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Abstract: A natural phenomenon in applications is the interaction of quasi-periodic solu- 13

tions of dynamical systems in a dissipative setting. We study the interactions of two of such 14

systems based on construction of a nonlinear oscillator with thermostatic (energy) control 15

. This leads to the emergence of complexity, torus-doubling and chaos. We find canards, 16

single 2- and 3-tori, chaos and hyperchaos. Detailed analysis is possible in the case of small 17

oscillations and small interactions. Large-scale phenomena are studied by the construction 18

of charts of parameter space using Lyapunov-exponents. 19

Keywords: quasi-periodicity; bifurcation; tori; chaos; Lyapunov-exponent 20

1. Introduction 21

Interactions of 2 or more nonlinear oscillators produce in general complex dynamics 22

with periodic solutions, tori, tori-doubling and chaos. A natural feature in real-life models 23

is that the interactions are quasi-periodic which means that the individual components 24

have frequencies that are incommensurable. See for a discussion of diophantine frequency 25

vectors and the measure of Cantor sets in 2-frequency systems [8] with also many references 26

inspired on the conservative setting leading to families of invariant tori; we mention in this 27

setting the basic paper [7]. 28

Our focus is different from KAM-theory and with some exceptions also from dissipative 29

KAM-theory as we are especially interested in the practical context where we start with 30

dissipative systems that are subsequently perturbed and lead to complex behaviour. This 31

can produce bifurcations of isolated tori and their qualitative changes. As we shall see we 32

will consider for our analysis a system with damping and thermostatic control, combination 33

of 2 of such systems adds forcing and bifurcation phenomena. 34

Multifrequency oscillations arise in many applications of various disciplines as me- 35

chanical engineering, laser systems, electronic circuits; for a useful list of such applications 36

in many fields see [14] (in particular references [1-23]), and [27]. In [14] and [27] the em- 37

phasis is on the construction of charts of Lyapunov-exponents for interacting self-excited 38

systems. Such numerically obtained charts yield enormous inspiration for further analysis. 39

Important analytic tools are mathematically sound approximation techniques, see for in- 40

stance [34] (ch. 9), and bifurcation theory, see for instance [15]. It is generally known that 41

an equilibrium of a system of differential equations that for a certain parameter value has 42

2 imaginary eigenvalues can generate a periodic solution by Poincaré-Andronov-Hopf 43

bifurcation. The generating periodic solution is a guiding center of the torus. 44

In a similar way a periodic solution that is characterised by 2 imaginary eigenvalues or 45

Mathematics 2025, 1, 0 https://doi.org/10.3390/math1010000

https://www.mdpi.com/article/10.3390/math1010000?type=check_update&version=1
https://doi.org/10.3390/math1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math1010000


Mathematics 2025, 1, 0 2 of 28

corresponding Lyapunov exponents may generate a torus by Neimark-Sacker bifurcation. 46

In the case of quasi-periodic interactions it is natural to discover and identify tori. Usually 47

they branch off equilibria and periodic solutions. The first question is then whether they 48

are normally hyperbolic or not. Starting with an autonomous system of ODEs there will be 49

at least 1 Lyapunov exponent zero. Are there more zeros and, when varying parameters, 50

do we find Hopf and other bifurcations, tori-doubling and cascades of such phenomena 51

leading to chaos? 52

Apart from normal form theory and averaging, we used numerical methods as implemented 53

in MATHEMATICA, MATLAB, MATCONT. The last one uses continuation methods to follow 54

parameter changes that cause bifurcations. It turns out that the hybrid combination of 55

analytic and numerical tools can be very inspiring. 56

What is New? 57

To obtain insight in dissipative quasi-periodic bifurcations we modify in section 2 an 58

important thermostatic control problem (Sprott A), a chaotic system formulated in [26] and 59

[13]. Earlier studies of Sprott A giving more insight are [19]-[20], in [3]-[4] the thermostatic 60

control problem of [26] is linked to tori families as is well-known for conservative systems. 61

The context of conservative systems is classical and interesting but in general less suitable 62

for applications in engineering and other science fields that involve dissipation. 63

A new step in section 2 is to introduce a 2-dimensional basic oscillator with periodic 64

solutions that are asynchronous; when adding a 1-dimensional thermostatic control and 65

assuming small oscillations we find canard behaviour. Admitting larger amplitudes we 66

can identify periodic solutions in a resonance manifold by slow-fast dynamics. 67

In section 3 we consider the 6-dimensional interaction of 2 such components. If dissipation 68

and thermostatic control are excluded we have a system with 2 interacting quasi-periodic 69

oscillators. To study the bifurcations of this system with dissipation, interaction and 70

control is the central part of this paper. When considering small oscillations and small 71

interactions one can use averaging to find single tori with 1 or 2 zero Lyapunov- exponents. 72

Combining canard initial values the solutions converge to a flattened torus. Torus doubling 73

arises leading to a cascade of torus doublings. To obtain an overview of phenomena we 74

constructed charts for larger values of dissipation and interactions. For each value of 2 75

parameters one obtains either a 2-torus, a 3-torus, chaos or hyperchaos. 76

Conclusions and a discussion finish the main part of the paper. 77

Appendix A lists the results that carry directly over from the 2-components case to systems 78

with n components. 79

2. One Component Oscillations with Energy Control 80

An autonomous one degree-of-freedom nonlinear oscillator with damping can be described 81

by: 82

q̈ + bq̇ + q + f (q) = 0, (1)

with dissipation parameter b ≥ 0. A dot above a variable is short for differentiation with 83

respect to time. We assume that the function f (q) is analytic, near q = 0 it has a power 84

series expansion starting with quadratic terms. If b = 0 we have no energy loss, in this case 85

the oscillator has the energy integral 86

E =
1
2
(q2 + q̇2) +

∫ q

0
f (s)ds, (2)

with E a constant parameter depending on the initial conditions. In the conservative case 87

(b = 0) eq. (1) has an infinite number of periodic solutions with period depending on 88

E = E0. If f (q) is deleted in the equation we have the synchronised case of the harmonic 89
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equation with all periods equal (2π). 90

91

In chemical physics, see [31], one introduces a thermostatic control by adding an 92

equation controlling the dissipative term bq̇ by a new variable z, replacing bq̇ by bzq̇. The 93

control z(t) can become negative producing excitation if the energy (or another suitable 94

quantity) characterising the oscillator is smaller than a chosen threshold, z(t) can become 95

positive causing increased damping if the energy is larger than the threshold. Apart from 96

using the energy of a nonlinear equation we have with eq. (1) the natural case of periodic 97

solutions with period dependent on the energy. To fix ideas we will choose 98

f (q) = cq3.

The thermostatic control z for the energy leads to the system: 99q̈ + bzq̇ + q + cq3 = 0,

ż = q2 + q̇2 + c
4 q4 − a,

(3)

with parameters a, c > 0. The expression q2 + q̇2 + c
4 q4 is not exactly representing the 100

energy but measures the energy. 101

In [4] system (3) was studied in the case c = 0, this system is called Sprott B. We note that for 102

small oscillations (q, q̇ small) the solutions of the Sprott B system will to first approximation 103

describe the solutions of system (3) correctly; this will be made more precise later on. 104

Replacing the equation for z by 105

ż = q̇2 − a,

with c = 0 the system is called Sprott A, see [26], [13], [3] and many references there. 106

Choosing c > 0 implies that we have no saddle equilibrium in the conservative oscillator 107

(b = 0). Choosing c negative would change the dynamics for larger values of the initial 108

energy; in fig. 1 we illustrate this for c = 1 where all solutions are periodic and c = −1 109

producing saddles in the phase-plane. 110

111

Stability and Lyapunov-exponents 112

In the sequel we will look for periodic solutions and their stability. In section 5.4 of [32] it is 113

shown that if we have located a periodic solution ϕ(t) of an autonomous system (as (3)), 114

linearisation near ϕ(t) produces as one solution of the linearised system ϕ̇(t). In the case of 115

system (3) this means that one of the three Lyapunov-exponents will be zero. 116

117

Exact analytical solutions 118

We note that system (3) has no equilibria (critical points of the vector field). We find an 119

unbounded invariant manifold if x(0) = ẋ(0) = 0 with dynamics given by 120

z(t) = z(0)− at.

The following result is well known. 121

Lemma 1. Consider system (3) with b = 0; as c > 0 all solutions q(t) are periodic but not 122

synchronous. 123

A few examples of energy E0 with b = 0, c = 1 and corresponding period P are: 124

(E0, P) = (0.01, 6.4), (0.125, 5.8), (0.5, 5.1), (1.125, 4.4), (2, 4), (4.5, 3.3), (8, 3), (12.5, 2.7). 125

The cycles in the phase-plane are shown in fig. 1 (left); increasing E0 shortens P. 126

127
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Figure 1. Phase-plane with periodic solutions of eq. q̈ + q + cq3 = 0. Left the case c = 1. Right the
case c = −1 producing 2 saddle equilibria at q = ±1, q̇ = 0 with inside the 2 heteroclinic connections
periodic solutions.

Time-reversal 128

We will use the concept of time-reversibility of system (3). Put q̇ = v. The system is 129

characterised by time-reversal if it is invariant for the transformtion: 130

q → −q, v → v, z → −z, t → −τ.

It is clear that system (3) shows time-reversal. This concept will be used to apply dissipative 131

KAM theory to system (3). For the general theory see the introductions and statements in 132

[22], [16] and [9]. 133

A second observation is that replacing x, ẋ by −x,−ẋ keeps the system invariant. 134

The phase-flow is globally characterised by writing system (3) as a first order ODE in 135

3-space ẋ = F(x) and taking the divergence (Div) of the vector field: 136

Div F(x) = −bz. (4)

Suppose first that z(t) tends to a fixed non-zero number. If z(t) is positive definite the flow 137

is contracting, if z(t) is negative definite the flow is expanding. In the first case we may 138

find attracting solutions. 139

The symmetry conditions we have obtained allow in specific phase-space regions solutions 140

with z(t) alternating and in particular z(t) T-periodic. If in the periodic case we have 141

1
T

∫ T

0
z(t)dt = 0,
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together with the time-reversal characteristic, dissipative KAM theory will conclude to the 142

existence of invariant tori. 143

144

Note that related but different types of control exist in neurodynamics called ‘gating’. 145

An electro-physical signal fires a neuron if it exceeds a potential typical for the gates of 146

the particular neuron. Such a control is different from thermostatic or energy control as 147

in realistic neuron models a potential that is too small will leave the neuron inert. Such 148

neuronal dynamical systems serve however as an inspiration in the present paper. 149

We expect that the study of systems with energy control will also be of use in other 150

biophysical systems. 151

2.1. Small Oscillations Near the z-Axis, Canards 152

We scale q =
√

εx, q̇ =
√

εẋ, a = εa0, b = εb0. System (3) becomes: 153ẍ + εb0zẋ + x = −εcx3,

ż = ε(x2 + ẋ2 − a0) + O(ε2),
(5)

We apply averaging to system (5); see for the theory [23] or [34]. Here and in the se- 154

quel we formulate variational equations in amplitude-phase variables r, ϕ. Considering 155

coupled systems of oscillators r, ϕ will be vectors with subscripts r1, r2, ϕ1 etc. Putting 156

x = r(t) cos(t + ϕ(t)), ẋ = −r(t) sin(t + ϕ(t)) and rescaling produces: 157
ṙ = −ε sin(t + ϕ)(−cr3 cos3(t + ϕ) + b0zr sin(t + ϕ)),

ϕ̇ = − ε
r cos(t + ϕ)(−cr3 cos3(t + ϕ) + b0zr sin(t + ϕ)),

ż = ε(r2 − a0) + O(ε2).

(6)

Averaging over t keeping r, ϕ fixed we find: 158

ṙ = −ε
b0

2
zr, ϕ̇ = ε

3
8

cr2, ż = r2 − a0. (7)

The solutions of system (6) are approximated to O(ε) on an interval of time O(1/ε) by the 159

solutions of system (7). 160
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Figure 2. Dynamics near the z-axis based on system (3). Left the closed curves in a r, z-diagram
describing the tori around the periodic solution approximated by eq. (7); The initial conditions are
q(0) = 0.1, q̇(0) = 0, z(0) = 0.05, 0.2, 0.5, 1, 1.5 with parameters a = 0.01, b = 0.01, c = 1. Right
canard behaviour near the z-axis with initial conditions q(0) = 0.01, q̇(0) = 0.01, z(0) = 0.5, 1, 1.5
with parameters a = 0.01, b = 0.1, c = 1.

The averaged system (7) contains a periodic approximate solution of the form: 161

x(t) =
√

a0 cos(t + ε
3
8

a0t), z(t) = 0. (8)

The approximation of the solution of system (5) with initial conditions x(0) =
√

a0, ẋ(0) = 162

0, z(0) = 0 by expressions (8) has error O(ε) on the long timescale 1/ε. It corresponds with 163

the exact periodic solution obtained with nearby initial conditions. 164

There is a theoretical advantage giving more insight by using the timelike variable s = 165

t + ϕ instead of t; s is indeed timelike as the phase ϕ(t) is varying slowly. Repeating the 166

calculation we have by averaging over s the averaged system: 167

dr
ds

= −ε
b0

2
zr,

dz
ds

= ε(r2 − a0). (9)

We have r =
√

a0, z = 0 as a critical point of the averaged system (9). The determinant in 168

the critical point does not vanish for a0 > 0 so the approximation (8) corresponds with an 169

existing periodic solution of the original system that is 2π-periodic in s. The eigenvalues in 170

the critical point are ±i
√

a0b0 so the periodic solution is to first approximation neutrally 171

stable. A second order approximation in ε does not change the picture qualitatively as the 172

time-reversibility plays an essential role producing an infinite set of KAM tori, see fig. 2. In 173
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these cases z(t) alternates around z = 0. The periodic solution obtained above serves as an 174

organising centre. The solutions z(t) are symmetric with respect to z = 0 as predicted. 175

Families of invariant tori were observed earlier for the dissipative Sprott A system in 176

[19]-[20], the mathematical explanation by time-reversal and symmetry was given in [3]. 177

Canards Near the z-Axis 178

The dynamics near the z-axis as shown in fig. 2 is obtained with parameter a O(ε). 179

System (3) was designed to find a periodic solution by averaging close to the z-axis. The 180

system can also be interpreted as a slow-fast system with fast variables q, q̇ and slow 181

variable z. According to the theory of slow-fast systems, see [33] and further references 182

there, a slow manifold will be given by x = ẋ = 0 (the z-axis). The slow manifold is not 183

normally hyperbolic so the attraction or repelling is not necessarily exponential but the 184

explicit form makes characterisation easy. If we start with a positive value of z(0) and with 185

r2(0) = x2(0) + ẋ2(0) < a0 the solution will move closer to the slow manifold. As long 186

as z(t) > 0, r2(t) will decrease because of dissipation. At time t = t1, z(t1) = 0 and the 187

term bzẋ will produce excitation for t > t1. The slow manifold becomes unstable but as 188

the solutions are very close to the z-axis they will persist for some time in motion near the 189

z-axis; this is the canard phenomenon. The symmetry of the equations causes the jump-off 190

point of the solutions to be mirroring the approach point, see again fig. 2 (right). 191

2.2. Generalisations 192

The results obtained thus far for the case f (q) = cq3 and small oscillations carry over 193

to the more general case with f (q) polynomial or analytic, odd and f (0) = f ′(0) = 0. In 194

particular we have time-reversibility producing invariant tori near the z-axis around a 195

periodic solution as organising centre. Close to the z-axis we will find canard behaviour. 196

In this section we drop the assumption of small oscillations. 197

A Family of Periodic Solutions 198

Consider again system (3) with small damping coefficient b and small nonlinear force; 199

put b = εb0, c = εc0. System (3) becomes; 200q̈ + εb0zq̇ + q + εc0q3 = 0,

ż = q2 + q̇2 + ε c0
4 q4 − a,

(10)

If ε = 0 the solutions for q(t) are harmonic. Transforming system (10) for ε ≥ 0 to amplitude- 201

phase variables it becomes a slow-fast system with slow variables r, ϕ and fast variable 202

z: 203
ṙ = −ε sin(t + ϕ)((c0r3 cos3(t + ϕ)) + b0zr sin(t + ϕ)),

ϕ̇ = − ε
r cos(t + ϕ)(c0r3 cos3(t + ϕ)) + b0zr sin(t + ϕ)),

ż = r2 − a + O(ε).

(11)

We can identify r =
√

a as a resonance manifold of system (11), for the theory see [33] ch. 204

12 or [34] ch. 7. Another approach is to use iteration of an integral equation, see [33] ch. 205

10.2 or [34] ch. 3, this would be an application of the Poincaré-Lindstedt (continuation) 206

method. 207

Consider a neighbourhood of the resonance manifold by introducing a local variable ξ: 208

ξ =
r −

√
a

δ(ε)
, r =

√
a + δ(ε)ξ, (12)
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with δ(ε) = o(1) as ε → 0. Introducing ξ in system (11) we find: 209
δ(ε)ξ̇ = −ε sin(t + ϕ)(c0(

√
a + δξ)3 cos3(t + ϕ) + b0z(

√
a + δξ) sin(t + ϕ)),

ϕ̇ = − ε
(
√

a+δξ)
cos(t + ϕ)(c0(

√
a + δξ)3 cos3(t + ϕ)) + b0z(

√
a + δξ) sin(t + ϕ)),

ż = (
√

a + δξ)2 − a + O(ε).

(13)

A significant degeneration in the sense of singular perturbation theory gives the choice 210

δ(ε) =
√

ε. Expanding while keeping terms O(
√

ε) we have: 211
ξ̇ = −

√
ε sin(t + ϕ)(c0(

√
a cos(t + ϕ))3 + b0z

√
a sin(t + ϕ)) + O(ε),

ϕ̇ = O(ε),

ż = 2
√

aεξ + O(ε).

(14)

Averaging over time produces to O(
√

ε): 212

ξ̇ = −
√

ε
b0

2
√

az, ϕ̇ = 0, ż =
√

ε2
√

aξ. (15)

Consider t + ϕ as a timelike variable and the dynamics of the variables ξ, z. The Jacobian of 213

the averaged equations of ξ, z is not singular (its value is εb0a), so according to the implicit 214

function theorem we have existence of the periodic solution continued from the harmonic 215

solution for ε = 0. 216

Solving the averaged system we find ξ2 + b0
4 z2 = constant corresponding with neutral 217

stability for critical point ξ = z = 0 in the resonance manifold. However, a first order 218

approximation in a resonance manifold will always yield conservative dynamics even if 219

the original system is dissipative; see for the general theory again [33] ch. 12 or [34] ch. 7. 220

So we have to construct a second order approximation to establish stability. 221

222
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Figure 3. Dynamics based on system (3). for 2 cases starting close to r =
√

a, z = 0. with a = 1, 3 and
parameters b = 0.01, c = 1. In both cases a torus emerges around r =

√
a.

Expansion to O(ε) leads to the system: 223
ξ̇ = −

√
ε sin((t + ϕ)[−a3/2 cos3(t + ϕ) + b0

√
az sin(t + ϕ)]

−ε sin(t + ϕ)[−3aξ cos3(t + ϕ) + b0zξ sin(t + ϕ)] + ε3/2,

ϕ̇ = −ε cos(t + ϕ)[−a cos3(t + ϕ) + b0z sin(t + ϕ)] + ε3/2,

ż =
√

ε2
√

aξ + εξ2.

(16)

However the second order averaging (see [33] or [34]) the system (13) does not change the 224

neutral stability. 225

Numerical explorations for a = 1, 2, 4, 9 and nearby initial conditions show instability of 226

ξ = z = 0 and convergence to other solutions. See fig. 3 for the cases of orbits starting near 227

a = 1, z = 0 and a = 2, z = 0. 228
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3. A Coupled System of 2 Controlled Oscillators 229

We extend system (3) to two coupled systems with a simple direct coupling. The 230

coupling is not inspired by pendulum couplings but by the process of transmitting impulses 231

to neigbouring components as in neural systems. Consider the coupled system: 232
q̈1 + bz1q̇1 + q1 + cq3

1 = βq2,

ż1 = q2
1 + q̇1

2 + c
4 q4

1 − a1,

q̈2 + bz2q̇2 + q2 + cq3
2 = βq1,

ż2 = q2
2 + q̇2

2 + c
4 q4

2 − a2.

(17)

The interaction constant β ≥ 0 will determine the interaction force. In system (17) the first 233

component activates the second, the second one the first. We assume a1, a2 > 0. 234

The result of lemma 1 extends in the following form: 235

Lemma 2. If b = β = 0 the corresponding solutions q1(t), q2(t) of system (17) are quasi-periodic, 236

they are periodic if the initial conditions are equal. 237

As we shall see, system (17) will produce for β > 0 interactions of quasi-periodic 238

oscillations with complicated dynamics. In [14] and [27] such two-frequency interactions 239

are studied involving torus bifurcations and chaotic dynamics characterised by Lyapunov- 240

exponents. The nature of the coupling in [14] and [27] is different from our system (17) 241

with more complicated dissipation. A common feature is that in both model systems a 242

form of self-excitation takes place. 243

System (17) can be written as a first order system ẋ = F(x) in 6-space with divergence: 244

Div F(x) = −b(z1 + z2). (18)

So, in a region where z1 + z2 > 0, the flow contracts, if in the region z1 + z2 < 0, the flow 245

expands. 246

Lemma 3. If c = β = 0 in system (17) we have a family of harmonic synchronised periodic 247

solutions in the manifold z1 = z2 = 0 of the form: 248

q1(t) =
√

a1 cos t, q̇1(t) = −
√

a1 sin t, q2(t) =
√

a2 cos t, q̇2(t) = −
√

a2 sin t. (19)

If β ̸= 0 we expect instability of the periodic solution because of resonance. It is 249

natural to study the cases c, β ≪ 1. 250

3.1. Small Interactions and Small Oscillations 251

Consider the case of small interactions β = εβ0, small deflections and consequently 252

small nonlinearity cq3; put b = εb0. 253

As in subsection 2.1 we can scale for the deflections q1,2 =
√

εx1,2, for the velocities 254

q̇1,2 =
√

εẋ1,2, a1,2 → εa1,2. Introducing amplitude-phase coordinates as before and by 255

averaging as in subsection 2.1 we find the system for O(ε) approximations given by: 256
ṙ1 = −ε(r1

b0
2 z1 +

β0
2 r2 sin(ϕ1 − ϕ2)), ϕ̇1 = ε( 3

8 cr2
1 −

β0r2
2r1

cos(ϕ1 − ϕ2)),

ṙ2 = −ε(r2
b0
2 z2 +

β0
2 r1 sin(ϕ2 − ϕ1)), ϕ̇2 = ε( 3

8 cr2
2 −

β0r1
2r2

cos(ϕ2 − ϕ1)),

ż1 = ε(r2
1 − a1) + O(ε2), ż2 = ε(r2

2 − a2) + O(ε2).

(20)

Structurally stable critical points of the approximating vector field correspond with periodic 257

solutions close to the critical points, see [34]. 258
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We have the critical values r1 =
√

a1, r2 =
√

a2. Put for the combination angle χ = ϕ1 − ϕ2. 259

The equation for χ becomes: 260

dχ

dt
=

ε

2

[
3
4

c(r2
1 − r2

2)− β0(
r2

r1
− r1

r2
) cos χ

]
. (21)

The case a1 = a2 = a 261

This is clearly a degenerate case as from (21) we have in the critical points r1 = r2 262

and so dχ/dt = 0. The only requirement is z1 = −z2 but with χ not determined. The 263

timeseries q1(t), q2(t) corresponding to the critical points are shown in fig. 4. As expected 264

from the analysis of 1 component in section 2, see also fig. 2, the canard behaviour becomes 265

less prominent when decreasing z1(0), z2(0). This is illustrated in figs. 4 and 5 where 266

a1 = a2 = 0.0025. Choosing z1(0) = 2, z2(0) = −2 we have canard behaviour, decreasing 267

the initial z-values we find the irregular pattern shown in fig. 6 for q1(t) (and the same for 268

q2(t)). The irregularity originates from the exponential closeness of the orbits to the slow 269

manifold at the z-axis which is not normally hyperbolic. 270

271

Figure 4. Consider the critical point of system (20) q1 = q2 = 0.05, q̇1 = q̇2 = 0, z1 = 0.2, z2 = −0.2
and parameters a1 = a2 = 0.0025, b = 0.1, c = 1, β = 0.1. The timeseries of the corresponding
periodic solution shows spiking caused by canard behaviour.

Starting close to the critical point the dynamics shows instability. See fig. 5 for an 272

example, the numerics based on system (17) suggests the presence of a torus. 273

274

Figure 5. Dynamics for small oscillations based on system (17). Left the r1, z1-diagram and right the
q2, q̇2-diagram describing the projected tori around the periodic solution. The initial conditions are
q1(0) = 0.0501, q̇1(0) = 0.0001, z1(0) = 0.2, q2 = 0.0499, q̇2 = −0.0001, z2 = −0.21 with parameters
a1 = a2 = 0.0025, b = 0.1, c = 1, β = 0.1.
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Figure 6. Consider the critical point q1 = q2 = 0.1, q̇1 = q̇2 = 0, z1 = 1.3, z2 = −1.3 and parameters
a1 = a2 = 0.01, b = 0.1, c = 1, β = 0.1. The timeseries shows the case with for these initial z-values
the transition to canard behaviour.

The case a1 ̸= a2 275

This case yields as well nontrivial equilibria. Requiring χ̇ = 0 gives the following 276

condition. 277

cos χ = −
3c
√

a1a2

4β0
(22)

Note that equation (22) implies that |3c
√

a1a2/(4β0)| ≤ 1. Looking for roots of the ampli- 278

tude equations yields: 279
sin χ = −

√
a1b0z1√
a2β0

sin χ =

√
a2b0z2√
a1β0

.
(23)

This gives the two nontrivial equilibria solutions in the case a1 ̸= a2. 280

r1 =
√

a1, r2 =
√

a2,

z2 =− a1

a2
z1, (24)

z1 =±

√
16a2β2

0 − 9c2a1a2
2

16a1b2
0

, (25)

χ =π + arctan
(

4b0z1

3ca2

)
, if β0c > 0, (26)

χ = arctan
(

4b0z1

3ca2

)
, if β0c ≤ 0 (27)

The Jacobian matrix of system (20) at the nontrivial equilibriun in the case a1 ̸= a2 and 281

small oscillations is as follows: 282

DF(x) =



− bz1
2

3
8 ca2

√
a1

√
a1bz1

2
√

a2
−

√
a1b
2 0

3c(a1−a2)
8
√

a1

bz1(a1−a2)
2a2

3c(a1−a2)
8
√

a2
0 0

−
√

a1bz1
2
√

a2
− 3

8 ca1
√

a2
a1bz1
2a2

0 −
√

a2b
2

2
√

a1 0 0 0 0
0 0 2

√
a2 0 0


(28)
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The trace of the Jacobian (28) is 283

Tr(DF) = bz1
a1 − a2

a2
. (29)

The trace vanishes to produce degenerate dynamics in the 2 cases: 284

a1 = a2, 16β2
0 = 9c2a1a2. (30)

In the second case we have z1 = z2 = 0, see again fig. 5. 285

286

An analysis of the eigenvalues of the nontrivial equilibria for the case a1 ̸= a2 reveals 287

that the equilibria are of unstable focus type. For the parameter values a1 = 0.25, a2 = 288

0.15, b = 1, β = 1, c = 1, ϵ = 1, we identify two nontrivial equilibria with z1 = ±0.766384 289

and corresponding eigenvalues: 290

Λ1 ={−0.0495 ± 0.5553i, 0.1838 ± 0.3056i, 0.2423}, (31)

Λ2 ={0.0495 ± 0.5553i,−0.1838 ± 0.3056i, 0.2423}. (32)

Further continuation of the equilibria with respect to the system’s parameters does not 291

reveal any significant bifurcations. 292

3.1.1. Quasi-Periodic Motion and Associated Bifurcations 293

Interestingly, the averaged system (20) contains in the case a1 ̸= a2, a stable periodic 294

orbit, unrelated to the equilibria mentioned so far. This implies the presence in the original 295

system of quasi-periodic motion in the form of a stable two-dimensional torus that can be 296

depicted numerically starting in the neighborhood of the averaged stable cycle, see fig. 7 297

and for the Lyapunov-exponents fig. 8. A more general discussion explaining why we find 298

2 Lyapunov-exponents zero is presented in appendix A. 299

Figure 7. Left: A stable cycle, with period T = 13.7288, numerically obtained from the averaged
system (20) with initial condition: r1 = 0.0518, χ = 4.273, r2 = 0.099, z1 = 1.119, z2 = −0.989,
and parameters a01 = 0.15, a02 = 0.25, b0 = β0 = c = 1, ε = 0.1, a1 = εa01, a2 = εa02. Right:
Poincaré section (q1 = 0) of system (17) projected onto the (q̇1, z2)−plane with initial condition:
q1 = 0; q̇1 = 0.1276, q2 = 0.216, q̇2 = 0.006, z1 = 0.638, z2 = −1.569, and parameters a1 =

0.015, a2 = 0.025, b = β = 0.1, c = 1, showing a closed curve corresponding with a two-dimensional
torus.
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Figure 8. Lyapunov exponents of the stable single torus (Figure 7, right), showing two zero exponents
and four negative exponents.

Continuation of the limit cycle in the averaged system using a2 as a control parameter 300

reveals a supercritical period-doubling at the critical value a2 = 0.2285909 from which 301

a stable cycle with double the period (T = 27.9445) emerges. The corresponding stable 302

double torus in the original system has been numerically located near the double cycle as 303

expected. See Fig. 9. 304

Figure 9. Left: A stable double cycle projected on the r1, z2 plane, with period T = 29.9, numerically
obtained from the averaged system (20) by continuation of the stable period 1 cycle. Right: Poincaré
section (q1 = 0) of system (17) projected onto the (q̇1, z2)−plane with initial condition: q1 = 0; q̇1 =

0.1742, q2 = 0.1382, q̇2 = −0.0426, z1 = 1.5878, z2 = 0.0859, and parameters a1 = 0.015, a2 =

0.02, b = β = 0.1, c = 1, showing a closed curve corresponding with a two-dimensional double
torus.

Figure 10. Orbits starting from the same initial conditions as in Figure 7 (right), projected onto the
(q1, z1)−plane (left) and the (q2, z2)−plane (right), illustrating the double torus.
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Figure 11. Lyapunov exponents of the stable double torus, as depicted in Figure 9 (Right), showing
two zero exponents and the four negative exponents .

3.1.2. Chaos Through the Cascade of Period Doubling in Tori 305

Figure 12. Poincaré section a2 = 0.017 (left) and a2 = 0.016 (right)

Figure 13. Left: Lyapunov exponents of the stable double torus, a2 = 0.017, with two exponents
equal to zero and the remaining four exponents negative. Right: Lyapunov exponents of the strange
attractor after the cascade of period doubling at a2 = 0.016 with one positive exponent, two zero
exponents and the remaining three negative.

3.1.3. Coexisting Period 2 Orbit 306

Tracking periodic orbits and analyzing their stability through continuation methods is 307

crucial for detecting bifurcations and understanding the resulting dynamics, as well as the 308

routes to chaos in the system under investigation. Using the numerical methods outlined 309
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in [24], an additional period-2 orbit was identified in the averaged system, which coexists 310

with the period-1 cycle shown in Figure 7. This cycle has four complex multipliers on the 311

unit circle and one real multiplier equal to 1. Because the cycle is only Lyapunov stable, 312

there is no guarantee that the corresponding two-dimensional torus exists in the original 313

system. See Figure 14. 314

Figure 14. Left: A numerically computed period-2 cycle with period T = 18.23 from the averaged
system (20), projected onto the z2-r1 plane. The initial conditions are r1 = 0.3, χ = 3.94203, r2 =

1.47846, z1 = −0.03541, and z2 = 0.77940, with parameters a01 = 0.15, a02 = 0.25, b0 = β0 = c = 1.
Right: The same period-2 cycle, now projected onto the z1-r2 plane, illustrating its behavior across
different coordinate projections. The cycle has four complex multipliers on the unit circle and one
real multiplier equal to 1.

Searching for the corresponding dynamics in the original system, starting near the 315

Lyapunov stable cycle of the averaged system, the following invariant set was identified. 316

See Figure 15. 317

Figure 15. Left: Orbit numerically computed from the original system (17), initiated near the
stable cycle, projected onto the z2-r1 plane. The initial conditions are q1 = 0., q̇1 = 0.1610127,
q2 = 0.00894116, q̇2 = −0.02264744804, z1 = −0.5138185, and z2 = −1.489323, with parameters
ε = 0.05, a1 = 0.15ε, a2 = 0.25ε, b = β = ε, c = 1. Right: The same period-2 orbit, now projected onto
the z1-r2 plane, highlighting its behavior across different coordinate projections.
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Figure 16. Left: The orbit (in red) numerically computed from the original system (17), initialized near
the stable cycle, along with the scaled stable cycle (in green) from the averaged system (20), projected
onto the z2-r1 plane. Right: The same orbits, now projected onto the z1-r2 plane, demonstrating the
accuracy of the averaging method.

By searching for period-1 and period-2 periodic orbits in the averaged system with 318

initial values r1 = 0.3, χ = 0, r2 within the interval (0, 6], and z1, z2 ranging from -3 to 3 in 319

increments of 1/50, eight additional periodic orbits were identified that coexist with the 320

two cycles previously found. Four stable and four unstable. See illustrations in Fig. 17. 321

Figure 17. Numerically computed stable periodic orbits of the averaged system, obtained via the
fixed point method applied to a Poincaré section. The orbits are projected onto the z2-r1 plane with
parameters ε = 0.05, a01 = 0.15, a02 = 0.25, b0 = β0 = c = 1. Right: Corresponding unstable periodic
orbits under the same parameter settings.

3.1.4. Interactions Involving Canards 322

Figure 18. q1(t) (left) and q2(t) (right) in the case a1 = 0.005, a2 = 0.0025, b = 0.1, c = 1, β = 0.1
and initial conditions q1(0) =

√
a1, q2(0) =

√
a2, v1 = v2 = 0, z1(0) = 0.5, z2(0) = −1. The system

evolves to canard behaviour with divergence (18) alternating in sign.
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In fig. 18 the evolution of the 2-particle system tends to canard behaviour. The 323

dynamical evolution starts to stabilise after 15000 timesteps. 324

The canard character of the flow is shown in fig. 19 where the projected dynamics suggests 325

a flattened torus; the variable z1(t) takes negative and positive values, z2(t) mostly positive 326

ones producing both attraction and repelling. 327

Figure 19. Projections z1, r2 (left) and z2, r1 (right) in the case of fig. 18. The initial transients are left
out by omitting the output of the first 20 000 timesteps. The divergence (18) shows both attraction
and repelling.

Figure 20. Left: Lyapunov exponents of the flattened torus from Figure 19, illustrating two negative
exponents and four exponents clustered near zero. Right: A magnified view of the left figure,
highlighting the spiky behaviour of the four Lyapunov exponents close to zero.
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Figure 21. Divergence of the flow of fig. 19 for t > 20 000. Right the average of the divergence (18)
tending to a small negative value.

The Lyapunov exponents of the flow shown in fig. 19 have 4 exponents clustered near 328

zero. In fig. 20 right we present an enlarged picture of the small exponents. We find both 329

positive and negative spiky behaviour suggesting small fractal structure of the flattened 330

torus of fig 19. Additional information is shown in fig 21 where we show the alternating 331

divergence of the flow corresponding with alternating attraction and repelling. 332

3.2. Interactions of Larger Quasi-Periodic Solutions 333

Figure 22. Time-series of 2 quasi-periodic oscillations based on eq. (17) with q1 = q2 = 0, z1 = z2 = 0
and v1 = 1, v2 =

√
0.5 with parameters a1 = 1, a2 = 0.5, b = 0.1, c = 1, β = 0.1. Left q1(t), middle

q2(t) and right the strongly fluctuating divergence of the flow.
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Consider the dynamics when leaving the region of small oscillations. In the case 334

of friction parameter b and interaction parameter β still small we consider with a1 ̸= a2 335

interactions of quasi-periodic solutions. Putting O(1) initial conditions for the coordinates 336

and parameters a1, a2 we obtain chaotic solutions, see fig. 22 where we have chosen b = 337

β = 0.1. The Lyapunov-exponents for the case a1 = 1, a2 = 0.5 are depicted in fig. 23. 338

As usual c = 1, varying c changes the dynamics but keeps chaos. The exponents are: 339

λ1 = 0.86164049916299E − 02; λ2 = 0.28784389624742E − 02; 340

λ3 = 0.33455860114490E − 03; λ3 = −0.14209055102249E − 03; 341

λ5 = −0.24875434928298E − 02, λ6 = −0.10024345648336E − 01. 342

The dynamics turns out to be hyper-chaotic with 2 positive exponents. 343

Figure 23. Interactions of 2 quasi-periodic oscillations based on eq. (17) with initially q1 = q2 =

0, z1 = z2 = 0 and v1 = 1, v2 =
√

0.5 with parameters a1 = 1, a2 = 0.5, b = 0.1, c = 1, β = 0.1.

Larger Interaction Parameter β 344

Exploring systematically the case of O(1) values of β we find tori, chaos and hyper- 345

chaos. The hyperchaos found in the system of fig. 23 associated with 2 L- exponents is 346

investigated with other phenomena for the values of b, β between 0 and 1, see fig. 24. We 347

find small islands (yellow) in a sea of chaotic cases (green). The chaotic cases are associated 348

with one L-exponent. In a neighbourhood of b = β = 0 we find 2-dimensional tori blue as 349

found earlier for the case of small interactions and small oscillations, but interestingly we 350

have also for small dissipation sets of chaotic solutions. The picture of phenomena of many 351

cases in fig. 24 is very remarkable and not easy to predict analytically. 352

353

Consider again system (17). Assume that 0 < β < 1, b = εb0, c = εc0. To study the 354

emergence of tori for forced 2-frequency oscillations consider the system: 355
q̈1 + εb0z1q̇1 + q1 + εc0q3

1 = βq2,

ż1 = q2
1 + q̇1

2 + ε c0
4 q4

1 − a1,

q̈2 + εb0z2q̇2 + q2 + εc0q3
2 = βq1,

ż2 = q2
2 + q̇2

2 + ε c0
4 q4

2 − a2.

(33)

For ε = 0 we have the quasi-periodic solutions: 356q1 = r1 cos(
√

1 + βt + ϕ1) + r2 cos(
√

1 − βt + ϕ2),

q2 = −r1 cos(
√

1 + βt + ϕ1) + r2 cos(
√

1 − βt + ϕ2),
(34)
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with r1, r2, ϕ1, ϕ2 constants determined by the initial conditions. The interactions of these 357

quasi-periodic solutions are shown for small values of b in fig. 25. 358

Figure 24. Chart of parameters b, β characterising interactions of 2 quasi-periodic oscillations based
on eq. (17), 0 ≤ b, β ≤ 1, a1 = 0.015, a2 = 0.025, c = 1. The initial conditions are: q1 = 0,
v1 = 0.06955254625606, q2 = 0.03492489869658, v2 = −0.02743019598001, z1 = 1.66213345371198,
and z2 = −0.03710401127306. The coloring scheme used corresponds to a classification based on
the number of zero Lyapunov exponents, with a threshold of 10−3: any exponent with absolute
value below this threshold is treated as zero. The values of the exponents, ranging from -6 to 2,
are mapped to the RdYlBur colormap as follows: dark blue regions indicate the absence of clear
dynamics, with all six Lyapunov exponents near zero (undecided behavior). Medium-dark blue
corresponds to five exponents near zero, indicating a 5D torus, while medium blue (four near-zero
exponents) corresponds to a 4D torus, and so on, with light blue corresponding to a 3D torus and
yellow to a 2D torus, indicative of quasi-periodic behavior. Orange regions correspond to systems
with one zero exponent, representing periodic orbits, while regions in red and dark red indicate
chaotic or hyperchaotic dynamics, with one or two positive Lyapunov exponents. For the calculation
of the Lyapunov coefficients, integration was performed from t = 0 to tmax with a maximum time
tmax = 1.5 × 106, and the expansion rates were calculated every 100 steps, resulting in 15,000 time
steps used to compute the exponents. The integration was carried out using a 4th-order Runge-Kutta
(RK4) scheme with step size 10−2.

If ε = 0, the expressions of system (34) with amplitudes and phases constant are 359

general quasi-periodic solutions of system (33). They describe for 0 < β < 1 tori in phase- 360

space. We are interested in the bifurcations arising for 0 < ε ≪ 1. In fig. 24 we characterise 361

these bifurcations by the Lyapunov-exponents. We find periodic orbits (orange), 2- and 362

3-tori (resp. yellow and light blue), chaos (red) and hyperchaos (dark red spots). 363
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The chart uses colors to represent the different dynamics based on the Lyapunov-exponents 364

of the system with the following cases: 365

• 0: All Lyapunov-exponents are negative (no zeros). This indicates the system settles to 366

an equilibrium state. 367

• 1: One Lyapunov-exponent is positive. This signifies the presence of chaos in the 368

system. 369

• 2: Two Lyapunov-exponents are positive. This corresponds to hyperchaos, where the 370

system exhibits even more complex behavior. 371

• -1: One Lyapunov-exponent is zero, and all others are negative. This reflects a periodic 372

orbit. 373

• -2: Two Lyapunov-exponents are zero, and all others are negative. This corresponds to 374

a T² torus. 375

• -3 to -6: Increasing numbers of zero Lyapunov-exponents, with all remaining expo- 376

nents negative. These represent higher-dimensional invariant tori with quasi-periodic 377

behavior. 378

As in most applications the dissipation has to be fairly small, we zoom in for 0 < b < 0.2. 379

We obtain the Lyapunov-exponents chart of fig. 25. 380
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Figure 25. Parameter chart for 0 < b ≤ 0.2 and 0 < β ≤ 1, characterizing the interactions of
two quasi-periodic oscillations based on Eq. (17), with fixed parameters a1 = 0.015, a2 = 0.025,
and c = 1. The initial conditions are: q1 = 0, v1 = 0.06955254625606, q2 = 0.03492489869658,
v2 = −0.02743019598001, z1 = 1.66213345371198, and z2 = −0.03710401127306. The coloring
scheme used corresponds to a classification based on the number of zero Lyapunov exponents, with
a threshold of 10−3: any exponent with absolute value below this threshold is treated as zero. The
values of the exponents, ranging from -6 to 2, are mapped to the RdYlBur colormap as follows: dark
blue regions indicate the absence of clear dynamics, with all six Lyapunov exponents near zero
(undecided behavior). Medium-dark blue corresponds to five exponents near zero, indicating a 5D
torus, while medium blue (four near-zero exponents) corresponds to a 4D torus, and so on, with light
blue corresponding to a 3D torus and yellow to a 2D torus, indicative of quasi-periodic behavior.
Orange regions correspond to systems with one zero exponent, representing periodic orbits, while
regions in red and dark red indicate chaotic or hyperchaotic dynamics, with one or two positive
Lyapunov exponents. For the calculation of the Lyapunov coefficients, integration was performed
from t = 0 to tmax with a maximum time tmax = 1.5 × 106, and the expansion rates were calculated
every 100 steps, resulting in 15,000 time steps used to compute the exponents.

4. Conclusions and Discussion 381

1. Our paper shows essentially an efficient hybrid approach. Analysis, in particular 382

averaging-normalisation, and numerical bifurcation techniques go hand in hand. 383

Fig. 15 is an example. The periodic solutions have been given by averaging and are 384

indicated, the associated dynamics is added by numerics. 385

2. The use of nonlinear oscillators enables us to study isolated quasi-periodic interactions. 386

For 2 components (section 3) the dynamics is essentially different from dissipative 387

KAM theory. 388
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3. Interaction of 2 components in the sense of section 3 is surprisingly rich producing 389

periodic solutions, 2- and 3-tori, chaotic and hyper-chaotic behaviour. 390

4. Considering weak interactions and small oscillations one finds already this rich 391

collection of bifurcations. The chart in Fig. 25 shows this for small b and β. 392

5. The thermostatic control used in the interacting systems originates from chemical 393

physics. Applications of such a control to neural dynamics or economic models might 394

be useful. 395

6. In the analysis of dynamics one can meet fractal manifolds that may show strange at- 396

traction. The use of Lyapunov-exponents for fractal manifolds presents basic problems; 397

improvements in the use of these exponents to compute Kaplan-Yorke dimensions 398

will be discussed in a forthcoming paper [5]. 399
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Appendix A Periodic Chains of n Coupled Systems 406

One can extend system (17) to more than 2 coupled components but this poses a 407

formidable problem. It is important to formulate in advance relevant questions for such 408

complicated interacting chains especially the question if and how transmission of phenom- 409

ena takes place in larger chains. This question has some relevance for neural dynamics. We 410

restrict ourselves to some straightforward results. A few cases with n = 4 will be used for 411

illustration. 412

Extending system (17) to n coupled systems and again simple direct coupling we have the 413

periodic chain: 414

q̈1 + bz1q̇1 + q1 = −cq3
1 + βqn,

ż1 = q2
1 + q̇1

2 + c
4 q4

1 − a1,

q̈2 + bz2q̇2 + q2 = −cq3
2 + βq1,

ż2 = q2
2 + q̇2

2 + c
4 q4

2 − a2,

. . . . . .

q̈n + bzn q̇n + qn = −cq3
n + βqn−1,

żn = q2
n + q̇n

2 + c
4 q4

n − an.

(A1)

The interaction constant β > 0 will determine the collective dynamics. In system (A1) the 415

first component activates the second, the second one the third etc. The nth component 416

activates the first. 417

System (A1) can be written as a first order system ẋ = F(x) in 3n-space with divergence: 418

Div F(x) = −b(z1 + z2 + . . . + zn). (A2)

As in section 3 the sign of the divergence will determine whether solutions will expand or 419

contract locally. 420
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Appendix A.1 Dynamics for Small Oscillations and Small Interactions 421

Figure A1. Dynamics of system (A1) for n = 4 and starting with small initial values. We have
a1 = a2 = 0.01, a3 = a4 = 0.04. As predicted from the averaged equations (A3) r1(t), r2(t) tend to the
value 0.1, r3(t), r4(t) tend to 0.2.

As in subsection 2.1 we scale qi =
√

εxi, q̇i =
√

εẋi, ai → εai(i = 1, . . . , n), b = εb0; 422

consider small interactions by putting β = εβ0. Introducing amplitude-phase coordi- 423

nates xi = ri(t) cos(t + ϕi(t)), ẋi = −ri(t) sin(t + ϕi(t)), i = 1, . . . n and averaging as in 424

subsection 2.1 we find the 3n-dimensional system for O(ε) approximations: 425

ṙ1 = −ε(r1
b0
2 z1 +

β0
2 rn sin(ϕ1 − ϕn)), ϕ̇1 = ε( 3

8 cr2
1 −

β0rn
2r1

cos(ϕ1 − ϕn)),

ż1 = ε(r2
1 − a1),

ṙ2 = −ε(r2
b0
2 z2 +

β0
2 r1 sin(ϕ2 − ϕ1)), ϕ̇2 = ε( 3

8 cr2
2 −

β0r1
2r2

cos(ϕ2 − ϕ1)),

ż2 = ε(r2
2 − a2),

· · · = · · ·
ṙn = −ε(rn

b0
2 zn +

β0
2 rn−1 sin(ϕn − ϕn−1)), ϕ̇3 = ε( 3

8 cr2
n −

β0rn−1
2rn

cos(ϕn − ϕn−1)),

żn = ε(r2
n − an).

(A3)

For n = 4 a first illustration is presented in fig. A1 where we have small initial 426

conditions and a1 = a2 = 0.01, a3 = a4 = 0.04. 427

Appendix A.2 Equal Combination Angles and Control Parameters ai 428

A simple assumption is to choose in system (A3) the parameters ai, i = 1, . . . , n and 429

the initial combination angles equal. 430

Critical values 431

For a critical point of system (A3) we require that r1 =
√

a1, r2 =
√

a2, . . . , rn =
√

an. 432

If initially z1 = z2 = . . . = zn = 0 and ϕ1 − ϕn = 0, π; ϕ2 − ϕ1 = 0, π; . . . , ϕn − ϕn−1 = 0, π 433

the n amplitudes will be constant. 434

With these choices system (A3) will have a critical point (equilibrium) corresponding with 435

a periodic solution of system (A1). 436

437

To illustrate this we choose n = 4, so ai = a, i = 1, . . . , 4; the combination angles 438

ϕ1 − ϕ4 = ϕ2 − ϕ1 = ϕ3 − ϕ2 = ϕ4 − ϕ3 and z1, . . . , z4 tend to the same values. 439

We show that in this case we can extend the analysis to obtain critical points of the averaged 440

system (A3) and so periodic solutions of system (A1). 441

Putting zn = 0, n = 1, . . . , 4 for these critical point components we extend the symmet- 442

ric solution discussed in subsection 2.1 to 4 components. Assuming constant amplitudes we 443

need for the combination angles values 0, π. Substitution of the amplitude and angle values 444
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in the equations for the phases we find that the combination angles are constant. This leads 445

to 2 critical points and so 2 periodic solutions. The eigenvalues of the first equilibrium (i.e. 446

the one with combination angles equal to zero) are: 447

λ1...4 = 0;

λ5,6 = ±i
√

ab;

λ7,8 = ±
√
−a8(4ab + 3aβ + 4β2)

2a4 ;

λ9,10 = ±

√
− 1

2 a9(8b + 3β)− 1
2

√
−a16β2(3a + 4β)2

2a4 ;

λ11,12 = ±

√√
−a16β2(3a + 4β)2 − a9(8b + 3β)

2
√

2a4
.

Using the parameters as in fig. A2 we find the first equilibrium is unstable. 448

λ1...4 = 0;

λ5,6 = ±0.316228i;

λ7,8 = ±3.05369i;

λ9,10 = ±(−1.48406 + 1.55401i);

λ11,12 = ±(1.48406 − 1.55401i).

In fig. A2 the instability of the first equilibrium (case 1) is shown; the solution starting near 449

equilibrium 1 moves to equilibrium 2 (case 2) where the z-components tend to 1. 450
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Figure A2. Dynamics based on system (A1) for n = 4 with projections r1(t) and z1(t) for 10 000
timesteps. The initial conditions are taken near the critical point of case 1: in vector form q(0) =

0.11, 0.1, 0.11, 0.12; , v(0) = 0, 0, 0, 0; z(0) = 0.01, 0, 0.01,−0.01) with for the parameters a = 0.01, b =

0.1, c = 1, β = 0.1. The components q(t), z(t) tend to the limiting values of case 2 (combination angles
π).

Remark 451

A different type of solution with equal combination angles but the z-coordinates 452

unequal zero is possible. The combination angles are constant if ϕ1 − ϕ4 = π/2, 3π/2. For 453

r1, . . . , r4 to be constant we find 454

z1 = z2 = z3 = z4 = ± β0

b0
. (A4)

This produces solutions with less symmetry. For the case n = 4 one can obtain explicit 455

expressions with conditions for the parameters and for bifurcational behaviour. 456
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