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Abstract

After reviewing a number of results from geometric singular perturbation theory, we
discuss several approaches to obtain periodic solutions in a slow manifold. Regarding
nonhyperbolic transitions we consider relaxation oscillations and canard-like solutions.
The results are illustrated by prey-predator systems.

1 Introduction

In singular perturbations we have a small, positive parameter, €, characterizing the size of
perturbation terms, and the disturbing fact that putting € = 0, the so-called unperturbed (or
reduced) problem is not ‘sufficient’ to start a perturbation expansion. Let us illustrate this
immediately with a nearly-trivial example. Consider the initial value problem for ¢ > 0:

z = 1, z(0) =1,
ey = —y+ef(z), y0)=1,

with f(z) a smooth scalar function. Putting ¢ = 0 we have 0 = —y,# = 1 with solution
z(t) = 1+ t,y(t) = 0. The ‘unperturbed solution’ does not satisfy the initial condition for
y, but in the theory of singular perturbations, techniques have been developed to handle
such cases. In this example, the solution y(t) changes quickly in a neighborhood of ¢t = 0, a
so-called boundary layer in time. For a recent survey of methods see [27].

In this paper we will review a number of the theorems available for singularly perturbed initial
value problems of ordinary differential equations, while adding results on periodic solutions
and examples for simple looking but surprisingly rich prey-predator systems. The numerics
for autonomous two-dimensional systems is carried out by pplane, using MATLAB. The
nonautonomous systems were integrated using Runge-Kutta 7(8).

In the actual constructions of asymptotic approximations, the Tikhonov theorem is basic
for providing a boundary layer property of the solution. This leads naturally to a number
of qualitative and quantitative results. Also certain attraction (or hyperbolicity) properties
of the ‘unperturbed solution’ play an essential part in the construction of the asymptotic
approximation, adding a geometric flavour to the analysis that is essential. In the case of our
nearly-trivial example, as we shall see, the ‘unperturbed solution’ z(t) = 0,y(t) = 1 + ¢ is
associated with the existence of a so-called slow manifold.
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2 Basic results

In this section we formulate the Tikhonov theorem, O’Malley-Vasil’eva expansion and we will
summarize Fenichel’s results.

2.1 The Tikhonov theorem
The following result was obtained in 1952 by Tikhonov [21]:

Theorem 2.1
Consider the initial value problem

z = f(x,y,t)+e---, x(0)=mz9, €D CR"t>0,
Ey = g($,y,t)+€"', y(o):y07 yEGCRm.

For f and g, we take analytic vector functions in x,y, and t; the dots represent (analytic)
higher-order terms in €. We assume that:

a. A unique solution of the initial value problem exists and we suppose, this holds also for
the reduced problem
z = f(z,y,t), x(0)=wxo,
0 = g(l‘, Y, t)v

with solutions Z(t), y(t).

b. The equation 0 = g(x,y,t) is solved by § = ¢(x,t), where ¢(z, t) is a continuous function
and an isolated root. Also suppose that § = ¢(z,t) is an asymptotically stable solution

of the equation
dy
df = g(:ﬂ, Y, t)
-

that is uniform in the parameters z € D and t € RT.

c. y(0) is contained in an interior subset of the domain of attraction of § = ¢(x,t) in the
case of the parameter values z = z(0), t = 0.

Then we have
lim.oz:(t) = z(t), 0<t<L,

lim.0y-(t) = g(t), 0<d<t<L
with d and L constants independent of €.

When using the theorem, the system

j:f(x’:%t)a Ozg(x’yvt)? (1)

is usually called the unperturbed, reduced or degenerate system. The equation for x is called
the slow equation, the equation for y the fast equation.

In assumption (b), ¢t and = are parameters and not variables. The idea is that during the fast
motion of the variable y in a boundary layer of time, the small variations of these parameters
are negligible as long as the stability holds for values of the parameters x € D and t € RY.
As in our nearly-trivial example above, we have that the unperturbed solution only partially



satisfies the initial conditions and it is surprising that the unperturbed solution still represents
an approximation of the z-component. For a more extensive discussion of the Tikhonov
theorem see [27].

Example 2.1
It is natural to consider first our simple two-dimensional system for ¢ > 0:

z = 1, z(0) =1,

ey = —y+ef(x), y(0)=1,
with f(x) an analytic scalar function (in fact, analyticity is a requirement that can be relaxed
to C' in the Tykhonov theorem). Putting ¢ = 0, we have & = 1,0 = —y with y = 0 an

asymptotically stable solution of the equation dy/dr = —y. We conclude that we have for
the solution x.(t), y.(t):

lir%xg(t) = 1+t 0<t<L,
E—
lirr(l)ys(t) = 0, 0<d<t<IL,
E—>

with d and L constants independent of .
It is easy to extend this result to a system of the form & = g(z,y),ey = —y + f(z,y) with
initial conditions.

More complicated examples will be considered in later sections.

2.2 The O’Malley-Vasil’eva expansion

We will use Tikhonov’s theorem to obtain approximations of solutions of nonlinear initial
value problems. The theorem does not state anything about the size of the boundary layer or
the timescales involved to describe the initial behavior and the relative slow behaviour later
on.

Asymptotic expansions are described as follows (for references see [27]):

Theorem 2.2

(O’Malley-Vasil’'eva)

Consider the initial value problem in R” x R™ x R™
i = f(x,y,te), (0)=z9, €D CR", t>0,
Ey = g(x7y7t78)7 y(o) = Yo, yGGCRm,

where f and g can be expanded in powers of ¢ to order (m+1). Suppose that the requirements
of Tikhonov’s theorem have been satisfied and moreover that for the solution of the reduced
system 0 = g(x,9,t,0), § = ¢(x,t) we have, with u a constant independent of ,

Re Sp gy(z,79,t) <—pu <0,z € D,0<t<L,

(Sp is the spectrum of the matrix g,). Then, for t € [0,L],2 € D,y € G, the formal
approximation described above leads to asymptotic expansions of the form

T — . g - ey E m+1
(1) ;s n(t)+n§e n<6>+0(5 ),

ye(t) = D "ba(t) + > "Bn (z) + O(e™th.
n=0 n=0



The constant L that bounds the domain of validity in time is in general an O(1) quantity
determined by the vector fields f and g. There are cases where L extends to oc.
An intermediate step in the analysis by O’Malley and Vasil’eva is an expansion of the form

y:¢(l’,t)—|—€y1(l‘,t)+€2y2($,t)—|—63"' . (2)

The expansion is derived from the fast equation and it is asymptotically valid on a timescale
O(1) outside the boundary layer in time where fast motion takes place.

2.3 The slow manifold: Fenichel’s results

Tikhonov’s theorem is concerned with the attraction, at least for some time, to the regular
expansion that corresponds with a stable critical point (corresponding with an equilibrium)
of the boundary layer equation. The theory is quite general and deals with nonautonomous
equations.

In the case of autonomous equations, it is possible to associate with the regular expansions
Yo pe™an(t) and Y " e™by(t), a manifold in phase-space and to consider the attraction
properties of the flow near this manifold. Such questions were addressed and answered in a
number of papers by Fenichel [7]- [10], and other authors; the reader is referred to the survey
papers [14] and [15]. See for an introduction also [27].

Consider the autonomous system

z = f(x,y)+e---, z€DCR",
ey = g(z,y)+e---, ye GCR™

In this context, one often transforms ¢t — 7 = ¢/e so that

¢ = ef(x,y)+e*---, z€DCR",

vy = g(x,y)+e---, ye GCR",

where the prime denotes differentiation with respect to 7, G is a compact set.

As before, y is called the fast variable and x the slow variable. The zero set of g(z,y) is given
again by y = ¢(z), which in this autonomous case represents a first-order approximation My
of the n-dimensional (slow) manifold M. The flow on M. is to a first order approximation
described by @ = f(z, ¢(x)).

Note that the assumption for the system to be autonomous is not essential for Fenichel’s
theory; it only facilitates the geometric interpretation.

Comparison of Tykhonov and Fenichel

In Tikhonov’s theorem, we assumed asymptotic stability of the approximate slow manifold;
in the asymptotic constructions we assume moreover that the eigenvalues of the linearized
flow near My, derived from the equation for y, have negative real parts only.

In geometric singular perturbation theory, for which Fenichel’s results are basic, we only
assume that all real parts of the eigenvalues are nonzero. In this case of a slow-fast system,
the slow manifold M: is called normally hyperbolic. A manifold is called hyperbolic if the local
linearisation is structurally stable (real parts of eigenvalues all nonzero), and it is normally
hyperbolic if in addition the expansion or contraction near the manifold in the transversal
direction is larger than in the tangential direction (the slow drift along the slow manifold).



If My is a compact manifold that is normally hyperbolic, it persists for € > 0 (i.e., there exists
for sufficiently small, positive € a smooth manifold M. close to My). Corresponding with the
signs of the real parts of the eigenvalues, there exist stable and unstable manifolds of M,
which are smooth continuations of the corresponding manifolds of My, on which the flow is
fast.

The compactness property

The compactness of the slow manifold is not just an artificial requirement. The condition
guarantees the existence and uniqueness of the slow manifold M, as the following example
shows.

Example 2.2
Consider the two-dimensional system

/

i = —xz+4ey, x(0) =z,
"= e, y(0) =yo.

In this system, z is the fast variable, y the slow one. Putting ¢ = 0, we have the solution
(x(t),y(t)) = (woexp(—t),yo) with clearly z = 0 a candidate to be a first approximation M
of a slow manifold. However, this set is not compact. Usually, we are interested in a certain
part of phase-space and we can remedy the non-compactness by bounding the flow ‘far-away’
from the region of interest. For instance by changing the system to

/

g = —xz+ey, z(0)= 0,
y = e(1-c*?), y(0)=yo,

with ¢ a positive constant, sufficiently small. We could for instance choose ¢ < 1 fixed, with
e < ¢. We now have that y(t) is bounded and a first approximation M of the slow manifold
is parametrized by yo in (x,y) = (0,yp). On the other hand, it is easy to see that

. g
Jim z.(t) = -,

which is in an e-neighborhood of M, but depends on the choice of ¢. Using the system with
¢ # 0 as an approximation of the system with ¢ = 0, we have a unique slow manifold for ¢
fixed. Because of the arbitrariness of the choice of ¢, the location of the slow manifold is then
arbitrary in a neighborhood of Mj.

An interesting example of an application of Fenichel’s results is given in [5] and [13]. We give
a summary of the results.

Example 2.3
Consider the three-dimensional system

r =Y,
"=z -2 tey(2? —a),
2= e(l+bx—c2?).

The parameters a and b strongly influence the nature of the flow, ¢ is a positive constant,
¢ < 1, and is used to guarantee compactness. Putting ¢ = 0, the flow is described by the



integrable system z’ = y,3' = x — 2%,z = 2(0). This system has two zero sets, (0,0, z(0))
and (1,0,2(0)). The first one will be called My and it is normally hyperbolic (in the z,y
phase-plane, it is a saddle); according to Fenichel it will persist for ¢ > 0. If ¢ = 0, a
stable and an unstable manifold emanate from M)y, closing to form a (cylindrical) homoclinic
manifold. These manifolds are still present as stable and unstable manifold of M., but in
general we expect them to intersect transversally. In [5] and [13] it is shown, using Melnikov
methods, that for a certain value of ¢ and b > —1, a homoclinic tangency arises, followed by
a cascade of pulse orbits. If b < —1, the situation is dynamically more complex. A highly
technical analysis shows that a Smale horseshoe is present in the flow, corresponding with
chaotic dynamics in the system.

3 Periodic solutions

Early examples of periodic solution theorems can be found in [11] and [1]. If the reduced
system (1), e = 0, has a hyperbolic T-periodic solution, then under certain additional condi-
tions, the full system has a unique T-periodic solution. Hyperbolicity of the periodic solution
of the reduced system plays an essential part in both papers and this prohibits application to
a number of interesting cases.

A major technical problem was the absence of a theorem on the existence of a manifold of
solutions (the so-called slow manifold), corresponding with the solutions of the reduced sys-
tem. This complicated the existence problem of the theorems of that time enormously.

The existence and smoothness of the slow manifold, in combination with the possibility of a
regular expansion describing the slow manifold drift, enables us to take a fairly easy shortcut
to obtain periodic solutions. If we restrict ourselves to periodic solutions located completely
within a slow manifold, this excludes by definition the case of nonhyperbolic transitions as
found in relaxation oscillations.

3.1 Restricting to the slow manifold

In [29] a theorem leading to periodic solutions for autonomous systems is formulated. Gen-
eralization to nonautonomous systems is straightforward.
Consider the system in R” x R™ x RT

i = folz,y,t) +efilz,y,t)+e*--, z€DCR", t>0,
ey = go(z,y,t) +eqi(z,y,t) +e>---, ye GCR™,

where fq, f1, 90,91 are analytic vector functions, the dots represent bounded and analytic
higher order terms. All vector functions are T-periodic in ¢t. Furthermore the assumptions of
Tikhonov’s and Fenichel’s theorems apply for 0 <t < L with L > T.

For the solutions in the slow manifold we can apply the expansion (2) y = ¢(x,t) +eyi(x,t) +
g2 ... with go(x, ¢(x,t),t) = 0.

For z(t) in the slow manifold this results in

. 0

T = fO(‘Ta ¢(‘T7 t)a t) + 55?((13, (ZS(‘T? t)a t)y1($7 t) + Efl(il?, ¢($, t)? t) + 52 o (3)
This is still a very general system and much depends on our knowledge of the reduced equa-
tion. Note, that if we would strictly apply the O’Malley-Vasil’eva expansion for the equations



governing the slow manifold flow, this may produce secular terms when approximating peri-
odic solutions. Using eq. (3), secular terms can be avoided.

An application of this perturbation idea is found in [29], where one considers periodic solutions
of an autonomous system of the form

i = Aly)z+efi(r,y)+e*---, x€DCR™ t>0,
ey = go(z,y) +eqi(z,y)+e*---, yeGCR™

A second possibility is to use numerical bifurcation techniques. In a number of applications
one can for instance identify the periodic solution as arising from a Hopf bifurcation.

We sketch briefly a third approach. Suppose that in the slow manifold no critical point is
present. Sometimes we can associate with the flow on the slow manifold a continous map of a
convex set into itself. According to the Brouwer fixed point theorem, this means that at least
one fixed point of the map exists. As there is no critical point, this fixed point corresponds
with a periodic solution. Of course a necessary condition for this is, that the solutions stay
on the slow manifold for all time, excluding nonhyperbolic transitions.

For illustration, we will discuss now a nonautonomous problem from population dynamics.

3.2 A prey-predator system

Consider two populations, consisting of a prey (population z) and a predator (population ¥),
interacting with the prey by a Holling type II interaction term. The growth of the prey is
also restricted by a logistic term. The equations are

T = x(r— LS )
K (t) Hi+z ’

. a1

yo= y<H1+$_d1>‘
We have x,y > 0, r,p1, Hi, c1,d; are positive constants. The constant r indicates the growth
rate of the prey, p; the predation rate, ¢; the growth rate of the predator. We assume that
r > ¢1 so that we can put ¢;/r = €; the assumption means that the population growth of the
prey is relatively fast. H; is the saturation constant, K (t) is the carrying capacity of the prey
which is supposed to be a positive, continuous 7T-periodic function. These periodic variations
arise from external, for instance seasonal, fluctuations. The case of constant carrying capacity
is well-known, see [19] and further references there. Seasonal fluctuations in this model were
considered in [23], where many bifurcations are found using numerical bifurcation techniques;
this paper does not discuss the singular perturbation case.
We make the system nondimensional by putting 0 = d; /c1, K(t) = Ko(ko+ f(t)), 8 = H1/Ko
and rescaling t = eit,x = KoZ,§ = p1y/(rKop); f(t) is a T-periodic function with average

Z€ero.
The system becomes, omitting the bars:

. _ T _ y
= “"(1 ko + £ (1) ﬁ+:v>’

. x _
oo y(ﬁ+m 5)’
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Figure 1: Slow manifold z = 0 and parabolic slow manifold M), at t = 0 of the prey-predator
system from section 3.2. The parameter values are in this case kg = 0.6,8 = 0.2. To the
right of the maximum at x = x*, the parabolic slow manifold is stable.

Furthermore we assume 0 < (3,0 < 1.
There are two slow manifolds, first the y-axis, given by x = 0 and secondly M, given by

B+
ko + f(1)

with nonhyperbolic, transcritical intersection point (x,y) = (0,3). The y-axis is stable for
y > [ and unstable if 0 <y < 3. The second slow manifold, M, has for ¢ fixed a parabolic
cross-section (with accuracy O(g)), it is a periodic surface in x,y, t-space. For arbitrary but
fixed time ¢, the cross-section has a maximum y = y,, if z = 2* = (ko + f(t) — §)/2. The
slow manifold is stable if x > x*, unstable if 0 < z < z*; see fig. 1.

A periodic solution arises in the following scenario. The unstable part of the periodic slow
manifold M, is chosen outside the first quadrant =,y > 0 by requiring that «* = (ko + f(t) —
B3)/2 is negative for all time. The flow in the parabolic slow manifold induces a time T-map
of the interval (0, 34 O(¢)) in itself. According to the Brouwer fixed point theorem this map
has a fixed point, corresponding with a 7T-periodic solution. Although the system is three-
dimensional, the projection of the periodic solution on the x,y-plane is of course a closed
curve, see fig. 2.

y=0+x— z+O0(e)

4 Nonhyperbolic transitions

Transitions arising from nonhyperbolicity arise often in applications and they have been
studied in various contexts. For an interesting boundary value problem and references see
[16], for a study motivated by atmospheric research see [24].

4.1 Relaxation oscillations

Classical phenomena are relaxation oscillations where jumps and fast transitions, take place
after moving along a slow manifold that becomes unstable. For this topic see [12], [17], [20]
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Figure 2: Periodic solution in the parabolic slow manifold of the prey-predator system from
section 3.2. The parameter values are ¢ = 0.05,kg = 0.2,6 = 0.8, = 0.15. The carrying
capacity is given by ko + asint with in this case a = 0.1. The dashed and dash-dotted
parabolic curves represent the outer limits of the projection of the parabolic slow manifold
on the z, y-plane.

and chapter 4 in [2]. Most rigorous analysis is carried out for two-dimensional autonomous
and forced problems and it is not easy to extend this to more dimensions.

Example 4.1
The classical example is the Van der Pol-equation

it =p(l—a?)i, p>0,
where we know apriori that a unique periodic solution exists for any positive pu.

0.84
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Figure 3: The relaxation oscillation of the Van der Pol-equation in the (z, z)-phaseplane; one
arrow indicates motion along a stable slow manifold, double arrows a fast jump from one
stable manifold to another stable one.

The phenomena are easiest understood in Liénard variables z,z (see [12]). In the (z,2)-
phaseplane, fig. (3), the cubic curve corresponds with the slow manifold. For —1 < z < 1,



the slow manifold is unstable. When the solution reaches the local extrema at = + 1 (fold
points), the solution ‘jumps’ (moves very fast) to the stable part of the cubic curve. In the
fold points, the slow manifold looses its hyperbolicity.

Example 4.2
A four-dimensional problem is discussed in [26] where the evidence is partly numerical. The
paper is concerned with the system of coupled oscillators

Ptz = p(l—2%)i+ peiy®, p>>0,

4
y'—l—/ﬁy—kq?y = duxy. (4)

One finds slow manifolds in 4-space, periodic solutions and chaotic attractors.
We note that quenching of relaxation oscillators is discussed in [28].

4.2 Canards

Canard solutions play a special part. We shall use the following description.

Canard solutions are bounded solutions that, starting near an attracting normally hyperbolic
slow manifold, cross a singularity (for instance a critical point or a stability change) of the
system of differential equations and follow for an O(1) time a normally hyperbolic repelling
slow manifold.

Note that this is not a definition; depending on the dimension of the problem and the nature
of the singularity, the description usually has to be more specific.

The first example of such behaviour was found by the Strassbourg group working in non-
standard analysis for a perturbed Van der Pol-equation, see for instance [4]; see for details
and more references [6]. In this first case, the singularity crossed is a fold point. In [19],
second order slow-fast systems have been analyzed for homoclinic bifurcations; it contains
a population dynamics application as discussed in section 3.2, with canard-like behaviour.
Sticking of solutions to a repelling manifold is discussed in a general context in [22] where it
is called ‘delay in loss of stability’; this terminology follows Pontrjagin who was the first to
observe the phenomenon. In [18] transitions through transcritical and pitchfork singularities
are analyzed.

In general, canard analysis is highly technical. In [29] an example of transition through a
transcritical singularity is discussed, the logistic canard, that can be calculated in an elemen-
tary way. As an example we will consider here the prey-predator system of section 3.2 with
constant carrying capacity: k(t) = ko.

Example 4.3
Consider system

ed <1 v Y >
T = z|(l——— ,
ko B+w

_— T .
vo- y<ﬂ+x 5)'

This autonomous system has in the first quadrant two or three critical points: (0,0), (kg,0)
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and xg = 36/(1 — ¢) (requirement 0 < xy < ko) with (z¢, y0) located on the slow manifold

v =+a) (1- 1),

Figure 4: The prey-predator system with constant carrying capacity of example 4.3 just after
the Hopf bifurcation. The three black dots correspond with three critical points. A transient
starts to the right and approaches a (relatively) small periodic solution around the critical
point on the slow manifold. We have ¢ = 0.05,ky = 0.6, 3 = 0.31,6 = 0.3.

Suppose that the slow manifold (parabola) has a maximum in the first quadrant at z* =
(ko — B)/2. Linearization of the vector field at (xo,yo) shows that the critical point is an
attractor for z* < zyp < kg. At the value zp = z*, the eigenvalues are purely imaginary
and we have a Hopf bifurcation. At this point a stable periodic solution is created and if
(20, yo) moves slightly to the left of the maximum on the slow manifold by a small change
of parameters, a small periodic solution is present. This is illustrated in fig. 4, the scenario
for this problem is described in detail in [19] and in a general context in [3]. If the critical
point moves further to the left, we meet an interesting combination of relaxation and canard
behaviour in the following way. The periodic solution first moves along the stable part of
the parabolic slow manifold. At the maximum of the parabola (fold point), the solution will
jump to a neighbourhood of the y-axis (first slow manifold). Here y(¢) will start to decrease
until, after passing the value y = 3, the y-axis becomes unstable. Note again that (0, 3) is a
transcritical singularity; see for the theory [18] and for a simple example [29].

As the solution has become exponentially close to the y-axis, it takes time to leave the
now unstable axis (canard behaviour), but at some time the solution will jump again to the
parabolic slow manifold. Then the process starts again, see fig. 5. The lift off position from
the unstable slow manifold can be calculated with a certain precision; see [4] and [19)].

In the nonautonomous case of the prey-predator system of section 3.2 we have no critical
point on the parabolic slow manifold, but we can still identify periodic solutions, relaxation
and canard behaviour. We illustrate this by an example, leaving the theoretical details for
subsequent investigations.

Consider the system of section 3.2 and a choice of parameters such that the maxima of the
parabolic slow manifold are in the first quadrant. The projection of the periodic solution on

11



Figure 5: The prey-predator system with constant carrying capacity of example 4.3 in which
the periodic solution produced by the Hopf bifurcation shows both relaxation (fast motion,
indicated by double arrows) and canard behaviour. Single arrows indicate motion along a slow
manifold. Near the top of the parabolic slow manifold, the solution jumps to a neighbourhood
of the y-axis (also slow manifold) and moves down. At the value y = (= 0.12 in this case),
the y-axis becomes unstable, but delay of instability causes the solution to move for some
time along the unstable y-axis (canard); then the solution jumps to the stable part of the
parabolic slow manifold. We have ¢ = 0.001, kg = 0.6, 6 = 0.12,6 = 0.3.

the z, y-plane will show a double loop as the periodic solution follows the time-varying slow
manifold, see fig. 6. This shows again relaxation and canard behaviour.

To illustrate this, we compute the difference between y(t) of the periodic solution and the
corresponding slow manifold values. The nearly horizontal parts near y = 0 represent the
motion along the time-varying slow manifold. The deviations from zero correspond with
relaxation jumps and canard behaviour respectively; see fig. 7.

5 A remark on resonance manifolds

In mechanics, an important part is played by slow-fast sytems, usually called amplitude-angle
or action-angle systems, of the form

i = eX(¢,x)+e%--,
¢ = Qz)+e---,

with x € R", ¢ € T™. The so-called spatial variable x is derived from a system of oscillators,
¢ indicates the corresponding angles, defined on the m-torus. Averaging over the torus (the
angles) is possible outside the resonance manifolds. The latter correspond with the zeros of
the righthand side of the equation for ¢ written out in all the possible combination angles.

However, it is already clear that, because of the form of the righthand side of the angle
equation, such a resonance manifold will not be hyperbolic. One might expect, that localizing
around such a resonance manifold might resolve this, but it is shown quite generally in [25],
section 11.7, that up to first order, the equations determining the dynamics in the resonance
manifold are not structurally stable, even if the original oscillator system is dissipative. A

12
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Figure 6: The prey-predator system with time-varying carrying capacity of section 3.2 in
which the periodic solution shows both relaxation and canard behaviour. We have ¢ =
0.01,kg =04,a=0.18=0.2,6 =0.2.

Y-(x+b)*(L-X/(kO+a*sin(1)

—0.08 | 1 | | | | | |
40 a1 42 43 44 45 46 a7 a8 49 50

Figure 7: The difference y(t) — (x(t) + 3)(1 — x/k(t)) for the periodic solution x(t),y(t) of
the prey-predator system with time-varying carrying capacity k(t) of section 3.2 . We have
€=0.01,kp =04,0a=0.13=0.2,0 =0.2.

second order approximation produces hyperbolicity in a number of cases.
We conclude that slow-fast systems of this type are of a different nature and have only a
superficial similarity to systems with slow manifolds of Fenichel type.

6 Discussion

Slow-fast systems, exhibiting various qualitatively different timescales, arise often in appli-
cations. In section 3 we discussed the existence of periodic solutions within slow manifolds.
The idea used here, is related to the much older analysis of the dynamics in center manifolds.
One localizes to a slow manifold after which one of the known approaches to obtain periodic
solutions may be applied. It is rather straightforward to extend these results to existence
results for tori within slow manifolds of dimension 3 or higher.

The modified logistic equation (see [29]) with alternating negative and positive growth rates

13



is a simple metaphor for more complex models. It is interesting that the solutions of this
equation show sudden ‘population explosions’ related to canard behaviour.

Both slow manifolds as discussed in this paper and resonance manifolds in dynamical systems
represent slow-fast dynamics. However the similarity is superficial as in the equations for
resonance manifolds nonhyperbolic features are so typical that a different approach is needed.
Finally we note that some of the examples we have shown, also exhibit more complex phenom-
ena like tori, torusbifurcations and chaos. For all these problems, a combination of asymptotic
analysis and geometric theory is very effective.
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