

1

Taoufik Bakri¹ and Ferdinand Verhulst^{2,*}

- TNO Sustainable Urban Mobility & safety, PO Box 96800, 2509 JE The Hague, The Netherlands; taoufik.bakri@tno.nl
- ² Mathematisch Instituut, PO Box 80.010, 508TA Utrecht, Netherlands; f.verhulst@uu.nl
- Correspondence: e-mail@e-mail.com; Tel.: (optional; include country code; if there are multiple corresponding authors, add author initials) +xx-xxxx-xxxx (F.L.)
- ⁺ Current address: Affiliation.
- [‡] These authors contributed equally to this work.

Abstract: A natural phenomenon in applications is the interaction of quasi-periodic solu-
tions of dynamical systems in a dissipative setting. We study the interactions of two of such
systems based on construction of a nonlinear oscillator with thermostatic (energy) control
. This leads to the emergence of complexity, torus-doubling and chaos. We find canards,
single 2- and 3-tori, chaos and hyperchaos. Detailed analysis is possible in the case of small
oscillations and small interactions. Large-scale phenomena are studied by the construction
of charts of parameter space using Lyapunov-exponents.113

Keywords: quasi-periodicity; bifurcation; tori; chaos; Lyapunov-exponent

21

22

23

24

25

26

27

28

20

2

3

10

11

12

1. Introduction

Interactions of 2 or more nonlinear oscillators produce in general complex dynamics with periodic solutions, tori, tori-doubling and chaos. A natural feature in real-life models is that the interactions are quasi-periodic which means that the individual components have frequencies that are incommensurable. See for a discussion of diophantine frequency vectors and the measure of Cantor sets in 2-frequency systems [8] with also many references inspired on the conservative setting leading to families of invariant tori; we mention in this setting the basic paper [7].

Our focus is different from KAM-theory and with some exceptions also from dissipative ²⁹ KAM-theory as we are especially interested in the practical context where we start with ³⁰ dissipative systems that are subsequently perturbed and lead to complex behaviour. This ³¹ can produce bifurcations of isolated tori and their qualitative changes. As we shall see we ³² will consider for our analysis a system with damping and thermostatic control, combination ³³ of 2 of such systems adds forcing and bifurcation phenomena. ³⁴

Multifrequency oscillations arise in many applications of various disciplines as me-35 chanical engineering, laser systems, electronic circuits; for a useful list of such applications 36 in many fields see [14] (in particular references [1-23]), and [27]. In [14] and [27] the em-37 phasis is on the construction of charts of Lyapunov-exponents for interacting self-excited 38 systems. Such numerically obtained charts yield enormous inspiration for further analysis. 39 Important analytic tools are mathematically sound approximation techniques, see for in-40 stance [34] (ch. 9), and bifurcation theory, see for instance [15]. It is generally known that 41 an equilibrium of a system of differential equations that for a certain parameter value has 42 2 imaginary eigenvalues can generate a periodic solution by Poincaré-Andronov-Hopf 43 bifurcation. The generating periodic solution is a guiding center of the torus. 44 In a similar way a periodic solution that is characterised by 2 imaginary eigenvalues or 45

Received: Revised: Accepted: Published:

Citation: Lastname, F.; Lastname, F.; Lastname, F. Title. *Mathematics* 2025, 1, 0. https://doi.org/

Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/). corresponding Lyapunov exponents may generate a torus by Neimark-Sacker bifurcation. In the case of quasi-periodic interactions it is natural to discover and identify tori. Usually they branch off equilibria and periodic solutions. The first question is then whether they are normally hyperbolic or not. Starting with an autonomous system of ODEs there will be at least 1 Lyapunov exponent zero. Are there more zeros and, when varying parameters, do we find Hopf and other bifurcations, tori-doubling and cascades of such phenomena leading to chaos?

Apart from normal form theory and averaging, we used numerical methods as implemented in MATHEMATICA, MATLAB, MATCONT. The last one uses continuation methods to follow parameter changes that cause bifurcations. It turns out that the hybrid combination of analytic and numerical tools can be very inspiring.

What is New?

To obtain insight in dissipative quasi-periodic bifurcations we modify in section 2 an important thermostatic control problem (Sprott A), a chaotic system formulated in [26] and [13]. Earlier studies of Sprott A giving more insight are [19]-[20], in [3]-[4] the thermostatic control problem of [26] is linked to tori families as is well-known for conservative systems. The context of conservative systems is classical and interesting but in general less suitable for applications in engineering and other science fields that involve dissipation.

A new step in section 2 is to introduce a 2-dimensional basic oscillator with periodic solutions that are asynchronous; when adding a 1-dimensional thermostatic control and assuming small oscillations we find canard behaviour. Admitting larger amplitudes we can identify periodic solutions in a resonance manifold by slow-fast dynamics.

In section 3 we consider the 6-dimensional interaction of 2 such components. If dissipation and thermostatic control are excluded we have a system with 2 interacting quasi-periodic oscillators. To study the bifurcations of this system with dissipation, interaction and control is the central part of this paper. When considering small oscillations and small interactions one can use averaging to find single tori with 1 or 2 zero Lyapunov- exponents. Combining canard initial values the solutions converge to a flattened torus. Torus doubling arises leading to a cascade of torus doublings. To obtain an overview of phenomena we constructed charts for larger values of dissipation and interactions. For each value of 2 parameters one obtains either a 2-torus, a 3-torus, chaos or hyperchaos. Conclusions and a discussion finish the main part of the paper.

Appendix A lists the results that carry directly over from the 2-components case to systems with *n* components.

2. One Component Oscillations with Energy Control

An autonomous one degree-of-freedom nonlinear oscillator with damping can be described by:

$$\ddot{q} + b\dot{q} + q + f(q) = 0, \tag{1}$$

with dissipation parameter $b \ge 0$. A dot above a variable is short for differentiation with respect to time. We assume that the function f(q) is analytic, near q = 0 it has a power series expansion starting with quadratic terms. If b = 0 we have no energy loss, in this case the oscillator has the energy integral

$$E = \frac{1}{2}(q^2 + \dot{q}^2) + \int_0^q f(s)ds,$$
(2)

with *E* a constant parameter depending on the initial conditions. In the conservative case (b = 0) eq. (1) has an infinite number of periodic solutions with period depending on *E* = *E*₀. If *f*(*q*) is deleted in the equation we have the synchronised case of the harmonic ⁸⁸

57 58

64

65

66

67

68

69

70

71

72

73

74

75

76

77

53

54

55

56

78 79

80

81

82

83

84

85

In chemical physics, see [31], one introduces a thermostatic control by adding an equation controlling the dissipative term $b\dot{q}$ by a new variable z, replacing $b\dot{q}$ by $bz\dot{q}$. The control z(t) can become negative producing excitation if the energy (or another suitable quantity) characterising the oscillator is smaller than a chosen threshold, z(t) can become positive causing increased damping if the energy is larger than the threshold. Apart from using the energy of a nonlinear equation we have with eq. (1) the natural case of periodic solutions with period dependent on the energy. To fix ideas we will choose

$$f(q) = cq^3.$$

The thermostatic control *z* for the energy leads to the system:

$$\begin{cases} \ddot{q} + bz\dot{q} + q + cq^3 = 0, \\ \dot{z} = q^2 + \dot{q}^2 + \frac{c}{4}q^4 - a, \end{cases}$$
(3)

with parameters a, c > 0. The expression $q^2 + \dot{q}^2 + \frac{c}{4}q^4$ is not exactly representing the energy but measures the energy.

In [4] system (3) was studied in the case c = 0, this system is called Sprott B. We note that for small oscillations (q, \dot{q} small) the solutions of the Sprott B system will to first approximation describe the solutions of system (3) correctly; this will be made more precise later on. Replacing the equation for z by

ż

$$=\dot{q}^2-a$$
,

with c = 0 the system is called Sprott A, see [26], [13], [3] and many references there. ¹⁰⁶ Choosing c > 0 implies that we have no saddle equilibrium in the conservative oscillator ¹⁰⁷ (b = 0). Choosing c negative would change the dynamics for larger values of the initial ¹⁰⁸ energy; in fig. 1 we illustrate this for c = 1 where all solutions are periodic and c = -1 ¹⁰⁹ producing saddles in the phase-plane. ¹¹⁰

Stability and Lyapunov-exponents

In the sequel we will look for periodic solutions and their stability. In section 5.4 of [32] it is shown that if we have located a periodic solution $\phi(t)$ of an autonomous system (as (3)), linearisation near $\phi(t)$ produces as one solution of the linearised system $\dot{\phi}(t)$. In the case of system (3) this means that one of the three Lyapunov-exponents will be zero.

Exact analytical solutions

We note that system (3) has no equilibria (critical points of the vector field). We find an unbounded invariant manifold if $x(0) = \dot{x}(0) = 0$ with dynamics given by 120

$$z(t) = z(0) - at.$$

The following result is well known.

Lemma 1. Consider system (3) with b = 0; as c > 0 all solutions q(t) are periodic but not synchronous.

A few examples of energy E_0 with b = 0, c = 1 and corresponding period P are: $(E_0, P) = (0.01, 6.4), (0.125, 5.8), (0.5, 5.1), (1.125, 4.4), (2, 4), (4.5, 3.3), (8, 3), (12.5, 2.7).$ The cycles in the phase-plane are shown in fig. 1 (left); increasing E_0 shortens P. 126

90 91

qq

121

127

111

112

117

Figure 1. Phase-plane with periodic solutions of eq. $\ddot{q} + q + cq^3 = 0$. Left the case c = 1. Right the case c = -1 producing 2 saddle equilibria at $q = \pm 1$, $\dot{q} = 0$ with inside the 2 heteroclinic connections periodic solutions.

Time-reversal

We will use the concept of time-reversibility of system (3). Put $\dot{q} = v$. The system is the characterised by time-reversal if it is invariant for the transformation:

$$q \rightarrow -q, v \rightarrow v, z \rightarrow -z, t \rightarrow -\tau$$

It is clear that system (3) shows time-reversal. This concept will be used to apply dissipative ¹³¹ KAM theory to system (3). For the general theory see the introductions and statements in ¹³² [22], [16] and [9]. ¹³³

$$Div F(x) = -bz. \tag{4}$$

Suppose first that z(t) tends to a fixed non-zero number. If z(t) is positive definite the flow is contracting, if z(t) is negative definite the flow is expanding. In the first case we may find attracting solutions.

The symmetry conditions we have obtained allow in specific phase-space regions solutions with z(t) alternating and in particular z(t) *T*-periodic. If in the periodic case we have 141

$$\frac{1}{T}\int_0^T z(t)dt = 0,$$

together with the time-reversal characteristic, dissipative KAM theory will conclude to the 142 existence of invariant tori. 143

Note that related but different types of control exist in neurodynamics called 'gating'. 145 An electro-physical signal fires a neuron if it exceeds a potential typical for the gates of 146 the particular neuron. Such a control is different from thermostatic or energy control as 147 in realistic neuron models a potential that is too small will leave the neuron inert. Such 148 neuronal dynamical systems serve however as an inspiration in the present paper. 149 We expect that the study of systems with energy control will also be of use in other 150 biophysical systems. 151

2.1. Small Oscillations Near the z-Axis, Canards 152

We scale
$$q = \sqrt{\varepsilon x}$$
, $\dot{q} = \sqrt{\varepsilon \dot{x}}$, $a = \varepsilon a_0$, $b = \varepsilon b_0$. System (3) becomes: 153

$$\begin{cases} \ddot{x} + \varepsilon b_0 z \dot{x} + x = -\varepsilon c x^3, \\ \dot{z} = \varepsilon (x^2 + \dot{x}^2 - a_0) + O(\varepsilon^2), \end{cases}$$
(5)

We apply averaging to system (5); see for the theory [23] or [34]. Here and in the se-154 quel we formulate variational equations in amplitude-phase variables r, ϕ . Considering 155 coupled systems of oscillators r, ϕ will be vectors with subscripts r_1, r_2, ϕ_1 etc. Putting 156 $x = r(t)\cos(t + \phi(t)), \dot{x} = -r(t)\sin(t + \phi(t))$ and rescaling produces: 157

$$\begin{cases} \dot{r} = -\varepsilon \sin(t+\phi)(-cr^3\cos^3(t+\phi)+b_0zr\sin(t+\phi)), \\ \dot{\phi} = -\frac{\varepsilon}{r}\cos(t+\phi)(-cr^3\cos^3(t+\phi)+b_0zr\sin(t+\phi)), \\ \dot{z} = \varepsilon(r^2-a_0) + O(\varepsilon^2). \end{cases}$$
(6)

Averaging over *t* keeping r, ϕ fixed we find:

$$\dot{r} = -\varepsilon \frac{b_0}{2} zr, \dot{\phi} = \varepsilon \frac{3}{8} cr^2, \dot{z} = r^2 - a_0.$$
(7)

The solutions of system (6) are approximated to $O(\varepsilon)$ on an interval of time $O(1/\varepsilon)$ by the 159 solutions of system (7). 160

144

5 of 28

161

Figure 2. Dynamics near the *z*-axis based on system (3). Left the closed curves in a *r*, *z*-diagram describing the tori around the periodic solution approximated by eq. (7); The initial conditions are $q(0) = 0.1, \dot{q}(0) = 0, z(0) = 0.05, 0.2, 0.5, 1, 1.5$ with parameters a = 0.01, b = 0.01, c = 1. Right canard behaviour near the *z*-axis with initial conditions $q(0) = 0.01, \dot{q}(0) = 0.01, z(0) = 0.5, 1, 1.5$ with parameters a = 0.01, b = 0.01, c = 1.

The averaged system (7) contains a periodic approximate solution of the form:

$$x(t) = \sqrt{a_0}\cos(t + \varepsilon \frac{3}{8}a_0t), z(t) = 0.$$
(8)

The approximation of the solution of system (5) with initial conditions $x(0) = \sqrt{a_0}$, $\dot{x}(0) = 162$ 0, z(0) = 0 by expressions (8) has error $O(\varepsilon)$ on the long timescale $1/\varepsilon$. It corresponds with 163 the exact periodic solution obtained with nearby initial conditions. 164

There is a theoretical advantage giving more insight by using the timelike variable s = 165 $t + \phi$ instead of t; s is indeed timelike as the phase $\phi(t)$ is varying slowly. Repeating the calculation we have by averaging over s the averaged system: 167

$$\frac{dr}{ds} = -\varepsilon \frac{b_0}{2} zr, \frac{dz}{ds} = \varepsilon (r^2 - a_0).$$
(9)

We have $r = \sqrt{a_0}$, z = 0 as a critical point of the averaged system (9). The determinant in the critical point does not vanish for $a_0 > 0$ so the approximation (8) corresponds with an existing periodic solution of the original system that is 2π -periodic in *s*. The eigenvalues in the critical point are $\pm i\sqrt{a_0b_0}$ so the periodic solution is to first approximation neutrally stable. A second order approximation in ε does not change the picture qualitatively as the time-reversibility plays an essential role producing an infinite set of KAM tori, see fig. 2. In these cases z(t) alternates around z = 0. The periodic solution obtained above serves as an organising centre. The solutions z(t) are symmetric with respect to z = 0 as predicted. Families of invariant tori were observed earlier for the dissipative Sprott A system in [19]-[20], the mathematical explanation by time-reversal and symmetry was given in [3].

Canards Near the *z*-Axis

The dynamics near the *z*-axis as shown in fig. 2 is obtained with parameter $a O(\varepsilon)$. 179 System (3) was designed to find a periodic solution by averaging close to the *z*-axis. The 180 system can also be interpreted as a slow-fast system with fast variables q, \dot{q} and slow 181 variable z. According to the theory of slow-fast systems, see [33] and further references 182 there, a slow manifold will be given by $x = \dot{x} = 0$ (the *z*-axis). The slow manifold is not 183 normally hyperbolic so the attraction or repelling is not necessarily exponential but the 184 explicit form makes characterisation easy. If we start with a positive value of z(0) and with 185 $r^2(0) = x^2(0) + \dot{x}^2(0) < a_0$ the solution will move closer to the slow manifold. As long 186 as z(t) > 0, $r^2(t)$ will decrease because of dissipation. At time $t = t_1$, $z(t_1) = 0$ and the 187 term $bz\dot{x}$ will produce excitation for $t > t_1$. The slow manifold becomes unstable but as 188 the solutions are very close to the *z*-axis they will persist for some time in motion near the 189 *z*-axis; this is the canard phenomenon. The symmetry of the equations causes the jump-off 190 point of the solutions to be mirroring the approach point, see again fig. 2 (right). 191

2.2. Generalisations

The results obtained thus far for the case $f(q) = cq^3$ and small oscillations carry over to the more general case with f(q) polynomial or analytic, odd and f(0) = f'(0) = 0. In particular we have time-reversibility producing invariant tori near the *z*-axis around a periodic solution as organising centre. Close to the *z*-axis we will find canard behaviour. In this section we drop the assumption of small oscillations.

A Family of Periodic Solutions

Consider again system (3) with small damping coefficient *b* and small nonlinear force; ¹⁹⁹ put $b = \varepsilon b_0$, $c = \varepsilon c_0$. System (3) becomes; ²⁰⁰

$$\begin{cases} \ddot{q} + \varepsilon b_0 z \dot{q} + q + \varepsilon c_0 q^3 &= 0, \\ \dot{z} &= q^2 + \dot{q}^2 + \varepsilon \frac{c_0}{4} q^4 - a, \end{cases}$$
(10)

If $\varepsilon = 0$ the solutions for q(t) are harmonic. Transforming system (10) for $\varepsilon \ge 0$ to amplitudephase variables it becomes a slow-fast system with slow variables r, ϕ and fast variable z:

$$\begin{cases} \dot{r} = -\varepsilon \sin(t+\phi)((c_0 r^3 \cos^3(t+\phi)) + b_0 zr \sin(t+\phi)), \\ \dot{\phi} = -\frac{\varepsilon}{r} \cos(t+\phi)(c_0 r^3 \cos^3(t+\phi)) + b_0 zr \sin(t+\phi)), \\ \dot{z} = r^2 - a + O(\varepsilon). \end{cases}$$
(11)

We can identify $r = \sqrt{a}$ as a resonance manifold of system (11), for the theory see [33] ch. ²⁰⁴ 12 or [34] ch. 7. Another approach is to use iteration of an integral equation, see [33] ch. ²⁰⁵ 10.2 or [34] ch. 3, this would be an application of the Poincaré-Lindstedt (continuation) ²⁰⁶ method. ²⁰⁷

Consider a neighbourhood of the resonance manifold by introducing a local variable ξ :

$$\xi = \frac{r - \sqrt{a}}{\delta(\varepsilon)}, \ r = \sqrt{a} + \delta(\varepsilon)\xi, \tag{12}$$

192

178

198

with $\delta(\varepsilon) = o(1)$ as $\varepsilon \to 0$. Introducing ξ in system (11) we find:

$$\begin{cases} \delta(\varepsilon)\dot{\xi} &= -\varepsilon\sin(t+\phi)(c_0(\sqrt{a}+\delta\xi)^3\cos^3(t+\phi)+b_0z(\sqrt{a}+\delta\xi)\sin(t+\phi)),\\ \dot{\phi} &= -\frac{\varepsilon}{(\sqrt{a}+\delta\xi)}\cos(t+\phi)(c_0(\sqrt{a}+\delta\xi)^3\cos^3(t+\phi))+b_0z(\sqrt{a}+\delta\xi)\sin(t+\phi)),\\ \dot{z} &= (\sqrt{a}+\delta\xi)^2 - a + O(\varepsilon). \end{cases}$$
(13)

A significant degeneration in the sense of singular perturbation theory gives the choice $\delta(\varepsilon) = \sqrt{\varepsilon}$. Expanding while keeping terms $O(\sqrt{\varepsilon})$ we have: 211

$$\begin{cases} \dot{\xi} &= -\sqrt{\varepsilon}\sin(t+\phi)(c_0(\sqrt{a}\cos(t+\phi))^3 + b_0 z\sqrt{a}\sin(t+\phi)) + O(\varepsilon), \\ \dot{\phi} &= O(\varepsilon), \\ \dot{z} &= 2\sqrt{a\varepsilon}\xi + O(\varepsilon). \end{cases}$$
(14)

Averaging over time produces to $O(\sqrt{\varepsilon})$:

$$\dot{\xi} = -\sqrt{\varepsilon} \frac{b_0}{2} \sqrt{a}z, \dot{\phi} = 0, \dot{z} = \sqrt{\varepsilon} 2\sqrt{a}\xi.$$
(15)

Consider $t + \phi$ as a timelike variable and the dynamics of the variables ξ , z. The Jacobian of the averaged equations of ξ , z is not singular (its value is $\varepsilon b_0 a$), so according to the implicit function theorem we have existence of the periodic solution continued from the harmonic solution for $\varepsilon = 0$.

Solving the averaged system we find $\xi^2 + \frac{b_0}{4}z^2 = \text{constant corresponding with neutral}$ stability for critical point $\xi = z = 0$ in the resonance manifold. However, a first order 218 approximation in a resonance manifold will always yield conservative dynamics even if 219 the original system is dissipative; see for the general theory again [33] ch. 12 or [34] ch. 7. 220 So we have to construct a second order approximation to establish stability. 221

222

212

Figure 3. Dynamics based on system (3). for 2 cases starting close to $r = \sqrt{a}$, z = 0. with a = 1, 3 and parameters b = 0.01, c = 1. In both cases a torus emerges around $r = \sqrt{a}$.

Expansion to $O(\varepsilon)$ leads to the system:

$$\begin{cases} \dot{\xi} = -\sqrt{\varepsilon}\sin((t+\phi)[-a^{3/2}\cos^3(t+\phi) + b_0\sqrt{a}z\sin(t+\phi)] \\ -\varepsilon\sin(t+\phi)[-3a\xi\cos^3(t+\phi) + b_0z\xi\sin(t+\phi)] + \varepsilon^{3/2}, \\ \dot{\phi} = -\varepsilon\cos(t+\phi)[-a\cos^3(t+\phi) + b_0z\sin(t+\phi)] + \varepsilon^{3/2}, \\ \dot{z} = \sqrt{\varepsilon}2\sqrt{a}\xi + \varepsilon\xi^2. \end{cases}$$
(16)

However the second order averaging (see [33] or [34]) the system (13) does not change the neutral stability.

Numerical explorations for a = 1, 2, 4, 9 and nearby initial conditions show instability of $\xi = z = 0$ and convergence to other solutions. See fig. 3 for the cases of orbits starting near a = 1, z = 0 and a = 2, z = 0.

3. A Coupled System of 2 Controlled Oscillators

We extend system (3) to two coupled systems with a simple direct coupling. The coupling is not inspired by pendulum couplings but by the process of transmitting impulses to neigbouring components as in neural systems. Consider the coupled system: 232

$$\begin{cases} \dot{q_1} + bz_1\dot{q_1} + q_1 + cq_1^3 &= \beta q_2, \\ \dot{z_1} &= q_1^2 + \dot{q_1}^2 + \frac{c}{4}q_1^4 - a_1, \\ \dot{q_2} + bz_2\dot{q_2} + q_2 + cq_2^3 &= \beta q_1, \\ \dot{z_2} &= q_2^2 + \dot{q_2}^2 + \frac{c}{4}q_2^4 - a_2. \end{cases}$$

$$(17)$$

The interaction constant $\beta \ge 0$ will determine the interaction force. In system (17) the first component activates the second, the second one the first. We assume $a_1, a_2 > 0$. The result of lemma 1 extends in the following form: 235

Lemma 2. If $b = \beta = 0$ the corresponding solutions $q_1(t), q_2(t)$ of system (17) are quasi-periodic, they are periodic if the initial conditions are equal.

As we shall see, system (17) will produce for $\beta > 0$ interactions of quasi-periodic 238 oscillations with complicated dynamics. In [14] and [27] such two-frequency interactions 239 are studied involving torus bifurcations and chaotic dynamics characterised by Lyapunovexponents. The nature of the coupling in [14] and [27] is different from our system (17) 241 with more complicated dissipation. A common feature is that in both model systems a form of self-excitation takes place. 243

System (17) can be written as a first order system $\dot{x} = F(x)$ in 6-space with divergence:

$$Div F(x) = -b(z_1 + z_2).$$
 (18)

So, in a region where $z_1 + z_2 > 0$, the flow contracts, if in the region $z_1 + z_2 < 0$, the flow 245 expands.

Lemma 3. If $c = \beta = 0$ in system (17) we have a family of harmonic synchronised periodic solutions in the manifold $z_1 = z_2 = 0$ of the form: 248

$$q_1(t) = \sqrt{a_1} \cos t, \dot{q}_1(t) = -\sqrt{a_1} \sin t, \ q_2(t) = \sqrt{a_2} \cos t, \ \dot{q}_2(t) = -\sqrt{a_2} \sin t.$$
(19)

If $\beta \neq 0$ we expect instability of the periodic solution because of resonance. It is natural to study the cases $c, \beta \ll 1$.

3.1. Small Interactions and Small Oscillations

Consider the case of small interactions $\beta = \epsilon \beta_0$, small deflections and consequently small nonlinearity cq^3 ; put $b = \epsilon b_0$. As in subsection 2.1 we can scale for the deflections $q_{1,2} = \sqrt{\epsilon x_{1,2}}$, for the velocities $\dot{q}_{1,2} = \sqrt{\epsilon \dot{x}_{1,2}}, a_{1,2} \rightarrow \epsilon a_{1,2}$. Introducing amplitude-phase coordinates as before and by

averaging as in subsection 2.1 we find the system for
$$O(\varepsilon)$$
 approximations given by:

$$\int \dot{\sigma} = c(r \, b_0 r \, \sin(\phi - \phi)) \, \dot{\sigma} = c(3 c r^2 - \beta_0 r_2 \cos(\phi - \phi))$$

$$\begin{cases} \dot{r}_1 = -\varepsilon(r_1\frac{b_0}{2}z_1 + \frac{\beta_0}{2}r_2\sin(\phi_1 - \phi_2)), \phi_1 = \varepsilon(\frac{3}{8}cr_1^2 - \frac{\beta_0r_1}{2}\cos(\phi_1 - \phi_2)), \\ \dot{r}_2 = -\varepsilon(r_2\frac{b_0}{2}z_2 + \frac{\beta_0}{2}r_1\sin(\phi_2 - \phi_1)), \dot{\phi}_2 = \varepsilon(\frac{3}{8}cr_2^2 - \frac{\beta_0r_1}{2r_2}\cos(\phi_2 - \phi_1)), \\ \dot{z}_1 = \varepsilon(r_1^2 - a_1) + O(\varepsilon^2), \dot{z}_2 = \varepsilon(r_2^2 - a_2) + O(\varepsilon^2). \end{cases}$$
(20)

Structurally stable critical points of the approximating vector field correspond with periodic 257 solutions close to the critical points, see [34]. 258

229

244

261

271

274

We have the critical values $r_1 = \sqrt{a_1}$, $r_2 = \sqrt{a_2}$. Put for the combination angle $\chi = \phi_1 - \phi_2$. ²⁵⁹ The equation for χ becomes: ²⁶⁰

$$\frac{d\chi}{dt} = \frac{\varepsilon}{2} \left[\frac{3}{4} c(r_1^2 - r_2^2) - \beta_0(\frac{r_2}{r_1} - \frac{r_1}{r_2}) \cos \chi \right].$$
(21)

The case $a_1 = a_2 = a$

This is clearly a degenerate case as from (21) we have in the critical points $r_1 = r_2$ 262 and so $d\chi/dt = 0$. The only requirement is $z_1 = -z_2$ but with χ not determined. The 263 timeseries $q_1(t), q_2(t)$ corresponding to the critical points are shown in fig. 4. As expected 264 from the analysis of 1 component in section 2, see also fig. 2, the canard behaviour becomes 265 less prominent when decreasing $z_1(0), z_2(0)$. This is illustrated in figs. 4 and 5 where 266 $a_1 = a_2 = 0.0025$. Choosing $z_1(0) = 2$, $z_2(0) = -2$ we have canard behaviour, decreasing 267 the initial z-values we find the irregular pattern shown in fig. 6 for $q_1(t)$ (and the same for 268 $q_2(t)$). The irregularity originates from the exponential closeness of the orbits to the slow 269 manifold at the *z*-axis which is not normally hyperbolic. 270

Figure 4. Consider the critical point of system (20) $q_1 = q_2 = 0.05$, $\dot{q}_1 = \dot{q}_2 = 0$, $z_1 = 0.2$, $z_2 = -0.2$ and parameters $a_1 = a_2 = 0.0025$, b = 0.1, c = 1, $\beta = 0.1$. The timeseries of the corresponding periodic solution shows spiking caused by canard behaviour.

Starting close to the critical point the dynamics shows instability. See fig. 5 for an example, the numerics based on system (17) suggests the presence of a torus. 273

Figure 5. Dynamics for small oscillations based on system (17). Left the r_1 , z_1 -diagram and right the q_2 , \dot{q}_2 -diagram describing the projected tori around the periodic solution. The initial conditions are $q_1(0) = 0.0501$, $\dot{q}_1(0) = 0.0001$, $z_1(0) = 0.2$, $q_2 = 0.0499$, $\dot{q}_2 = -0.0001$, $z_2 = -0.21$ with parameters $a_1 = a_2 = 0.0025$, b = 0.1, c = 1, $\beta = 0.1$.

Figure 6. Consider the critical point $q_1 = q_2 = 0.1$, $\dot{q}_1 = \dot{q}_2 = 0$, $z_1 = 1.3$, $z_2 = -1.3$ and parameters $a_1 = a_2 = 0.01$, b = 0.1, c = 1, $\beta = 0.1$. The timeseries shows the case with for these initial *z*-values the transition to canard behaviour.

The case $a_1 \neq a_2$

This case yields as well nontrivial equilibria. Requiring $\dot{\chi} = 0$ gives the following condition.

$$\cos\chi = -\frac{3c\sqrt{a_1a_2}}{4\beta_0} \tag{22}$$

Note that equation (22) implies that $|3c\sqrt{a_1a_2}/(4\beta_0)| \le 1$. Looking for roots of the amplium tude equations yields: 279

$$\begin{cases} \sin \chi = -\frac{\sqrt{a_1}b_0 z_1}{\sqrt{a_2}\beta_0} \\ \sin \chi = -\frac{\sqrt{a_2}b_0 z_2}{\sqrt{a_1}\beta_0}. \end{cases}$$
(23)

This gives the two nontrivial equilibria solutions in the case $a_1 \neq a_2$.

$$r_{1} = \sqrt{a_{1}}, r_{2} = \sqrt{a_{2}},$$

$$z_{2} = -\frac{a_{1}}{a_{2}}z_{1},$$
(24)

$$z_1 = \pm \sqrt{\frac{16a_2\beta_0^2 - 9c^2a_1a_2^2}{16a_1b_0^2}},$$
(25)

$$\chi = \pi + \arctan\left(\frac{4b_0 z_1}{3ca_2}\right), \quad \text{if } \beta_0 c > 0, \tag{26}$$

$$\chi = \arctan\left(\frac{4b_0 z_1}{3ca_2}\right), \quad \text{if } \beta_0 c \le 0 \tag{27}$$

The Jacobian matrix of system (20) at the nontrivial equilibrium in the case $a_1 \neq a_2$ and small oscillations is as follows: 282

$$DF(x) = \begin{pmatrix} -\frac{bz_1}{2} & \frac{3}{8}ca_2\sqrt{a_1} & \frac{\sqrt{a_1}bz_1}{2\sqrt{a_2}} & -\frac{\sqrt{a_1}b}{2} & 0\\ \frac{3c(a_1-a_2)}{8\sqrt{a_1}} & \frac{bz_1(a_1-a_2)}{2a_2} & \frac{3c(a_1-a_2)}{8\sqrt{a_2}} & 0 & 0\\ -\frac{\sqrt{a_1}bz_1}{2\sqrt{a_2}} & -\frac{3}{8}ca_1\sqrt{a_2} & \frac{a_1bz_1}{2a_2} & 0 & -\frac{\sqrt{a_2}b}{2}\\ 2\sqrt{a_1} & 0 & 0 & 0 & 0\\ 0 & 0 & 2\sqrt{a_2} & 0 & 0 \end{pmatrix}$$
(28)

275

The trace of the Jacobian (28) is

$$Tr(DF) = bz_1 \frac{a_1 - a_2}{a_2}.$$
(29)

The trace vanishes to produce degenerate dynamics in the 2 cases:

$$a_1 = a_2, \ 16\beta_0^2 = 9c^2 a_1 a_2. \tag{30}$$

In the second case we have $z_1 = z_2 = 0$, see again fig. 5.

An analysis of the eigenvalues of the nontrivial equilibria for the case $a_1 \neq a_2$ reveals that the equilibria are of unstable focus type. For the parameter values $a_1 = 0.25$, $a_2 = 0.15$, b = 1, $\beta = 1$, c = 1, $\epsilon = 1$, we identify two nontrivial equilibria with $z_1 = \pm 0.766384$ and corresponding eigenvalues: 290

$$\Lambda_1 = \{-0.0495 \pm 0.5553i, 0.1838 \pm 0.3056i, 0.2423\},\tag{31}$$

$$\Lambda_2 = \{0.0495 \pm 0.5553i, -0.1838 \pm 0.3056i, 0.2423\}.$$
(32)

Further continuation of the equilibria with respect to the system's parameters does not reveal any significant bifurcations. 292

3.1.1. Quasi-Periodic Motion and Associated Bifurcations

Interestingly, the averaged system (20) contains in the case $a_1 \neq a_2$, a stable periodic orbit, unrelated to the equilibria mentioned so far. This implies the presence in the original system of quasi-periodic motion in the form of a stable two-dimensional torus that can be depicted numerically starting in the neighborhood of the averaged stable cycle, see fig. 7 and for the Lyapunov-exponents fig. 8. A more general discussion explaining why we find 2 Lyapunov-exponents zero is presented in appendix A. 290

Figure 7. Left: A stable cycle, with period T = 13.7288, numerically obtained from the averaged system (20) with initial condition: $r_1 = 0.0518$, $\chi = 4.273$, $r_2 = 0.099$, $z_1 = 1.119$, $z_2 = -0.989$, and parameters $a_{01} = 0.15$, $a_{02} = 0.25$, $b_0 = \beta_0 = c = 1$, $\varepsilon = 0.1$, $a_1 = \varepsilon a_{01}$, $a_2 = \varepsilon a_{02}$. Right: Poincaré section ($q_1 = 0$) of system (17) projected onto the (\dot{q}_1, z_2)-plane with initial condition: $q_1 = 0$; $\dot{q}_1 = 0.1276$, $q_2 = 0.216$, $\dot{q}_2 = 0.006$, $z_1 = 0.638$, $z_2 = -1.569$, and parameters $a_1 = 0.015$, $a_2 = 0.025$, $b = \beta = 0.1$, c = 1, showing a closed curve corresponding with a two-dimensional torus.

283

284

285 286

Figure 8. Lyapunov exponents of the stable single torus (Figure 7, right), showing two zero exponents and four negative exponents.

Continuation of the limit cycle in the averaged system using a_2 as a control parameter reveals a supercritical period-doubling at the critical value $a_2 = 0.2285909$ from which a stable cycle with double the period (T = 27.9445) emerges. The corresponding stable double torus in the original system has been numerically located near the double cycle as expected. See Fig. 9.

Figure 9. Left: A stable double cycle projected on the r_1 , z_2 plane, with period T = 29.9, numerically obtained from the averaged system (20) by continuation of the stable period 1 cycle. Right: Poincaré section ($q_1 = 0$) of system (17) projected onto the (\dot{q}_1 , z_2)-plane with initial condition: $q_1 = 0$; $\dot{q}_1 = 0.1742$, $q_2 = 0.1382$, $\dot{q}_2 = -0.0426$, $z_1 = 1.5878$, $z_2 = 0.0859$, and parameters $a_1 = 0.015$, $a_2 = 0.02$, $b = \beta = 0.1$, c = 1, showing a closed curve corresponding with a two-dimensional double torus.

Figure 10. Orbits starting from the same initial conditions as in Figure 7 (right), projected onto the (q_1, z_1) -plane (left) and the (q_2, z_2) -plane (right), illustrating the double torus.

Figure 11. Lyapunov exponents of the stable double torus, as depicted in Figure 9 (Right), showing two zero exponents and the four negative exponents.

3.1.2. Chaos Through the Cascade of Period Doubling in Tori

Figure 12. Poincaré section $a_2 = 0.017$ (left) and $a_2 = 0.016$ (right)

Figure 13. Left: Lyapunov exponents of the stable double torus, $a_2 = 0.017$, with two exponents equal to zero and the remaining four exponents negative. Right: Lyapunov exponents of the strange attractor after the cascade of period doubling at $a_2 = 0.016$ with one positive exponent, two zero exponents and the remaining three negative.

3.1.3. Coexisting Period 2 Orbit

Tracking periodic orbits and analyzing their stability through continuation methods is crucial for detecting bifurcations and understanding the resulting dynamics, as well as the routes to chaos in the system under investigation. Using the numerical methods outlined 309

306

in [24], an additional period-2 orbit was identified in the averaged system, which coexists 310 with the period-1 cycle shown in Figure 7. This cycle has four complex multipliers on the 311 unit circle and one real multiplier equal to 1. Because the cycle is only Lyapunov stable, 312 there is no guarantee that the corresponding two-dimensional torus exists in the original 313 system. See Figure 14. 314

Figure 14. Left: A numerically computed period-2 cycle with period T = 18.23 from the averaged system (20), projected onto the z_2 - r_1 plane. The initial conditions are $r_1 = 0.3$, $\chi = 3.94203$, $r_2 =$ 1.47846, $z_1 = -0.03541$, and $z_2 = 0.77940$, with parameters $a_{01} = 0.15$, $a_{02} = 0.25$, $b_0 = \beta_0 = c = 1$. Right: The same period-2 cycle, now projected onto the z_1 - r_2 plane, illustrating its behavior across different coordinate projections. The cycle has four complex multipliers on the unit circle and one real multiplier equal to 1.

Searching for the corresponding dynamics in the original system, starting near the 315 Lyapunov stable cycle of the averaged system, the following invariant set was identified. 316 See Figure 15. 317

Figure 15. Left: Orbit numerically computed from the original system (17), initiated near the stable cycle, projected onto the z_2 - r_1 plane. The initial conditions are $q_1 = 0$, $\dot{q}_1 = 0.1610127$, $q_2 = 0.00894116$, $\dot{q}_2 = -0.02264744804$, $z_1 = -0.5138185$, and $z_2 = -1.489323$, with parameters $\varepsilon = 0.05$, $a_1 = 0.15\varepsilon$, $a_2 = 0.25\varepsilon$, $b = \beta = \varepsilon$, c = 1. Right: The same period-2 orbit, now projected onto the z_1 - r_2 plane, highlighting its behavior across different coordinate projections.

Figure 16. Left: The orbit (in red) numerically computed from the original system (17), initialized near the stable cycle, along with the scaled stable cycle (in green) from the averaged system (20), projected onto the z_2 - r_1 plane. Right: The same orbits, now projected onto the z_1 - r_2 plane, demonstrating the accuracy of the averaging method.

By searching for period-1 and period-2 periodic orbits in the averaged system with initial values $r_1 = 0.3$, $\chi = 0$, r_2 within the interval (0, 6], and z_1, z_2 ranging from -3 to 3 in increments of 1/50, eight additional periodic orbits were identified that coexist with the two cycles previously found. Four stable and four unstable. See illustrations in Fig. 17.

Figure 17. Numerically computed stable periodic orbits of the averaged system, obtained via the fixed point method applied to a Poincaré section. The orbits are projected onto the z_2 - r_1 plane with parameters $\varepsilon = 0.05$, $a_{01} = 0.15$, $a_{02} = 0.25$, $b_0 = \beta_0 = c = 1$. Right: Corresponding unstable periodic orbits under the same parameter settings.

3.1.4. Interactions Involving Canards

Figure 18. $q_1(t)$ (left) and $q_2(t)$ (right) in the case $a_1 = 0.005, a_2 = 0.0025, b = 0.1, c = 1, \beta = 0.1$ and initial conditions $q_1(0) = \sqrt{a_1}, q_2(0) = \sqrt{a_2}, v_1 = v_2 = 0, z_1(0) = 0.5, z_2(0) = -1$. The system evolves to canard behaviour with divergence (18) alternating in sign.

In fig. 18 the evolution of the 2-particle system tends to canard behaviour. The dynamical evolution starts to stabilise after 15000 timesteps. 324

The canard character of the flow is shown in fig. 19 where the projected dynamics suggests a flattened torus; the variable $z_1(t)$ takes negative and positive values, $z_2(t)$ mostly positive ones producing both attraction and repelling.

Figure 19. Projections z_1 , r_2 (left) and z_2 , r_1 (right) in the case of fig. 18. The initial transients are left out by omitting the output of the first 20 000 timesteps. The divergence (18) shows both attraction and repelling.

Figure 20. Left: Lyapunov exponents of the flattened torus from Figure 19, illustrating two negative exponents and four exponents clustered near zero. Right: A magnified view of the left figure, highlighting the spiky behaviour of the four Lyapunov exponents close to zero.

Figure 21. Divergence of the flow of fig. 19 for $t > 20\,000$. Right the average of the divergence (18) tending to a small negative value.

The Lyapunov exponents of the flow shown in fig. 19 have 4 exponents clustered near zero. In fig. 20 right we present an enlarged picture of the small exponents. We find both positive and negative spiky behaviour suggesting small fractal structure of the flattened torus of fig 19. Additional information is shown in fig 21 where we show the alternating divergence of the flow corresponding with alternating attraction and repelling. 320

3.2. Interactions of Larger Quasi-Periodic Solutions

Figure 22. Time-series of 2 quasi-periodic oscillations based on eq. (17) with $q_1 = q_2 = 0$, $z_1 = z_2 = 0$ and $v_1 = 1$, $v_2 = \sqrt{0.5}$ with parameters $a_1 = 1$, $a_2 = 0.5$, b = 0.1, c = 1, $\beta = 0.1$. Left $q_1(t)$, middle $q_2(t)$ and right the strongly fluctuating divergence of the flow.

Consider the dynamics when leaving the region of small oscillations. In the case 334 of friction parameter *b* and interaction parameter β still small we consider with $a_1 \neq a_2$ 335 interactions of quasi-periodic solutions. Putting O(1) initial conditions for the coordinates 336 and parameters a_1, a_2 we obtain chaotic solutions, see fig. 22 where we have chosen b =337 $\beta = 0.1$. The Lyapunov-exponents for the case $a_1 = 1, a_2 = 0.5$ are depicted in fig. 23. 338 As usual c = 1, varying c changes the dynamics but keeps chaos. The exponents are: 339 $\lambda_1 = 0.86164049916299E - 02; \lambda_2 = 0.28784389624742E - 02;$ 340 $\lambda_3 = 0.33455860114490E - 03; \lambda_3 = -0.14209055102249E - 03;$ 341 $\lambda_5 = -0.24875434928298E - 02, \lambda_6 = -0.10024345648336E - 01.$ 342

The dynamics turns out to be hyper-chaotic with 2 positive exponents.

Figure 23. Interactions of 2 quasi-periodic oscillations based on eq. (17) with initially $q_1 = q_2 = 0$, $z_1 = z_2 = 0$ and $v_1 = 1$, $v_2 = \sqrt{0.5}$ with parameters $a_1 = 1$, $a_2 = 0.5$, b = 0.1, c = 1, $\beta = 0.1$.

Larger Interaction Parameter β

Exploring systematically the case of O(1) values of β we find tori, chaos and hyper-345 chaos. The hyperchaos found in the system of fig. 23 associated with 2 L- exponents is 346 investigated with other phenomena for the values of b, β between 0 and 1, see fig. 24. We 347 find small islands (yellow) in a sea of chaotic cases (green). The chaotic cases are associated 348 with one L-exponent. In a neighbourhood of $b = \beta = 0$ we find 2-dimensional tori blue as 349 found earlier for the case of small interactions and small oscillations, but interestingly we 350 have also for small dissipation sets of chaotic solutions. The picture of phenomena of many 351 cases in fig. 24 is very remarkable and not easy to predict analytically. 352

Consider again system (17). Assume that $0 < \beta < 1$, $b = \varepsilon b_0$, $c = \varepsilon c_0$. To study the emergence of tori for forced 2-frequency oscillations consider the system:

$$\begin{cases} \dot{q_1} + \varepsilon b_0 z_1 \dot{q_1} + q_1 + \varepsilon c_0 q_1^3 &= \beta q_2, \\ \dot{z_1} &= q_1^2 + \dot{q_1}^2 + \varepsilon \frac{c_0}{4} q_1^4 - a_1, \\ \dot{q_2} + \varepsilon b_0 z_2 \dot{q_2} + q_2 + \varepsilon c_0 q_2^3 &= \beta q_1, \\ \dot{z_2} &= q_2^2 + \dot{q_2}^2 + \varepsilon \frac{c_0}{4} q_2^4 - a_2. \end{cases}$$
(33)

For $\varepsilon = 0$ we have the quasi-periodic solutions:

$$\begin{cases} q_1 = r_1 \cos(\sqrt{1+\beta}t + \phi_1) + r_2 \cos(\sqrt{1-\beta}t + \phi_2), \\ q_2 = -r_1 \cos(\sqrt{1+\beta}t + \phi_1) + r_2 \cos(\sqrt{1-\beta}t + \phi_2), \end{cases}$$
(34)

344

343

356

with r_1, r_2, ϕ_1, ϕ_2 constants determined by the initial conditions. The interactions of these quasi-periodic solutions are shown for small values of *b* in fig. 25. 358

Figure 24. Chart of parameters b, β characterising interactions of 2 quasi-periodic oscillations based on eq. (17), $0 \le b, \beta \le 1, a_1 = 0.015, a_2 = 0.025, c = 1$. The initial conditions are: $a_1 = 0, a_2 = 0, a_3 = 0, a_4 = 0, a_5 = 0, a$ and $z_2 = -0.03710401127306$. The coloring scheme used corresponds to a classification based on the number of zero Lyapunov exponents, with a threshold of 10^{-3} : any exponent with absolute value below this threshold is treated as zero. The values of the exponents, ranging from -6 to 2, are mapped to the $RdYlBu_r$ colormap as follows: dark blue regions indicate the absence of clear dynamics, with all six Lyapunov exponents near zero (undecided behavior). Medium-dark blue corresponds to five exponents near zero, indicating a 5D torus, while medium blue (four near-zero exponents) corresponds to a 4D torus, and so on, with light blue corresponding to a 3D torus and yellow to a 2D torus, indicative of quasi-periodic behavior. Orange regions correspond to systems with one zero exponent, representing periodic orbits, while regions in red and dark red indicate chaotic or hyperchaotic dynamics, with one or two positive Lyapunov exponents. For the calculation of the Lyapunov coefficients, integration was performed from t = 0 to t_{max} with a maximum time $t_{\text{max}} = 1.5 \times 10^6$, and the expansion rates were calculated every 100 steps, resulting in 15,000 time steps used to compute the exponents. The integration was carried out using a 4th-order Runge-Kutta (RK4) scheme with step size 10^{-2} .

If $\varepsilon = 0$, the expressions of system (34) with amplitudes and phases constant are general quasi-periodic solutions of system (33). They describe for $0 < \beta < 1$ tori in phasespace. We are interested in the bifurcations arising for $0 < \varepsilon \ll 1$. In fig. 24 we characterise these bifurcations by the Lyapunov-exponents. We find periodic orbits (orange), 2- and 3-tori (resp. yellow and light blue), chaos (red) and hyperchaos (dark red spots). 362 The chart uses colors to represent the different dynamics based on the Lyapunov-exponents364of the system with the following cases:365

- 0: All Lyapunov-exponents are negative (no zeros). This indicates the system settles to an equilibrium state.
- 1: One Lyapunov-exponent is positive. This signifies the presence of chaos in the 368 system. 369
- 2: Two Lyapunov-exponents are positive. This corresponds to hyperchaos, where the system exhibits even more complex behavior.
- -1: One Lyapunov-exponent is zero, and all others are negative. This reflects a periodic orbit.
- -2: Two Lyapunov-exponents are zero, and all others are negative. This corresponds to a T² torus.
- -3 to -6: Increasing numbers of zero Lyapunov-exponents, with all remaining exponents negative. These represent higher-dimensional invariant tori with quasi-periodic behavior.

As in most applications the dissipation has to be fairly small, we zoom in for 0 < b < 0.2. 379 We obtain the Lyapunov-exponents chart of fig. 25. 380

Figure 25. Parameter chart for 0 < b < 0.2 and $0 < \beta < 1$, characterizing the interactions of two quasi-periodic oscillations based on Eq. (17), with fixed parameters $a_1 = 0.015$, $a_2 = 0.025$, and c = 1. The initial conditions are: $q_1 = 0$, $v_1 = 0.06955254625606$, $q_2 = 0.03492489869658$, $v_2 = -0.02743019598001, z_1 = 1.66213345371198$, and $z_2 = -0.03710401127306$. The coloring scheme used corresponds to a classification based on the number of zero Lyapunov exponents, with a threshold of 10^{-3} : any exponent with absolute value below this threshold is treated as zero. The values of the exponents, ranging from -6 to 2, are mapped to the $RdYlBu_r$ colormap as follows: dark blue regions indicate the absence of clear dynamics, with all six Lyapunov exponents near zero (undecided behavior). Medium-dark blue corresponds to five exponents near zero, indicating a 5D torus, while medium blue (four near-zero exponents) corresponds to a 4D torus, and so on, with light blue corresponding to a 3D torus and yellow to a 2D torus, indicative of quasi-periodic behavior. Orange regions correspond to systems with one zero exponent, representing periodic orbits, while regions in red and dark red indicate chaotic or hyperchaotic dynamics, with one or two positive Lyapunov exponents. For the calculation of the Lyapunov coefficients, integration was performed from t = 0 to t_{max} with a maximum time $t_{\text{max}} = 1.5 \times 10^6$, and the expansion rates were calculated every 100 steps, resulting in 15,000 time steps used to compute the exponents.

4. Conclusions and Discussion

- Our paper shows essentially an efficient hybrid approach. Analysis, in particular averaging-normalisation, and numerical bifurcation techniques go hand in hand.
 Fig. 15 is an example. The periodic solutions have been given by averaging and are indicated, the associated dynamics is added by numerics.
- The use of nonlinear oscillators enables us to study isolated quasi-periodic interactions.
 For 2 components (section 3) the dynamics is essentially different from dissipative KAM theory.

405

406

- 3. Interaction of 2 components in the sense of section 3 is surprisingly rich producing periodic solutions, 2- and 3-tori, chaotic and hyper-chaotic behaviour. 390
- 4. Considering weak interactions and small oscillations one finds already this rich $_{391}$ collection of bifurcations. The chart in Fig. 25 shows this for small *b* and β . $_{392}$
- The thermostatic control used in the interacting systems originates from chemical physics. Applications of such a control to neural dynamics or economic models might be useful.
- In the analysis of dynamics one can meet fractal manifolds that may show strange attraction. The use of Lyapunov-exponents for fractal manifolds presents basic problems;
 improvements in the use of these exponents to compute Kaplan-Yorke dimensions
 will be discussed in a forthcoming paper [5].

Author Contributions: Conceptualization, Validation, Writing – original draft, Taoufik Bakri and Ferdinand Verhulst.

Data Availability Statement: The data that support the findings of this study are available from the 402 corresponding author upon reasonable request. 403

Acknowledgments: High precision numerics was obtained using MATCONT ode 78 under MATLAB. 404

Conflicts of Interest: The authors have no conflicts of interest.

Appendix A Periodic Chains of n Coupled Systems

One can extend system (17) to more than 2 coupled components but this poses a formidable problem. It is important to formulate in advance relevant questions for such complicated interacting chains especially the question if and how transmission of phenomena takes place in larger chains. This question has some relevance for neural dynamics. We restrict ourselves to some straightforward results. A few cases with n = 4 will be used for illustration.

Extending system (17) to n coupled systems and again simple direct coupling we have the periodic chain: 414

$$\begin{cases} \ddot{q_1} + bz_1\dot{q_1} + q_1 &= -cq_1^3 + \beta q_n, \\ \dot{z_1} &= q_1^2 + \dot{q_1}^2 + \frac{c}{4}q_1^4 - a_1, \\ \dot{q_2} + bz_2\dot{q_2} + q_2 &= -cq_2^3 + \beta q_1, \\ \dot{z_2} &= q_2^2 + \dot{q_2}^2 + \frac{c}{4}q_2^4 - a_2, \\ \dots & \dots \\ \dot{q_n} + bz_n\dot{q_n} + q_n &= -cq_n^3 + \beta q_{n-1}, \\ \dot{z_n} &= q_n^2 + \dot{q_n}^2 + \frac{c}{4}q_n^4 - a_n. \end{cases}$$
(A1)

The interaction constant $\beta > 0$ will determine the collective dynamics. In system (A1) the first component activates the second, the second one the third etc. The n^{th} component activates the first.

System (A1) can be written as a first order system $\dot{x} = F(x)$ in 3*n*-space with divergence: 418

$$Div F(x) = -b(z_1 + z_2 + \dots + z_n).$$
 (A2)

As in section 3 the sign of the divergence will determine whether solutions will expand or contract locally. 419

Figure A1. Dynamics of system (A1) for n = 4 and starting with small initial values. We have $a_1 = a_2 = 0.01, a_3 = a_4 = 0.04$. As predicted from the averaged equations (A3) $r_1(t), r_2(t)$ tend to the value 0.1, $r_3(t), r_4(t)$ tend to 0.2.

As in subsection 2.1 we scale $q_i = \sqrt{\varepsilon} x_i$, $\dot{q}_i = \sqrt{\varepsilon} \dot{x}_i$, $a_i \rightarrow \varepsilon a_i$ (i = 1, ..., n), $b = \varepsilon b_0$; 422 consider small interactions by putting $\beta = \varepsilon \beta_0$. Introducing amplitude-phase coordinates $x_i = r_i(t) \cos(t + \phi_i(t))$, $\dot{x}_i = -r_i(t) \sin(t + \phi_i(t))$, i = 1, ..., n and averaging as in subsection 2.1 we find the 3n-dimensional system for $O(\varepsilon)$ approximations: 425

$$\begin{cases} \dot{r}_{1} = -\varepsilon(r_{1}\frac{b_{0}}{2}z_{1} + \frac{\beta_{0}}{2}r_{n}\sin(\phi_{1} - \phi_{n})), \dot{\phi}_{1} = \varepsilon(\frac{3}{8}cr_{1}^{2} - \frac{\beta_{0}r_{n}}{2r_{1}}\cos(\phi_{1} - \phi_{n})), \\ \dot{z}_{1} = \varepsilon(r_{1}^{2} - a_{1}), \\ \dot{r}_{2} = -\varepsilon(r_{2}\frac{b_{0}}{2}z_{2} + \frac{\beta_{0}}{2}r_{1}\sin(\phi_{2} - \phi_{1})), \dot{\phi}_{2} = \varepsilon(\frac{3}{8}cr_{2}^{2} - \frac{\beta_{0}r_{1}}{2r_{2}}\cos(\phi_{2} - \phi_{1})), \\ \dot{z}_{2} = \varepsilon(r_{2}^{2} - a_{2}), \\ \cdots = \cdots \\ \dot{r}_{n} = -\varepsilon(r_{n}\frac{b_{0}}{2}z_{n} + \frac{\beta_{0}}{2}r_{n-1}\sin(\phi_{n} - \phi_{n-1})), \dot{\phi}_{3} = \varepsilon(\frac{3}{8}cr_{n}^{2} - \frac{\beta_{0}r_{n-1}}{2r_{n}}\cos(\phi_{n} - \phi_{n-1})), \\ \dot{z}_{n} = \varepsilon(r_{n}^{2} - a_{n}). \end{cases}$$

For n = 4 a first illustration is presented in fig. A1 where we have small initial conditions and $a_1 = a_2 = 0.01$, $a_3 = a_4 = 0.04$.

*Appendix A.2 Equal Combination Angles and Control Parameters a*_i

A simple assumption is to choose in system (A3) the parameters a_i , i = 1, ..., n and the initial combination angles equal.

Critical values

For a critical point of system (A3) we require that $r_1 = \sqrt{a_1}, r_2 = \sqrt{a_2}, \dots, r_n = \sqrt{a_n}$. If initially $z_1 = z_2 = \dots = z_n = 0$ and $\phi_1 - \phi_n = 0, \pi; \phi_2 - \phi_1 = 0, \pi; \dots, \phi_n - \phi_{n-1} = 0, \pi$ the *n* amplitudes will be constant. With these choices system (A3) will have a critical point (equilibrium) corresponding with

a periodic solution of system (A1).

To illustrate this we choose n = 4, so $a_i = a, i = 1, ..., 4$; the combination angles $\phi_1 - \phi_4 = \phi_2 - \phi_1 = \phi_3 - \phi_2 = \phi_4 - \phi_3$ and $z_1, ..., z_4$ tend to the same values. We show that in this case we can extend the analysis to obtain critical points of the averaged system (A3) and so periodic solutions of system (A1).

Putting $z_n = 0, n = 1, ..., 4$ for these critical point components we extend the symmetric solution discussed in subsection 2.1 to 4 components. Assuming constant amplitudes we need for the combination angles values $0, \pi$. Substitution of the amplitude and angle values

421

428

431

448

in the equations for the phases we find that the combination angles are constant. This leads to 2 critical points and so 2 periodic solutions. The eigenvalues of the first equilibrium (i.e. the one with combination angles equal to zero) are:

$$\begin{split} \lambda_{1...4} &= 0; \\ \lambda_{5,6} &= \pm i\sqrt{ab}; \\ \lambda_{7,8} &= \pm \frac{\sqrt{-a^8(4ab + 3a\beta + 4\beta^2)}}{2a^4}; \\ \lambda_{9,10} &= \pm \frac{\sqrt{-\frac{1}{2}a^9(8b + 3\beta) - \frac{1}{2}\sqrt{-a^{16}\beta^2(3a + 4\beta)^2}}}{2a^4}; \\ \lambda_{11,12} &= \pm \frac{\sqrt{\sqrt{-a^{16}\beta^2(3a + 4\beta)^2} - a^9(8b + 3\beta)}}{2\sqrt{2}a^4}. \end{split}$$

Using the parameters as in fig. A2 we find the first equilibrium is unstable.

$$\begin{split} \lambda_{1...4} &= 0; \\ \lambda_{5,6} &= \pm 0.316228i; \\ \lambda_{7,8} &= \pm 3.05369i; \\ \lambda_{9,10} &= \pm (-1.48406 + 1.55401i); \\ \lambda_{11,12} &= \pm (1.48406 - 1.55401i). \end{split}$$

In fig. A2 the instability of the first equilibrium (case 1) is shown; the solution starting near equilibrium 1 moves to equilibrium 2 (case 2) where the z-components tend to 1.

Figure A2. Dynamics based on system (A1) for n = 4 with projections $r_1(t)$ and $z_1(t)$ for 10 000 timesteps. The initial conditions are taken near the critical point of case 1: in vector form q(0) = 0.11, 0.1, 0.11, 0.12; , v(0) = 0, 0, 0, 0; z(0) = 0.01, 0, 0.01, -0.01) with for the parameters $a = 0.01, b = 0.1, c = 1, \beta = 0.1$. The components q(t), z(t) tend to the limiting values of case 2 (combination angles π).

Remark

A different type of solution with equal combination angles but the *z*-coordinates unequal zero is possible. The combination angles are constant if $\phi_1 - \phi_4 = \pi/2, 3\pi/2$. For r_1, \ldots, r_4 to be constant we find

$$z_1 = z_2 = z_3 = z_4 = \pm \frac{\beta_0}{b_0}.$$
 (A4)

This produces solutions with less symmetry. For the case n = 4 one can obtain explicit 455 expressions with conditions for the parameters and for bifurcational behaviour. 456

References

- Taoufik Bakri and Ferdinand Verhulst, *Bifurcations and quasi-periodic dynamics: torus breakdown*, Z. Angew. Math. Phys. 65, pp. 458 1053-1076 (2014).
- 2. T. Bakri, Y.A. Kuznetsov and F. Verhulst, Torus bifurcations in a mechanical system, J. Dyn. Diff. Equat. 27 pp. 371-403 (2015).
- 3. Taoufik Bakri and Ferdinand Verhulst, *Time-reversal, tori families and canards*
- in the Sprott A and NE9 systems, CHAOS doi: 10.1063/s.0097508 (August 2022).
- 4. Taoufik Bakri and Ferdinand Verhulst, *The dynamics of the Sprott B system*, CHAOS accepted for publ. (2024)
- 5. Taoufik Bakri and Ferdinand Verhulst, A note on the Kaplan-Yorke dimension, Int. J. Bif. Chaos (accepted for publ. 2025)
- 6. Stephen Boyd, *L-exponents*, in ChaosBook, Chaos: Classical and Quantum ch. 6 P. Cvitanović et al.(eds.) Chaosbook.org (2020)

451

457

460

461

462

463

464

7.	H.W. Broer, G.B. Huitema, and M.B. Sevryuk, em Quasi-periodic motions in families of dynamical systems, Lecture Notes in	466
0	Mathematics 1645, Springer (1996).	467
8.	H.W. Broer, H. Hanssmann and F. Wagener, Parametrised KAM theory, an overview, preprint (2024).	468
9.	M-C. Ciocci, A. Litvak-Hinenzon and H.W. Broer., Survey on dissipative KAM theory including quasi-periodic bifurcation theory,	469
10	Geometric Mechanics and Symmetry: the Peyresq Lectures, 306, pp. 303-355 (2005).	470
10.	E. Doedel, A.R. Champneys, T.F. Fairgrieve, Yu.A. Kuznetsov, B. Sandstede, and X.J. Wang, AUTO97: Continuation and bifurcation	471
	software for ordinary differential equations (with Hom-Cont), Concordia University, Montreal, Canada, silver edition, 1997. Download	472
	versions at GitHub and SourceForge.	473
11.	M. Gräger and T. Jäger, Dimension of Attractors in Pinched Skew Products, Commun. Math. Phys. 320, pp. 101-119 (2013).	474
12.	P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D, 9 pp. 189-208 (1983).	475
13.	S. Jafari, J.C. Sprott and S. Golpayegani, Elementary quadratic chaotic flows with no equilibria, Physics Letters A 377, pp. 699-702	476
14	(2013).	477
14.	A.P. Kuznetsov, S.P. Kuznetsov, N.A. Shchegoleva, N.V. Stankevich, Dynamics of coupled generators of quasiperioaic oscillations:	478
1 -	Different types of synchronization and other phenomena, Physica D 398, pp. 1-12 (2019).	479
15.	Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, 4th ed. Applied Math. Sciences 112, Springer (2023).	480
16.	J.S.W. Lamb and J.A.G. Koberts, <i>Time-reversal symmetry in aynamical systems: A survey</i> , Physica D 112, pp. 61-39702 (1998).	481
17.	J. Laskar. Frequency analysis of a dynamical system. Celestial Mechanics and Dynamical Astronomy 56, pp. 191–196, (1993).	482
18.	MATCONT, Numerical continuation and bifurcation program, available at http://www.matcont.ugent.be	483
19.	M. Messias and A.C. Reinol, On the formation of niaden chaotic attractors and nested invariant for in the Sprott A system, Nonlinear	484
20	Dyn. 88, pp.807-821 (2017).	485
20.	M. Messias and A.C. Reinol, On the existence of periodic orbits and KAM for in the Sprott A system: a special case of the Nose-Hoover	486
01	osculator, Nonlinear Dyn. 92, pp. 1287-1297 (2018).	487
21.	Henri Poincare, Les Methodes Nouvelles de la Mecanique Celeste, 3 Vois. Gautinier-Villars, Paris, 1892, 1893, 1899.	488
22.	J.A.G. Roberts and G.K.W. Quisper Chuos and time-recersal symmetry. Order and chuos in recersicie aynamical systems, Physics Reports	489
22	210, pp. 03-177 (1992). I.A. Sandara E. Varbulst F. and I. Murdack, American methods in nonlinear dynamical systems, roused, Springer Varlag (2007).	490
23. 24	J.A. Sanders, F. venturst, F. and J. Murdock, Averaging methods in nonlinear aynamical systems, rev.ed. Springer-ventag (2007).	491
24.	c. Sind, On the unaufficial and numerical approximation of incurant manifolds, wodern wethous in celestial mechanics. Freeedings	492
25	IC Sprott Technical Notes: Chaos in Time Series Analysis, online at: sprott phys wise edu. University of Wisconsin at Madison	493
25.	(2012)	494
26	(2013). I.C. Sprott Some simple chaotic florus Physical Review F 50, pp. R647-R650 (1994)	495
20. 27	NV Stankevich NA Shchagolava IR Sataav A P Kuznetcov Three dimensional torus breakdorum and chaos with truo zero Luanunor	490
27.	exponents in counled radio-physical generators I Comp. Nonl. Dynamics 15 issue 11 (poy. 2020). doi org/10.1115/1.4048025	497
28	E Takens Reconstruction Theory and Nonlinear Time Series Analysis Handbook of Dynamical Systems vol. 3 (HW Broer B	498
20.	Hasselblatt and F Takens, eds.) np. 345-377 (2010)	499 500
29	A N Tikhonov Systems of differential equations containing a small parameter multiplying the derivative (in Russian) Math. Sh. 31 (73)	500
۷.		501
30	A Tond! On the interaction between self-excited and narametric vibrations. National Research Institute for Machine Design Bechovice	502
00.	Monographs and Memoranda 25 Prague (1978)	503
31	M E. Tuckerman. Statistical Mechanics: theory and molecular simulation. Oxford University Press (2010). (2nd ed. 2017)	504
32	Ferdinand Verbulst Nonlinear differential equations and dynamical systems 2nd ed Springer New York etc. (2000)	505
33.	Ferdinand Verhulst, Methods and applications of singular perturbations. Springer, New York etc., (2005).	500
34.	Ferdinand Verhulst, A Toolbox of Averaging Theorems, ordinary and nartial differential equations. Surveys and Tutorials in the Applied	507
. 1.	Mathematical Sciences, Springer (2023).	509
		555

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.