ = ω2 − n2, the damping coefficient κ and the Fourier coefficients of p(t),
in particular a2n. The Fourier coefficients are assumed to be of equal order of magnitude.

6.1 The conservative case, κ = 0

An early paper is [21] in which eq. (27) for κ = 0 is associated with the Hamiltonian

H(x, ẋ, t) =
1
2
ẋ2 +

ω2

2
x2 + p(t)

∫ x

0
f(s)ds.

After transformation of the Hamiltonian, Lie transforms are implemented by MACSYMA
to produce normal form approximations to O(ε2). A number of examples show interesting
bifurcations.
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A related approach can be found in [5]; as p(t) is even, the equation is time-reversible. After
construction of the Poincaré (timeperiodic) map, normal forms are obtained by equivariant
transformations. This leads to a classification of integrable normal forms that are approxi-
mations of the family of Poincaré maps, a family as the map is parametrized by ω and the
coefficients of p(t).
Interestingly, the nonlinearity αx3 is combined with the quasi-periodic Mathieu equation in
[51] where global phenomena are described like resonance bands and chaos.

6.2 Adding dissipation, κ > 0

Again time-periodic normal form calculations are used to approximate the dynamics; see
[31], also [32] and the monograph [43]. The reflection symmetry in the normal form equations
implies that all fixed points come in pairs, and that bifurcations of the origin will be symmetric
(such as pitchfork bifurcations). We observe that the normal form equations show additional
symmetrices if either f(x) in eq. (27) is odd in x or if n is odd. The general normal form
can be seen as a non-symmetric perturbation of the symmetric case. One finds pitchfork and
saddle-node bifurcations, in fact all codimension one bifurcations; for details and pictures see
[43], ch. 9.

6.3 Coexistence under nonlinear perturbation

A model describing free vibrations of an elastica is described in [26]:

(1− ε

2
cos 2t)ẍ + ε sin 2tẋ + cx + εαx2 = 0.

For α = 0, the equation shows the phenomenon of coexistence. It is shown by second order
averaging in [26] that for α 6= 0 there exist open sets of parameter values for which the trivial
solution is unstable.
An application to the stability problem of a family of periodic solutions in a Hamiltonian
system is given in [29].

6.4 Other nonlinearities

In applications various nonlinear terms play a part. In [25] one considers

ẍ + (ω2 + ε cos(t)) + ε(Ax3 + Bx2ẋ + Cxẋ2 + Dẋ3) = 0,

where averaging is applied near the 2 : 1-resonance. If B, D < 0 the corresponding terms
can be interpreted as progressive damping. It turns out that for a correct description of the
bifurcations second-order averaging is needed.
Nonlinear damping can be of practical interest. The equation

ẍ + (ω2 + ε cos(t)) + mu|ẋ|ẋ = 0,

is studied with µ also a small parameter. A special feature is that an acceptable description
of the phenomena can be obtained in a semi-analytical way by using Mathieu-functions as
starting point. The analysis involves the use of Padé-approximants, see [28].
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7 Applications

There are many applications of parametric resonance, in particular in engineering. In this
section we consider a number of significant applications, but of course without any attempt
at completeness. See also [37] and the references in the additional literature.

7.1 The parametrically excited pendulum

Choosing the pendulum case f(x) = sin(x) in eq. (27) we have

ẍ + κẋ + (ω2 + εp(t)) sin(x) = 0.

It is natural,because of the sin periodicity, to analyze the Poincaré map on the cylindrical
section t = 0 mod 2πZ. This map has both a spatial and a temporal symmetry. As we know
from the preceding section, perturbation theory applied near the equilibria x = 0, x = π, pro-
duces integrable normal forms. For larger excitation (larger values of ε), the system exhibits
the usual picture of Hamiltonian chaos; for details see [24], [12].
The inverted case is intriguing. It is wellknown that the upper equilibrium of an undamped
pendulum can be stabilized by vertical oscillations of the suspension point with certain fre-
quencies. See for references [8], [9] and [38]. In [8] the genericity of the classical result is
studied for (conservative) perturbations respecting the symmetries of the equation. In [9]
genericity is studied for (conservative) perturbations where the spatial symmetry is broken,
replacing sinx by more general 2π-periodic functions. Stabilization is still possible but the
dynamics is more complicated.

7.2 Rotor dynamics

When adding linear damping to a system there can be a striking discontinuity in the bifur-
cational behaviour. Phenomena like this have already been observed and described in for
instance [49] or [41]. The discontinuity is a fundamental structural instability in linear gyro-
scopic systems with at least two degrees of freedom and with linear damping. The following
example is based on [42] and [33].
Consider a rigid rotor consisting of a heavy disk of mass M which is rotating with rotation-
speed Ω around an axis. The axis of rotation is elastically mounted on a foundation; the
connections which are holding the rotor in an upright position are also elastic. To describe
the position of the rotor we have the axial displacement u in the vertical direction (positive
upwards), the angle of the axis of rotation with respect to the z-axis and around the z-axis.
Instead of these two angles we will use the projection of the centre of gravity motion on the
horizontal (x, y)-plane, see fig. 4. Assuming small oscillations in the upright (u) position,
frequency 2η, the equations of motion become:

ẍ + 2αẏ + (1 + 4εη2 cos 2ηt)x = 0,

ÿ − 2αẋ + (1 + 4εη2 cos 2ηt)y = 0. (29)

System (29) constitutes a system of Mathieu-like equations, where we have neglected the
effects of damping. Abbreviating P (t) = 4η2 cos 2ηt, the corresponding Hamiltonian is:

H =
1
2
(1 + α2 + εP (t))x2 +

1
2
p2

x +
1
2
(1 + α2 + εP (t))y2 +

1
2
p2

y + αxpy − αypx,
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Figure 4: Rotor with diskmass M , elastically mounted with axial (u) and lateral directions.

where px, py are the momenta. The natural frequencies of the unperturbed system (29), ε = 0,
are ω1 =

√
α2 + 1 + α and ω2 =

√
α2 + 1 − α. By putting z = x + iy, system (29) can be

written as:
z̈ − 2αiż + (1 + 4εη2 cos 2ηt)z = 0 . (30)

Introducing the new variable:
v = e−iαtz , (31)

and putting ηt = τ , we obtain:

v′′ +
(

1 + α2

η2
+ 4ε cos 2τ

)
v = 0, (32)

where the prime denotes differentiation with respect to τ. By writing down the real and
imaginary parts of this equation, we get two identical Mathieu equations.
We conclude that the trivial solution is stable for ε small enough, providing that

√
1 + α2 is

not close to nη , for some n = 1, 2, 3, .... The first-order interval of instability, n = 1, arises if:
√

1 + α2 ≈ η. (33)

If condition (33) is satisfied, the trivial solution of equation (32) is unstable. Therefore, the
trivial solution of system (29) is also unstable. Note that this instability arises when:

ω1 + ω2 = 2η,

i.e. when the sum of the eigenfrequencies of the unperturbed system equals the excitation
frequency 2η. This is known as a sum resonance of first order. The domain of instability can
be calculated as in section 5.1; we find for the boundaries:

ηb =
√

1 + α2 (1± ε) + O(ε2) . (34)
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The second order interval of instability of eq. (32), n = 2, arises when:
√

1 + α2 ≈ 2η , (35)

i.e. ω1 + ω2 ≈ η. This is known as a sum resonance of second order. As above, we find the
boundaries of the domains of instability:

2η =
√

1 + α2
(
1 + 1

24ε2
)

+ O(ε4) ,

2η =
√

1 + α2
(
1− 5

24ε2
)

+ O(ε4) . (36)

Higher order combination resonances can be studied in the same way; the domains of in-
stability in parameter space continue to narrow as n increases. It should be noted that the
parameter α is proportional to the rotation speed Ω of the disk and to the ratio of the moments
of inertia.

7.2.1 Instability by damping

We add small linear damping to system (29), with positive damping parameter µ = 2εκ. This
leads to the equation:

z̈ − 2αiż +
(
1 + 4εη2 cos 2ηt

)
z + 2εκż = 0. (37)

Because of the damping term, we can no longer reduce the complex eq. (37) to two identical
second order real equations, as we did in the previous section.
In the sum resonance of the first order, we have ω1 + ω2 ≈ 2η and the solution of the
unperturbed (ε = 0) equation can be written as:

z(t) = z1e
iω1t + z2e

−iω2t, z1, z2 ∈ C, (38)

with ω1 =
√

α2 + 1 + α, ω2 =
√

α2 + 1− α.
Applying variation of constants leads to equations for z1 and z2:

ż1 =
iε

ω1 + ω2
(2κ(iω1z1 − iω2z2e

−i(ω1+ω2)t) +

4η2 cos 2ηt(z1 + z2e
−i(ω1+ω2)t)),

ż2 =
−iε

ω1 + ω2
(2κ(iω1z1e

i(ω1+ω2)t − iω2z2) +

4η2 cos 2ηt(z1e
i(ω1+ω2)t + z2)). (39)

To calculate the instability interval around the value η0 = 1
2(ω1 + ω2) =

√
α2 + 1, we apply

perturbation theory to find for the stability boundary:

ηb =
√

1 + α2

(
1± ε

√
1 + α2 − κ2

η2
0

+ ....

)
,

=
√

1 + α2


1±

√
(1 + α2)ε2 −

(
µ

η0

)2

+ ....


 . (40)
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It follows that the domain of instability actually becomes larger when damping is introduced.
The most unusual aspect of the above expression for the instability interval, however, is that
there is a discontinuity at κ = 0. If κ → 0, then the boundaries of the instability domain
tend to the limits ηb →

√
1 + α2(1± ε

√
1 + α2) which differs from the result we found when

κ = 0 : ηb =
√

1 + α2(1± ε).
In mechanical terms, the broadening of the instability-domain is caused by the coupling
between the two degrees of freedom of the rotor in lateral directions which arises in the
presence of damping. Such phenomena are typical for gyroscopic systems and have been
noted earlier in the literature; see [2], [4] and [37]. The explanation of the discontinuity and
its genericity in [17], see subsection 5.4, is new.
For hysteresis and phase-locking phenomena in this problem, the reader is referred to [33]

7.3 Autoparametric excitation

In [43], autoparametric systems are characterized as vibrating systems which consist of at
least two constituing subsystems that are coupled. One is a Primary System that can be in
normal mode vibration. In the instability (parameter) intervals of the normal mode solution
in the full, coupled system, we have autoparametric resonance. The vibrations of the Primary
System act as parametric excitation of the Secondary System which will no longer remain at
rest. An example is presented in fig. 5.

M a cos ωt

km

Figure 5: Two coupled oscillators with vertical oscillations as Primary System and parametric
excitation of the coupled pendulum (Secondary System).

In actual engineering problems, we wish sometimes to diminish the vibration amplitudes of
the Primary System; sometimes this is called ‘quenching of vibrations’. In other cases we
have a coupled Secondary System which we would like to keep at rest.
As an example we consider the following autoparametric system studied in [14]:

x′′ + x + ε(k1x
′ + σ1x + a cos 2τx +

4
3
x3 + c1y

2x) = 0

y′′ + y + ε(k2y
′ + σ2y + c2x

2y +
4
3
y3) = 0

(41)

where σ1 and σ2 are the detunings from the 1 : 1-resonance of the oscillators. In this system,
y(t) = ẏ(t) = 0 corresponds with a normal mode of the x-oscillator.
The system (41) is invariant under (x, y) → (x,−y), (x, y) → (−x, y), and (x, y) → (−x,−y).
Using the method of averaging as a normalization procedure we investigate the stability of
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solutions of system (41). To give an explicit example we follow [14] in more detail. Introduce
the usual variation of constants transformation:

x = u1 cos τ + v1 sin τ ; x′ = −u1 sin τ + v1 cos τ (42)
y = u2 cos τ + v2 sin τ ; y′ = −u2 sin τ + v2 cos τ (43)

After rescaling τ = ε
2 τ̃ the averaged system of (41) becomes:

u′1 = −k1u1 + (σ1 − 1
2
a)v1 + v1(u2

1 + v2
1) +

1
4
c1u

2
2v1 +

3
4
c1v

2
2v1 +

1
2
c1u2v2u1

v′1 = −k1v1 − (σ1 +
1
2
a)u1 − u1(u2

1 + v2
1)−

3
4
c1u

2
2u1 − 1

4
c1v

2
2u1 − 1

2
c1u2v2v1

u′2 = −k2u2 + σ2v2 + v2(u2
2 + v2

2) +
1
4
c2u

2
1v2 +

3
4
c2v

2
1v2 +

1
2
c2u1v1u2

v′2 = −k2v2 − σ2u2 − u2(u2
2 + v2

2)−
3
4
c2u

2
1u2 − 1

4
c2v

2
1u2 − 1

2
c2u1v1v2.

(44)

This system is analyzed for critical points, periodic and quasi-periodic solutions, producing
existence and stability diagrams in parameter space. The system also contains a sequence of
period-doubling bifurcations leading to chaotic solutions, see fig. 6.

v
2

u
2

u
1

Figure 6: The strange attractor of the averaged system (44). The phase-portraits in the
(u2, v2, u1)-space for c2 < 0 at the value σ2 = 5.3. The Kaplan-Yorke dimension for σ2 = 5.3
is 2.29.

To prove the presence of chaos involves an application of higher dimensional Melnikov theory
developed in [48]. A rather technical analysis in [14] shows the existence of a Šilnikov orbit
in the averaged equation, which implies chaotic dynamics, also for the original system.
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8 Future directions

Ongoing research in dynamical systems includes nonlinear systems with parametric resonance,
but there are a number of special features as these systems are non-autonomous. This com-
plicates the dynamics from the outset. For instance a two degrees of freedom system with
parametric resonance involves at least three frequencies, producing many possible resonances.
The analysis of such higher dimensional systems with many more combination resonances,
has begun recently, producing interesting limit sets and invariant manifolds. Also the analysis
of PDEs with periodic coefficients will play a part in the near future. These lines of research
are of great interest.
In the conservative case, the association with Hamiltonian systems, KAM theory etc. gives a
natural approach. This has already produced important results. In real-life modeling, there
will always be dissipation and it is important to include this effect. Preliminary results suggest
that the impact of damping on for instance quasi-periodic systems, is quite dramatic. This
certainly merits more research.
Finally, applications are needed to solve actual problems and to inspire new, theoretical
research.
Acknowledgement
A number of improvements and clarifications were suggested by the editor, Giuseppe Gaeta.
Additional references were obtained from Henk Broer and Fadi Dohnal.

References

[1] Arnold V.I., Geometrical methods in the theory of ordinary differential equations,
Springer-Verlag, New York, 1983.

[2] Banichuk N.V., Bratus A.S. and Myshkis A.D., Stabilizing and destabilizing effects in
nonconservative systems, PMM U.S.S.R., 53, no.2, pp. 158-164, 1989.

[3] Bogoliubov N.N. and Mitropolskii Yu. A., Asymptotic Methods in the Theory of Non-
linear Oscillations, Gordon and Breach, New York, 1961.

[4] Bolotin V.V.,Non-conservative Problems of the Theory of Elastic Stability, Pergamon
Press, Oxford, 1963.

[5] Broer H.W. and Vegter G., Bifurcational aspects of parametric resonance, Dynamics
reported: new series vol. 1: Expositions in dynamical systems, pp. 1-51, eds. C.K.R.T.
Jones, U. Kirchgraber and H.O. Walther, Springer, 1992.

[6] Broer H.W. and Levi, M., Geometrical aspects of stability theory for Hill’s equation,
Arch. Rat. Mech. Anal. 131, pp. 225-240, 1995.
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