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Abstract

Stability investigations of vibration quenching employing the concept of actuators with a variable stiffness are pre-

sented. Systems with an arbitrary number of degrees of freedom with linear spring- and damping-elements are

considered, that are subject to self-excitation as well as parametric stiffness excitation. General conditions for full

vibration suppression and conditions of instability are derived analytically by applying a singular perturbation of

first and second order. The analytical predictions are compared for exemplary systems by numerical time integration

and show a great improvement of former results. These basic results obtained can be used for accurate design of a

control strategy for actuators.
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1. Introduction

Vibrations that occur in a dynamical system can be classified with respect to their causes as forced,
self-excited or parametrically excited vibrations, e.g. see [20], [27] or [3]. The interaction between two types
of vibration is considered: self-excited and parametrically excited vibrations. Self-excited vibrations can
occur if a system has access to an external reservoir of energy. Other than with forced vibrations where the
frequency of the excitation is prescribed, here the system itself determines the frequency at which the energy
is transferred into the system. This type of vibration may occur due to interaction between a structure and
a fluid, as in the case of an airplane wing which tends to unstable vibrations when reaching a critical speed.
Such vibrations are also called flow-induced vibrations. The destruction of the Tacoma-Bridge in 1940 is
an impressive example how dangerous self-excited vibrations by fluid-structure interaction can be, see [18].
Other examples are unstable vibrations of turbo machinery coming from flow-induced vibrations, friction-
induced vibrations in brakes (squeal noise) or stick-slip phenomena in tool machines leading to marks of the
cutting tool at the surface of the workpiece. Also unstable bogie motions of a rail vehicle at very high speeds
belongs to the group of self-excited vibrations. Models for a large class of self-excited vibrations are the Van
der Pol- as well as the Rayleigh-oscillator, see [36]. They describe self-excitation by a non-linear force fse,

fv
se = cẋ

(

1 + γx2
)

and f r
se = cẋ

(

1 + γẋ2
)

, (1)
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respectively, where x represents a deflection and c is a negative damping coefficient. The present paper
mainly analyses the stable motion of a system, for which the equations of motion may be linearised around
the equilibrium position x, ẋ = 0. The non-linear forces (1) yield fse = cẋ as the linearised expression.
Hence, this type of self-excited vibrations can be described by a negative damping coefficient. It should be
noted that linearisation works well for a description of the stability regions. In the case of instability, the
solution will grow and nonlinear terms will become active after some time.

On the other hand, parametrically excited vibrations occur if one or more coefficients of the differential
equations are not constant but periodically time-varying. The frequency of the parameter change is prescribed
explicitly as a function of time and is independent of the motion of the system, e.g. by the rotational speed
of a shaft. Examples are the pendulum with periodically varying length or periodically moving pivot point,
a rotating shaft with nonsymmetric cross-section, a periodically varying stiffness of gear-wheels, or flywheels
with variable inertia. Parametrically excited systems and structures have been studied extensively in the
past because of the interesting phenomena which occur in such systems. A parametrically excited system
may exhibit parametric resonances if the parametric excitation frequency is close to

ηn =
|Ωk ∓ Ωl|

n
, k, l = 1, 2, . . . n. (2)

For k 6= l the frequency ηn denotes parametric combination frequency of difference or summation type
depending on the sign in eq. (2) and for upper sign and k = l parametric principal frequency, see [43].
Here Ωk and Ωl denote the jth and kth fundamental frequency of the undamped system. There are several
publications dealing with single or coupled differential equations having a time-periodic coefficient, see
i.e. [5], [43], [6], [15] or [31], and the literature cited therein. The main focus there is to investigate the
destabilising effect of parametric excitation, i.e. the instability boundary curves in the system parameter
domain. The non-resonant cases did not seem to be interesting for applications. The mechanism of damping
by parametric excitation as proposed here is based on the effect of coupling modes by parametric excitation
and leads to artificial additional damping in the system by the parametric excitation at this frequency.
A specific parametric excitation that stabilises an otherwise unstable system is called to be at parametric
anti-resonance. The main contributions with respect to parametric anti-resonances can be found in [35–
37,39,13,16,1,10].

The present study is motivated by the investigations [39] and [13]. Firstly, the stability of a general two
degrees of freedom system is investigated that is under the influence of self-excited and parametric excita-
tion, respectively. Analytical stability boundaries are derived employing the concept of first and second order
averaging. Arbitrary shape functions that can be represented by Fourier series are considered for parametric
excitation. Secondly, the general results are applied to two mechanical example systems. The conditions
resulting from the first order averaging coincide with the conditions obtained in the literature before. The
necessity of a second order approximation is emphasised. On the one hand, the conditions resulting from
second order approximation overcome the error of the first order approximation near the parametric reso-
nance and anti-resonance frequencies |Ω1 ∓Ω2|. On the other hand, the second order approximation enables
a prediction of the stability boundary near the parametric frequencies of second order, |Ω1 ∓ Ω2|/2.

2. Equations of motion

Parametric excitation may appear by periodic variations of one or more system parameters. The equations
of motion of a linear mechanical system with m degrees of freedom and without external forcing are

M(ητ)ẍ + C(ητ)ẋ + K(ητ)x = 0, (3)

with the time τ , the parametric excitation frequency η, the position vector x, see [27] or [45]. The matrices
M, C and K correspond to the mass/inertia, damping and stiffness coefficients. These system matrices are
time-dependent, periodic matrices of size m×m. The equations (3) describe the dynamics of m modes and
represent a system of m coupled linear differential equations with periodic coefficients.

For the case of a pure stiffness variation as considered here, the inertia and damping matrices are kept
constant while the stiffness matrix is varied periodically with frequency η
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M(ητ) = M0, C(ητ) = C0, K(ητ) = K0 + εKcc(ητ),

where the index 0 denotes the constant part and the index c the time-dependent part of the corresponding
matrix. The periodic shape function c is, without loss of generality, restricted to a Fourier cosine series of
the form

c(ητ) =

∞
∑

m=1

am cos(mητ), with am =
2

T

∫ T

0

c(ητ) cos(mητ)dτ (4)

Rescaling the damping matrix by a positive parameter ε, C0 7→ εC0, the general linear equations of
motion in eq. (3) simplify to

M0z
′′ + εC0z

′ + K0z = −εKczc(ητ). (5)

Note that the matrices Kc allow the description of a time-periodic variation for one or more stiffness
coefficients. The only restriction here is, that these variations all occur with the same frequency η and phase.
Restricting our study to systems with distinct eigenvalues, the equations of motion can be transformed to
the quasi-normal form

z′′ + Ω2z = −ε (Θz′ + Qzc(ητ)) , (6)

where

Ω2 = T−1M−1
0 K0T, Θ = T−1M−1

0 C0T, Q = T−1M−1
0 KcT. (7)

The transformation matrix T is defined by the diagonal matrix of squared natural frequencies Ω2
i . Using

Einstein summation, a convention that repeated indices are implicitly summed over, eq. (6) can be rewritten
in the comprehensive form

z′′i + Ω2
i zi = −ε

{

Θijz
′
j(τ) + Qijzjamδm cos(mητ)

}

. (8)

Herein i is the free index. For a system with two degrees of freedom i, j = 1, 2.
The main purpose of this work is explore the ability of damping vibrations by parametric excitation of a

self-excited, weakly damped system. From now on the factor ε is assumed to be small, leading to a weakly
coupled system of equations in eq. (8) and small damping.

3. Analytical stability analysis

3.1. Time transformation and quasi-periodic averaging

Applying a time transformation to eq. (8) in order to normalise the frequency η to one in eq. (2)

ητ 7→ t, zi(τ) = zi(t/η) = z̄i(t). (9)

Substituting in eq. (8), dividing by η2 and omitting the bar yields

z̈i +
Ω2

i

η2
zi = − ε

η
Θij żj −

ε

η2
Qijzjamδm cosmt. (10)

Allowing a small detuning of second order near ηn of the form

η = ηn + εσ + ε2β + O
(

ε3
)

(11)

and expanding the coefficients 1/η and 1/η2 to Taylor series for small values of parameter ε gives

z̈i + ̟2
i zi = − ε

η2
n

fi (t, z) +
ε2

η(n),3
gi (t, z) + O

(

ε3
)

, (12)

with the abbreviations ̟i = Ωi/ηn, z = [z1, ż1, z2, ż2]
T

and

fi (t, z) = ηnΘij żj + Qijzjamδm cosmt − 2ηn̟2
i σzi, (13a)

gi (t, z) = σηnΘij żj + 2σQijzjamδm cosmt − ηn̟2
i

(

3σ2 − 2ηnβ
)

zi. (13b)
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For a second order approximation all terms in eq. (12) of higher order than ε2 are neglected. Similar
to the classical method of estimating the particular solution from the homogenous solution by variation of
parameters, the coordinate transformations zi, żi 7→ ui, vi defined as

zi = ui cos̟it + vi sin ̟it, żi = −ui̟i sin ̟it + vi̟i cos̟it (14)

are performed. By introducing the abbreviations si = sin ̟it and ci = cos̟it, equation (12) is transformed
to

η(n),3̟iu̇i = hs
i (t,u) = −

(

εηnfi(t,u) + ε2gi(t,u)
)

si, (15a)

η(n),3̟iv̇i = hc
i (t,u) =

(

εηnfi(t,u) + ε2gi(t,u)
)

ci, (15b)

with the state vector u = [u1, v1, u2, v2]
T and

fi(t,u) = −ηnΘij (−uj̟jsj + vj̟jcj) + (2Ωi̟iσδij − Qijamδm cosmt) (ujcj + vjsj), (16a)

gi(t,u) = σηnΘij (−uj̟jsj + vj̟jcj) − (ηn̟2
i (3σ2 − 2ηnβ)δij − 2σQijamδm cosmt)(ujcj + vjsj). (16b)

The functions F̃
s/c
i on the right-hand side of this system of equations are quasi-periodic – they are not

periodic but they can be split into a finite sum of different periodic terms of the following form

hs,c
i (t, u) =

N
∑

k=1

hs,c
i,k (t, u) ,

with N fixed and fs,c
i,k (u, t) and gs,c

i,k are Tk-periodic in t. For this case averaging in the general case in [40] can

be applied and the time-averages f̂ (u) and ĝ (u) of the nominal vector fields f (t, u) = [f1s1, f1c1, f2s2, f2c2]
T

and g (t, u) = [g1s1, g1c1, g2s2, g2c2]
T

result in

f̂ (u) = 〈f (t, u)〉 =
N

∑

k=1

1

Tk

Tk
∫

0

f (t, u) dt, ĝ (u) = 〈g (t, u)〉 .

The integration over Tk is carried out for fixed values of u. Hence, for averaging first the periods of the right
hand sides of eq. (15) have to be determined. With the help of decomposition theorems the arising products
of the trigonometric terms can be rearranged as a sum of basic trigonometric terms. For this simple system
with two modes 12 different periods arise for each value of n. Averaging over a basic trigonometric term
yields always zero, except for the case where a term becomes resonant, i.e. the argument of a cosine function
vanishes.

Subsequently, the second-order averaging as outlined in [41] is performed. By introducing the new vector
fields

y (t, u) =

t
∫

0

(

f (s, u) − f̂ (u)
)

ds − a (u) ,

where a is chosen such that the average of y vanishes, and

v̇ (t) = εf̂ (v) + ε2

〈

∂f (t, v)

∂x
y (t, v)

〉

+ ε2 〈g (t, v)〉 , v (0) = u (0)

the averaged solution of eq. (15) obeys

u (t) = v (t) + εy (t, v (t)) + O(ε2)

and consequently
û (t) = v (t) + ε 〈y (t, v (t))〉 + O(ε2) = v (t) + O(ε2).

The last three equations can be summarised as

˙̂u (t) = εf̂ (û) + ε2

〈

∂f (t, û)

∂x
y (t, û)

〉

+ ε2 〈g (t, û)〉 . (17)
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Herein the difference between the solutions u of the original and û of the averaged system is of order ε2,
ûi(t) − ui(t) = O(ε2), on the timescale 1/ε. Finally, the first order approximation is simply the solution of

˙̂u (t) = εf̂ (û) + O(ε2). (18)

where ûi(t) − ui(t) = O(ε), again on the timescale 1/ε.

3.2. Averaging near combination frequencies n = m

In this section we discuss the stability near a combination frequency of order n as defined in eq. (2) due
to the effect of the n-th Fourier coefficient in eq. (4),

n = m. (19)

3.2.1. First order averaging

Averaging eq. (15) according to eq. (18) in the vicinity of a parametric combination frequency of order n
as defined in eq. (2) results in

˙̂ui =
ε

η2
n̟i

{

−ηn

2
Θii̟iûi ±

Qij

4
anv̂j − Ωi̟iσv̂i

}

, (20a)

˙̂vi =
ε

η2
n̟i

{

−ηn

2
Θii̟iv̂i −

Qij

4
anûj + Ωi̟iσûi

}

, (20b)

where the upper signs correspond to ηn = |Ω1 −Ω2|/n and the lower signs to ηn = (Ω1 + Ω2)/n. Rewriting
in matrix notation yields

















˙̂u1

˙̂v1

˙̂u2

˙̂v2

















=
ε

η2
n





















−ηn

2
Θ11 −Ω1σ 0 ± ηn

4Ω1
anQ12

Ω1σ −ηn

2
Θ11 − ηn

4Ω1
anQ12 0

0 ± ηn

4Ω2
anQ21 −ηn

2
Θ22 −Ω2σ

− ηn

4Ω2
anQ21 0 Ω2σ −ηn

2
Θ22





































û1

v̂1

û2

v̂2

















. (21)

Choosing the upper signs and n = 1 this coefficient matrix coincides with [1, p.69]. Introducing the complex
abbreviations

ŵ1 = û1 + jv̂1, ŵ2 = û2 ± jv̂2, (22)

where j =
√
−1 is the complex unit, eq. (20) is equivalent to

˙̂w =
ε

η2
n







−ηn

2
Θ11 + jΩ1σ −j

ηn

4Ω1
anQ12

∓j
ηn

4Ω2
anQ21 −ηn

2
Θ22 ± jΩ2σ






ŵ =

ε

η2
n

B1ŵ, (23)

with the complex state vector ŵ = (ŵ1, ŵ2)
T . After rescaling time by ε/η2

n the characteristic equation of
the coefficient matrix is a complex polynomial of order two

det (λI2 − B1) = 0,

λ2 +
(ηn

2
(Θ11 + Θ22) − j (Ω1 ± Ω2)σ

)

λ +
(ηn

2
Θ11 − jΩ1σ

) (ηn

2
Θ22 ∓ jΩ2σ

)

± η2
na2

nQ12Q21

16Ω1Ω2
= 0. (24)

Applying the extended Routh-Hurwitz criterion for complex polynomials, see Appendix A, the stability of
this polynomial can be determined.

First analysing the case for σ = 0 in eq. (11), η = ηn, this polynomial is stable according to eqs. (A.2) if
and only if

Θ11 + Θ22 > 0, (25a)

4Ω1Ω2Θ11Θ22 ± a2
nQ12Q21 > 0. (25b)

5



For the general case of σ 6= 0 in eq. (11), the following two conditions have to be satisfied for the system
being stable

∆1 : Θ11 + Θ22 > 0, (26a)

∆2 : a22σ
2 + a00 > 0. (26b)

Note that the conditions in eqs. (26a) and (25a) coincide and are independent of the parametric excitation.
The condition in eq. (26b) defines the critical values of the detuning σ in eq. (11)

σ = ∓σn, σn =
(Θ11 + Θ22)

2n

√

−1 ∓ a2
nQ12Q21

4Ω1Ω2Θ11Θ22
. (27)

This expression was derived for n = 1 in [37], [39], [16], [1], [9] and for general n in [21] and [10]. However,
since [21] assumed a positive definite damping matrix, eqs. (26a) or eq. (25a) could not be derived and
damping by parametric excitation was not discovered. The critical value in eq. (27) determines the stability
border in the system parameter space. To decide which side of the boundary is stable and which is unstable
the additional condition in eq. (25b) is needed. If this condition is fulfilled then a parametric anti-resonance
near ηn with a frequency width of 2σ1 in eq. (27) is obtained

ηn − εσn < η < ηn + εσn. (28)

Otherwise there is no damping by parametric excitation possible and the vibration amplitudes grow without
restriction. Note that stability conditions above are affected by the kind of parametric combination frequency
chosen in eq. (2). These results hold for a first order perturbation and are valid on the timescale 1/ε.

3.2.2. Second order averaging

The analysis of first order averaging as performed in the previous section leads to analytical expressions
that are easy to interpret and helps to understand the basic principle of damping by parametric excitation.
However, in some cases an analytical approximation of first order cannot reproduce accurately the numer-
ical stability boundary, e.g. [13]. Therefore, in this section an analytical approximation of second order is
performed in order to gain more precision. In the vicinity of a parametric combination frequency of order
n in eq. (2) averaging eq. (15) according to eq. (17) extends the coefficient matrix B1 in eq. (23) by higher
order terms in ε to

˙̂w = B2ŵ (29)

where

B2 =
ε

η2
n

B1 +
ε2

η2
n







σ

2
Θ11 + ja12 b12 + j

σ

4Ω1
anQ12

b21 + j
σ

4Ω2
anQ21

σ

2
Θ22 + ja21






(30)

and

bij =
ηn (ΘjjΩi − ΘiiΩj)

16Ω2
i Ωj

anQij +
(anQjjΩi − anQiiΩj)

4Ωi (Ωi + Ωi)n
Θij , (31)

aij = − a2
nQijQji

Ω2
i − ΩiΩj − Ω2

j

32Ω2
i Ω

2
jn

+
ηna2

nQ2
ii

4Ωi (Ωi + Ωj) (3Ωi − Ωj)
− ΩiΘijΘji

2 (Ωi + Ωj)n
+ Θ2

ii

ηn

8Ωi
− Ωi

ηn
σ2 + Ωiβ,

Applying the extended Routh-Hurwitz criterion for complex polynomials, see Appendix A, the stability of
this coefficient matrix is determined by (omitting positive factors)

∆1 :

(

1 − εσ

ηn

)

(Θ11 + Θ22) > 0, (32a)

∆2 :

(

1 − εσ

ηn

)2
(

ε2a44σ
4 + εa33σ

3 +
(

ε2a22 + a02

)

σ2 + εa11σ + ε2a20 + a00

)

> 0. (32b)
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Note, that the coefficients a00 and a22 are equivalent to the ones in eq. (26b). The solution of eq. (32b) for
ε0 was derived during the stability analysis of first order in eq. (27). Applying σ = ∓σn enables a rescaling
by the positive factor ε1, and eq. (32b) can be rewritten as a quadratic polynomial in β as

c2(ε
1, ε2, ε3)β2 +

(

c1(ε
1, ε2, ε3) + 2a02

)

β + c0(ε
0, ε1, ε2, ε3) > 0. (33)

This quadratic polynomial may be solved directly but would lead to cumbersome terms. As long as the
implicit function theorem, see [41], is satisfied,

∂∆2

∂β

∣

∣

∣

∣

ε=0

= 2a02 =
n2η4

n

2
Θ11Θ22σn 6= 0, (34)

a convergent series exists in the vicinity of ε = 0 such that

β = β(0)
n + εβ(1)

n + O(ε2). (35)

The condition in eq. (34) is violated at the trivial stability boundaries where a modal damping parameter
vanishes, Θii = 0, as well as at the tip of a stability boundary, σ = 0.

Applying eq. (35) to eq. (33) and collecting coefficients of equal power in ε and subsequently solving gives:

ε0 : σ = ∓σn from eq. (27), (36)

ε1 : nβ(0)
n

∣

∣

∣

σ=∓σn

= − ∓Ω2Θ
2
11 + Ω1Θ

2
22

8Ω1Ω2
± a2

nQ12Q21

16Ω1Ω2(Ω1 ∓ Ω2)
− Θ12Θ21

2(Ω1 ∓ Ω2)

+
a2

nQ2
11

4Ω1 (Ω1 ± Ω2) (3Ω1 ∓ Ω2)
+

a2
nQ2

22

4Ω2 (Ω1 ± Ω2) (Ω1 ∓ 3Ω2)

+
a2

n (Θ11 − Θ22) (Θ12Q21 + Q12Θ21) (Ω2Q11 ∓ Ω1Q22)

16Ω1Ω2 (Ω1 + Ω2) (Ω2 − Ω1) Θ11Θ22
, (37)

With the abbreviations

aij = QijΘ22Ω
3
1 ∓ (QijΘ11 − 4ΘijQ22)Ω

2
1Ω2 − (QijΘ22 + 4ΘijQ11)Ω1Ω

2
2 ± QijΘ11Ω

3
2, (38a)

γ =
32(Ω1 − Ω2)

2(Ω1 + Ω2)
2Ω3

1Ω
3
2Θ

2
11Θ

2
22

(Θ11 + Θ22)2
, (38b)

handsome expressions are obtained for

ε2 : a2
nγn2σn β(1)

n

∣

∣

∣

σ=−σn

= −a2
nΩ1Ω2(Q12Θ21 + Q21Θ12)

2(Ω2Q11 ∓ Ω1Q22)
2 ± Θ11Θ22a12a21, (39a)

and
β(1)

n = β(1)
n

∣

∣

∣

σ=+σn

= − β(1)
n

∣

∣

∣

σ=−σn

. (39b)

The remaining coefficients of ε3 and ε4 in eq. (33) are not considered. From eq. (11) the stable frequency
interval in eq. (28) is extended to

ηn − εσn + ε2β(0)
n − ε3β(1)

n + O
(

ε3
)

< η < ηn + εσn + ε2β(0)
n + ε3β(1)

n + O(ε3). (40)

3.3. Averaging near combination frequencies for n = m + p

It was shown in the previous sections that the n-th Fourier coefficient in eq. (4) leads to a stability
boundary curve near a combination frequency of order n as defined in eq. (2). In this section we discuss the
effect of the (n − p)-th Fourier coefficient on the stability near a combination frequency of order n,

n = m + p. (41)

Compared to the previous section, the order of the Fourier coefficient is shifted from m to m+p. Consequently,
an averaging of order p− 1 is necessary in which case the damping coefficients in eq. (8) need to be rescaled
from ε1Θij to ε1+pΘij . Averaging of higher order is, in general, analytically feasible for the first few orders,
therefore, the following study is restricted to p = 1.
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3.3.1. First order averaging

First order averaging of eq. (15) according to eq. (18) for rescaled damping coefficients in the vicinity of
a parametric combination frequency of order n as defined in eq. (2) results in

˙̂ui = − ε

η2
n

Ωiσv̂i, ˙̂vi =
ε

η2
n

Ωiσûi, (42)

instead of eq. (20). Introducing the complex abbreviations in eq. (22) yields the coefficient matrix corre-
sponding to eq. (23)

B1 =
ε

η2
n





jΩ1σ 0

0 ±jΩ2σ



 . (43)

This matrix possesses purely imaginary eigenvalues only and, consequently, the stability of the original
system in eq. (8) cannot be deducted from the averaged one in eq. (42) and a higher order averaging has to
be performed.

3.3.2. Second order averaging

In Section 3.2.2, second order averaging was applied to obtain higher accuracy of the stability analysis
than first order averaging at combination frequencies of order m. In this section, second order averaging is
applied to even enable a stability analysis at frequencies of order m + 1, since the first order averaging in
eq. (43) is not decisive. Second order averaging of eq. (15) according to eq. (17) is performed in the vicinity
of a parametric combination frequency of order m + 1. For rescaled damping coefficients, the coefficient
matrix B1 in eq. (43) is extended by higher order terms in ε and the coefficient matrix in eq. (29) is now

B2 = B1 +
ε2

η2
n





ηn

4
Θ11 + jc12 jd12

jd21
ηn

4
Θ22 + jc21



 (44)

instead of eq. (30), where

cij = − a2
nQiiQij

4Ωi (3Ωi + Ωj)
+

a2
nQjjQji

4Ωi (Ωj + 3Ωi)
, (45a)

dij =a2
nQijQji

(5Ωi + 3Ωj)

6Ωi (Ωi + 3Ωj) (Ωj + 3Ωi)
− 2Ωi

ηn
σ2 + a2

nQ2
ii

ηn

2Ωi (3Ωi + Ωj) (Ωi − 5Ωj)
+ Ωiβ. (45b)

Setting σ = 0 in eq. (11) results in the Routh-Hurwitz determinants according to eq. (A.2)

∆1 :
ηn

2
(Θ11 + Θ22) > 0, (46a)

∆2 : ε2

(

η4
n

16
Θ11Θ22β

2 + c1β + c0

)

> 0. (46b)

Since the implicit function theorem cannot be applied easily, the quadratic equation is solved directly and
gives

β =
a2

nc

δ
∓ Θ11 + Θ22

2n

√

dn = α(1)
n ∓ α(2)

n (47)

with

dn = −1 ∓ a4
nQ12Q21

Ω1Ω2Θ11Θ22

(

(Q11 − 3Q22) + 3Ω2(3Q11 − Q22)

(3Ω2 + Ω1)(3Ω1 + Ω2)(Ω2 ± Ω1)

)2

, (48a)

c = ((30Q21Q12 − 90Q2
22)Ω

4
1 + (−6Q2

11 + 78Q2
22 − 56Q21Q12)Ω2Ω

3
1 + (−90Q2

11 + 30Q21Q12)Ω
4
2)

+ (18Q2
22 + 18Q2

11 − 460Q21Q12)Ω
2
2Ω

2
1 + (−6Q2

22 + 78Q2
11 − 56Q21Q12)Ω

3
2Ω1, (48b)

δ = 12((−5Ω1 + Ω2)(3Ω2 + Ω1)(3Ω1 + Ω2)(5Ω2 − Ω1)(Ω2 ± Ω1)Ω1Ω2). (48c)

According to eq. (11), the system is stable if the parametric excitation frequency stays within the following
limits

ηn + ε2α(1)
n − ε2α(2)

n + O(ε3) < η < ηn + ε2α(1)
n + ε2α(2)

n + O(ε3). (49)
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3.4. General discussion

Examining the case where the parametric excitation is not present in the system, Qij = 0, the stability
conditions in eqs. (25) or eqs. (46) collapse to

Θ11 > 0 and Θ22 > 0. (50)

The radicand in eq. (27) and eq. (48a) becomes negative and leads to a purely imaginary critical value σn and
β in eq. (47), respectively. Hence, the system without parametric excitation is stable if all modal damping
coefficients in the main diagonal of the modal damping matrix are positive. If one modal damping parameter
vanishes, Θ11 = 0 or Θ22 = 0, the system is at its trivial stability boundary, in which case (i) the implicit
function theorem in eq. (34) is no longer satisfied, and the series in eq. (35) does not converge, (ii) the critical
value σn in eq. (27), β1 in eq. (37) and β in eq.(47) becomes infinite, and (iii) due to infinite σn stability
condition in eq. (32a) is no longer satisfied. However, the derived stability conditions in eqs. (28,40,49) are
valid in the region of interest, as will be clear in the next section.

The following cases can be distinguished with respect to eq. (50):
(i) If these conditions hold there is no negative modal damping present in the system and, hence, the

system is stable. In this case parametric excitation near a parametric combination frequency ηn in
eq. (2) may be used to enhance the system damping and vibration suppression is achieved.

(ii) If one condition in eq. (50) is violated but the less restrictive condition in eq. (26a) is satisfied, the
system is unstable but may be stabilised by a proper parametric excitation near the frequency ηn

depending on the condition in eq. (26b). This is the case in which damping by parametric excitation
can be applied most effectively.

(iii) Finally, if both conditions in eq. (50) are violated the system is unstable and cannot be stabilised by
any parametric excitation.

Averaging at combination frequencies in eq. (2) focuses the investigation on the stabilising effect at a
single frequency of a certain order n. Sometimes the stability gain near a frequency of order n, ηn, overlaps
the stability gain near a frequency of order n + 1, ηn+1. Sometimes the stability gain near a frequency of
order n, ηn, that corresponds to the nth Fourier coefficient interacts with the stability gain near a frequency
of order n + 1, ηn+1, corresponding the (n + 1)th Fourier coefficient. In order to account for overlapping
and interaction, respectively, between two neighbouring orders the results in eqs. (40) and (49) are, in a
first approximation, summed over. For the interaction between the stability gains corresponding to two
subsequent Fourier coefficients an−1 and an (n ≥ 2), the summed stability boundary near the frequency ηn

becomes

ηn − εσn + ε2
(

β(0)
n + α

(1)
n−1 − α

(2)
n−1

)

+ O
(

ε3
)

< η < ηn + εσn + ε2
(

β(0)
n + α

(1)
n−1 + α

(2)
n−1

)

+ O(ε3). (51)

For overlapping, the stability gain near ηn and the stability gain near ηn−1 are need to be summed over in the
parameter space. The stability boundary in eq. (40) can be written as functions of an arbitrary parameter
p as

fn−(p) = ηn−εσn +ε2β(0)
n −ε3β(1)

n for η ≤ ηn, fn+(p) = ηn +εσn +ε2β(0)
n +ε3β(1)

n for η ≥ ηn, (52)

and the stability boundary in eq. (49) as

gn(p) = ηn + ε2α(1)
n − ε2α(2)

n for η ≤ ηn. (53)

Assuming that these functions are invertible, the sum functions of the stability curves become

hn∓

(

η

η1

)

=

(

f−1
n∓

(

η

η1

)

+ g−1
n−1

(

η

η1

))−1

(54)

4. Numerical stability analysis

The stability of the system dynamics can be investigated by means of Floquet theory. Applying Floquet
theory transforms a linear time-periodic system into a linear time-invariant system by using a Lyapunov
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transformation. Hence, the stability of the former system can be inferred from that of the latter system.
Below is a brief review of Floquet theory and related technical terms based on [15] and [40].

The considered m-dimensional equations of motion (5) with the position vector x (t) define a system of
linear differential equations with periodic coefficients, which can be transformed to a 2m-dimensional linear
time-periodic system of first order differential equations

ẏ (t) = A (t)y (t) , y (t0) = y0, A (t + T ) = A (t) t ≥ t0, (55)

with the state vector y (t) ∈ R
2m and the piecewise continuous and periodic matrix A (t) ∈ R

2m×2m with
period T . In most cases, the conditions of the Picard-Lindelöf theorem for existence and uniqueness of
initial value problems are trivially satisfied by (55), see [15]. Hence, there exist unique solutions of (55) for
arbitrarily given initial conditions y0 ∈ R

2m. The set of the solutions of (55) form an 2m-dimensional linear
space. Let y1 (t) ,y2 (t) , . . . ,y2m (t) be 2m linearly independent solutions, then

Y (t) = [y1 (t) ,y2 (t) , . . . ,y2m (t)] (56)

is called the fundamental matrix. If the fundamental matrix is equal to the unity matrix at the initial time
t = t0, Y (t0) = I2m, then Y (t) is called the principal fundamental matrix or the state transition matrix for
(55). The state transition matrix is denoted by Φ (t, t0), where the second argument indicates dependency
on initial conditions. Any solution of (55) can be expressed as Φ (t, t0) c, where c 6= 0, c ∈ R

2m is a constant
vector. In particular, for y0 the solution of (55) is given by

y (t) = Φ (t, t0)y0. (57)

The state transition matrix evaluated at t = T , Φ (T, 0), is called the monodromy matrix.
Floquet’s theorem postulates that each fundamental matrix of (55), and consequently the state transition

matrix Φ (t, t0), can be written as the product of two 2m × 2m-matrices

Φ (t, t0) = L (t, t0) e(t−t0)F, L (t, t0) = L (t + T, t0) , (58)

where L is a 2m×2m -matrix-valued function, which is periodic with period T , and F is a constant 2m×2m-
matrix. The eigenvalues of eTF are called the characteristic multipliers. The Lyapunov transformation

z (t) = L−1 (t, t0) y (t)

transforms the time-periodic system (55) into a linear time-invariant system with constant coefficients

ż (t) = Fz (t) , t ≥ t0,

z (t0) = y0.

(59)

By defining

t = t0 : Φ (t0, t0) = L (t0, t0)

we prepare 2m sets of initial condition vectors ki, so that an identity matrix is formed

Φ (t0, t0) = L (t0, t0) = [k1 (t0) ,k2 (t0) , . . . ,k2m (t0)] = I2m, (60)

which can be substituted in (58) and leads to

F =
1

T
ln (Φ (t0 + T, t0)) . (61)

As a result of (61), the stability of the time-periodic system (55) can be determined either from the eigen-
values of the Floquet exponent matrix F or from the monodromy matrix Φ (T, 0). Starting from independent
sets of initial conditions defined in (60), the monodromy matrix is calculated numerically by repeated inte-
gration of the system equations (55) over one period T . By solving these 2m initial value problems over one
period T the monodromy matrix Φ (T, 0) is obtained, where the eigenvalues of the monodromy matrix

Λ = eig {Φ (T, 0)} , (62)
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determine the stability of the system dynamics. The system is asymptotically stable if and only if all of the
multipliers are less than one in magnitude

max {|λ1| , |λ2| , . . . , |λ2m|} =







< 1 asymptotically stable system,

> 1 unstable system.
(63)

This approach gives reliable results and the computational cost is very low compared to a direct time
integration of eq. (5) over many periods of the parametric excitation. Determining the state vector at the
end of a period can be performed by using an integration algorithm for ordinary differential equations like
Radau5 [19]. The procedure presented here was implemented by using the software package Matlab [25].
The stability results serve as a reference for the approximate analytical stability analysis.

5. Examples from mechanics

The stability intervals in eq. (28) and eq. (40) are valid for arbitrary system matrices K, C but positive
definite inertia matrix M, due to the quasi-normal form transformation in eq. (7). However, only systems
with symmetric matrices K, C are considered here. It can be shown that for such systems a parametric
anti-resonance may occur only near ηn = |Ω2 − Ω1|/n but never near ηn = (Ω1 + Ω2)/n, see [7] or [8].
Furthermore, only systems with a single time-periodic stiffness coefficient are shown although the analytical
stability conditions allow the variation of one or more stiffness coefficients, see eq. (5).

In general, a dynamical process can be modelled by an equivalent mechanical system. In the following
the simplest possible systems for which damping by parametric excitation is achievable are presented – a
lumped mass system with two degrees of freedom, see Fig. 1. In the following paragraphs we give explicit
expressions for the coefficient matrices of the normal form for two simple lumped mass systems, that possess
only a single time-periodic stiffness and/or damping coefficient. Such systems in the context of parametric
anti-resonance have been initially investigated in [39] and [13].

k01 k12 k02

c01 c12 c02

m1 m2

x1 x2

Fig. 1. Lumped mass system with two degrees of freedom

5.1. System 1

The first system investigated is a simplified system for which only the stiffness k02 attached to the inertial
reference frame is time-periodic, k02(τ) = k02(1 + ε cos(ητ)), and k01, c12 ≡ 0, as presented in [39]. The
corresponding non-vanishing system matrices of (5) read

M0 =





m1 0

0 m2



 , K0 =





k12 −k12

−k12 k12 + k02



 ,

C0 =





c01 0

0 c02



 , Kc =





0 0

0 k02



 . (64)
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Using the time transformation that is derived from the natural frequency of the subsystem m1, k12,

τ = ω1t with ω1 =

√

k12

m1
, (65)

and defining the following characteristic parameters

η =
ω

ω1
, M =

m1

m2
, κ1 =

c01

m1ω1
, κ2 =

c02

m2ω1
, Q2 =

k02

m2ω2
1

=

(

ω2

ω1

)2

, (66)

gives the non-dimensional system matrices

M̄0 =





1 0

0 1



 , K̄0 =





1 −1

−M M + Q2



 ,

C̄0 =





κ1 0

0 κ2



 , K̄c =





0 0

0 Q2



 . (67)

The ratios defined in (66) represent relations between the dimensional physical system parameters. For
a certain physical system specific values for some of the parameters have to be chosen additionally. The
non-dimensional equations of motion are transformed into the quasi-normal form by applying the constant
transformation matrix

x (t)= Tz (t) with T =





1 1

a1 a2



 . (68)

The special form of the transformation matrix T is chosen in order to keep the following expressions simple.
The coefficients of the transformation matrix T read for the system matrices (64)

a1 =
M

Q2 + M − Ω2
1

, a2 =
M

Q2 + M − Ω2
2

(69)

with the eigenvalues

Ω2
1,2 =

1

2
(1 + M + Q2) ±

√

1

4
(1 + M + Q2)2 − Q2. (70)

Applying (68) to (64) the equations of motion are transformed into the normal form

K̄0 7→





Ω2
1 0

0 Ω2
2



 = Ω2, C̄0 7→ [Θij ] , K̄c 7→ [Qij ] . (71)

The modal damping coefficients yield

Θ11 =
−a2κ1 + a1κ2

a1 − a2
, Θ12 =

−a2κ1 + a2κ2

a1 − a2
,

Θ21 =
a1κ1 − a1κ2

a1 − a2
, Θ22 =

a1κ1 − a2κ2

a1 − a2
,

(72)

and the coefficients of the parametric excitation result in

Q11 = Q2 a1

a1 − a2
, Q12 = Q2 a2

a1 − a2
,

Q21 = Q2 −a1

a1 − a2
, Q22 = Q2 −a2

a1 − a2
.

(73)

The following non-dimensional characteristic system parameters, as defined in eq. (66), are used as default
values, see [39],

M = 0.5, κ1 = −0.01, κ2 = 0.14. (74)
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Fig. 2. System 1: Numerical stability domain in dependency of Q, ε and η
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(c) ε = 0.3
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(d) ε = 0.4

Fig. 3. System 1: Stability maps for different scaling factor ε: Comparison between numerical (shaded area is unstable) and
analytical first order (dashed line) and second order approximation (solid line). The results for the parametric resonances at
Ω1 + Ω2, 2Ω1, etc. are as accurate, but not plotted.
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The damping coefficients κi satisfy the main stability condition in eq. (26a) and eq. (32a)

Θ11 + Θ22 = κ1 + κ2 > 0, (75)

according to eq. (72). Note that the damping coefficient κ1 is chosen to be negative and causes the conven-
tional system without open-loop control (ε = 0) to become unstable if M < Mcrit = 2.58 or Q > Qcrit =
1.73. The critical system parameters Mcrit or Qcrit follows from

ε = 0 : Θ11 = 0 or Θ22 = 0 →







Mcrit for fixed Q,

Qcrit for fixed M,

and represent the stability border for the system without open-loop control. With parametric excitation
activated (ε 6= 0), the original stability boundary is deformed and it is possible to stabilise the system
beyond these critical system parameters within a certain range of the system and control parameters.

A stability domain for the set of parameters eq. (74) in dependency of the frequency ratio Q and the
control parameters ε and η is shown in Fig. 2. Combinations of ε, η and Q, which are enclosed by the shaded
surface (indicating the stability boundary) lead to a stable system. A highly complex geometry is obtained.
From Fig. 2 it can be seen that the conventional system, ε = 0 and κ1 < 0, is stable unless the dimensionless
stiffness parameter Q reaches the critical value Qcrit. Parametric stiffness excitation, ε 6= 0, generates a
major stretch and a narrow spike as additional stability regions.

Slices for constant values of ε of this stability domain are analysed in more detail in Fig. 3. These
numerically obtained results are compared to the analytical ones derived in eqs. (28) and (40). A key to the
interpretation are the parametric resonance frequencies in eq. (2). As predicted by the analytical analysis, the
main area of stability occurs near η1 = |Ω1 − Ω2| and gets wider for increasing Q. The dashed line denotes
the first order approximation in eq. (28) and the solid line the second order approximation in eq. (40).
For this system, already the first order approximation is very accurate. The second order approximation
introduces an additional shift β0

1 with which the analytical stability boundary coincides with the numerical
one; the expression β1 is negligible. Analytical and numerical results agree amazingly well if the isolated
contribution of the parametric anti-resonance frequency |Ω1 − Ω2| is considered. Even for large values of ε,
i.e. Figs. 3c and d, high accuracy is obtained although the underlying analytical procedure assumes ε to be
sufficiently small. A significant loss of stability occurs near the parametric resonance frequency Ω1 +Ω2. For
clarity of the figure the analytical results at the parametric resonance Ω1 + Ω2 are not plotted but are of
same accuracy. Additional regions of instability are caused by the principal parametric resonances at 2Ωi/n.
Summarising, an approximation of the equations of motion up to the first order of ε is sufficient to describe
the stability of System 1 corresponding to η1.

In Fig. 3d, an additional small stability area is caused by the second order parametric anti-resonance
frequency (Ω2 − Ω1)/2, which is zoomed in Fig. 4 for ε = 0.4. Again, the analytical prediction of first order
in eq. (28) and of second order in eq. (40) near η1 are plotted. Additionally, the analytical prediction of
second order in eq. (49) near η2 is shown. Since the stability regions corresponding to η1 and η2 overlap, the
sum functions according to eq. (54) are introduced between the second order stability intervals corresponding
to eqs. (49) and (40). The analytical sum functions and the numerical stability border are very close and
the analytical results even slightly underestimate the size of the stability area in this part of the diagram.

5.2. System 2

The second system of interest is a system where only the coupling stiffness k12 is time-periodic, k12(t) =
k12 (1 + ε cosητ), and k01, c01 ≡ 0, as presented in [13]. Contrary to System 1 this system shows the inter-
esting phenomenon of large deformations of its stability domains leading to great deviations between the
numerical result and the analytical first-order prediction. The following system matrices alter with respect
to eq. (64)

C0 =





c12 −c12

−c12 c12 + c02



 , Kc =





k12 −k12

−k12 k12



 . (76)
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Applying the time transformation that is derived from the natural frequency of the subsystem m2, k02,

τ = ω2t with ω2 =

√

k02

m2
and ω1 =

√

k12

m1
(77)

and defining the following characteristic parameters

η =
ω

ω2
, M =

m1

m2
, κ1 =

c12

m1ω2
, κ2 =

c02

m2ω2
, Q2 =

k12

m1ω2
2

=

(

ω1

ω2

)2

, (78)

the system matrices of the non-dimensional equations of motion yield

M̄0 =





1 0

0 1



 , K̄0 =





Q2 −Q2

−MQ2 MQ2 + 1



 ,

C̄0 =





κ1 −κ1

−Mκ1 Mκ1 + κ2



 , K̄c =





Q2 −Q2

−MQ2 MQ2



 . (79)

For the system in (76) the coefficients of the transformation matrix as defined in (68) become

a1 =
MQ2

1 + MQ2 − Ω2
1

, a2 =
MQ2

1 + MQ2 − Ω2
2

(80)

with the eigenvalues

Ω2
1,2 =

1

2

(

1 + MQ2 + Q2
)

±
√

1

4
(1 + MQ2 + Q2)

2 − Q2. (81)

The equations of motion are transformed into the quasi-normal form as in eq. (71) with the modal damping
coefficients

Θ11 =
− (a2 + M) (1 − a1)κ1 + a1κ2

a1 − a2
, Θ12 =

− (a2 + M) (1 − a2) κ1 + a2κ2

a1 − a2
,

Θ21 =
(a1 + M) (1 − a1)κ1 − a2κ2

a1 − a2
, Θ22 =

(a1 + M) (1 − a2)κ1 − a2κ2

a1 − a2
,

(82)

and the coefficients of the parametric excitation
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|Ω
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Ω
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2Ω1Ω1

eq. (49) eq. (40)

eq. (28)

eq. (54)

Fig. 4. System 1: Combination frequency of order n = 2, ε = 0.4. Eq. (40) indicates the first order approximation, eqs. (40)
and (49) the second order approximation near η1 and η2, respectively. Eq. (54) combines the effects.
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Q11 = Q2− (a2 + M) (1 − a1)

a1 − a2
, Q12 = Q2− (a2 + M) (1 − a2)

a1 − a2
,

Q21 = Q2 (a1 + M) (1 − a1)

a1 − a2
, Q22 = Q2 (a1 + M) (1 − a2)

a1 − a2
.

(83)

Using the relations M = −a1a2 and Q2(1− a1)(1− a2) = 1 simplifies the off-diagonal expressions in (83) to

Q21 =
a1

a1 − a2
, Q12 =

−a2

a1 − a2
. (84)

The following non-dimensional characteristic system parameters, as defined in eq. (66), are used as default
values, see [13],

M = 0.1, κ1 = 0.05, κ2 = −0.05. (85)

The damping coefficients κi satisfy the main stability condition in eq. (26a) and eq. (32a)

Θ11 + Θ22 = (1 + M)κ1 + κ2 > 0, (86)

according to eq. (82). The critical system parameters Mcrit and Qcrit are determined, in analogy to System 1.
In contrast to System 1, System 2 possesses two bifurcation points in the parameter Q within the parameter
range of interest, which are

Qcrit,1 = 0.934 and Qcrit,2 = 0.964. (87)

At these critical values at least one of the modal damping parameters Θii vanishes.
A stability domain for the set of parameters eq. (85) in dependency of the frequency ratio Q and the

control parameters ε and η is shown in Fig. 5. Here the critical values in eq. (87) are visualised. Slices of
this stability domain are displayed in Fig. 6. Again, a parametric anti-resonance frequency near |Ω1 − Ω2|
stabilises System 2. For higher values of ε, an additional region of stability is achieved by a parametric
anti-resonance frequency near |Ω1−Ω2|/2. In contrast to System 1, the first order approximation in eq. (28)
is not able to reproduce the numerical stability boundaries. The second order approximation in eq. (40) is
necessary even for small values of ε, see Fig. 6a. This approximation introduces additional shifts β(0), β(1)

so that the analytical stability boundary coincides with the numerical one for small values of ε. For the
example system considered, the expression β(1) is negligible near σ = 0 and dominant near Θ11 = 0. For
higher values of ε the benefit of the second order approximation becomes more evident, see Figs. 6b and c.
As expected, for very high values of ε, like in Fig. 6d, even a second order approximation is not sufficient to
model the stability boundary and a higher order averaging would be necessary. Summarising, while the first
order contribution for System 1 in Fig. 3 is very dominant and the second order contribution is negligible,
for System 2 in Fig. 6 the first and second order contributions are of similar importance.

6. Conclusions

First and second order averaging of the stability of self-excited and parametrically excited two degrees
of freedom systems is investigated. Analytical stability boundaries are derived for a general periodic shape
function that can be represented by a Fourier series. The necessity of a second order approximation is
emphasised for two mechanical example systems that were studied in the literature before. This higher order
approximation improves considerably the prediction of the stability boundary in [13] corresponding to the
parametric resonance and anti-resonance frequencies |Ω1∓Ω2|. An additional shift of the skeleton line of the
first order approximation is found that overcomes the error of the first order approximation. Furthermore, the
second order approximation enables a prediction of the stability boundary near the parametric frequencies
of second order, |Ω1 ∓Ω2|/2. It is shown that for all known cases and ε small a second order approximation
is very accurate.

The presence of the instability domains raises interesting questions regarding the behaviour of the me-
chanical models for the corresponding values of the parameters. Nonlinear terms have to be included for
such an analysis and various bifurcations can be expected, as in [16]. This will be part of future research.
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Fig. 5. System 2: Numerical stability domain in dependency of Q, ε and η
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(c) ε = 0.3
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(d) ε = 0.4

Fig. 6. System 2: Stability maps for different scaling factor ε: Comparison between numerical (shaded area is unstable) and
analytical first order (solid line) and second order approximation (dashed line). M = 0.1
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Appendix A.

According to [2] and [17], for a complex coefficient matrix

B =





Br
11 + jBi

11 Br
12 + jBi

12

Br
21 + jBi

21 Br
22 + jBi

22



 (A.1)

the Routh-Hurwitz criterion stability conditions become

∆1 : a1 > 0, ∆2 : a2
1a0 − b2

0 + a1b0b1 > 0, (A.2a)

with the abbreviations

a1 = −Br
11 − Br

22, a0 = Br
11B

r
22 − Bi

11B
i
22 − Br

12B
r
21 + Bi

12B
i
21, (A.3a)

b1 = −Bi
11 − Bi

22, b0 = Br
11B

i
22 + Bi

11B
r
22 − Br

12B
i
21 − Bi

12B
r
21. (A.3b)
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