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ABSTRACT

We will consider a thermostatic system, Sprott B, that is a generalization of the well-known one-parameter Sprott A system. Sprott B contains
an explicit periodic solution for all positive values of the parameter a. As for Sprott A, we find dissipative KAM tori associated with time-
reversal symmetry and canards in dissipative systems. The exact periodic solution is characterized by an infinite number of instability intervals
of the parameter. The investigation of the dynamics in these intervals shows the presence of families of stable and unstable periodic solutions,
tori, and strange attractors. For large values of the control parameter a, we find non-hyperbolic slow manifolds producing violent vibrations.
We discuss a generalization of the Sprott B system with related dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0212565

We formulate and analyze a thermostatic system, Sprott B, with
as basis a harmonic oscillator but with a friction term that
decreases and can become negative if the oscillator energy passes
a threshold characterized by one free parameter a. Such sys-
tems have been used, e.g., in the statistical mechanics of chem-
ical physics. Apart from this application, the three-dimensional
autonomous system has a more general relevance in the theory of
dynamical systems. As in the well-known Sprott A system, we find
near the origin of phase space canards and dissipative KAM tori.
The system has many other surprising aspects. First, we have an
exact and simple periodic solution for all values of parameter a.
Next, it turns out that there exist an infinite number of instabil-
ity intervals for discrete values of a. The Mathieu equation plays a
part here. Considering the dynamics in separate instability inter-
vals, we find many different phenomena like families of stable and
unstable periodic solutions, tori, crossing of stable and unstable
manifolds, and chaotic attractors. For large values of a, we find
slow–fast motion with non-hyperbolic slow manifolds leading to
complex dynamics. We formulate a generalization of the Sprott B
system containing two parameters with similar phenomena.

I. INTRODUCTION

A brief yet inspiring paper appeared in 2013,1 which, in a
sense, continues the work initiated in Ref 2. The paper lists 17

three-dimensional autonomous ODEs with linear and quadratic
terms only and one parameter, they have no equilibria. The sys-
tems are dissipative and numbered NE1, . . ., NE17 with one of
them, called Sprott A (or NE1). Autonomous ordinary differen-
tial equations (ODEs) of dimension 3 contain primary examples
of complex behavior involving bifurcations, invariant manifolds
like tori, strange attractors characterized by fractal (Kaplan–Yorke)
dimensions, positive and negative, and chaos. The 17 autonomous
ODE’s of Ref. 1 can be studied to understand more systemati-
cally the dynamics of three-dimensional systems, we call it the
Jafari–Sprott–Golpayegani project. We will review some of these
results in the introduction and Section II.

Two-dimensional ODE cases have still open problems but the
Jordan separation theorem prohibits the emergence of complexity
in the two-dimensional case.

We note that complexity results for conservative systems were
developed much earlier, in particular, for 2 degrees-of-freedom
systems (four dimensions), see, for instance, Ref. 3. Examples of
interesting other three-dimensional systems are the Lorentz sys-
tem, the Rössler system, and the Chua circuit but these sys-
tems contain equilibria and more than one free parameter. The
Jafari–Sprott–Golpayegani project simplifies the equations as much
as possible.

The evidence for chaos in the 17 systems of Ref. 1 is mainly
numerical but it is an important start. Strong evidence in Refs. 4
and 5 has shown that in the Sprott A system which is dissipative
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families of tori arise; this is remarkable. It has been shown in Ref. 6
that these families are caused by certain symmetries of the system.
Moreover, the Laskar algorithm7 was used in Ref. 6 to demonstrate
the presence of chaos between the tori in the Sprott A system.

It is of interest that the Sprott A system (NE1) arose in a
slightly different form in Chemical Physics as Nosé–Hoover oscil-
lator with thermostatic control. The motivation for studying such
oscillators arises from the fact that, when using harmonic oscillators
to describe the dynamics of molecular systems, the issue of non-
ergodicity occurs, that is, there is no exchange of energy between
particles. For further details, see Ref. 8. For the thermostatic effects,
one adds in Nosé–Hoover oscillators coupling and control of energy
content of the particles; this changes and stabilizes the distribu-
tion function in phase space. See Ref. 8 for an introduction and the
original references.

We will make a new and interesting modification of the Sprott
A system, called Sprott B. The Sprott B system has no critical
points (equilibria) but an explicitly known periodic solution for all
positive values of the parameter. Sprott B shows slightly stronger
thermostatic effects and more complexity than the Sprott A sys-
tem. It has also the advantage from a physical point of view that it
directly targets the energy of the system. The presence of an explic-
itly known periodic solution enables us to discover many more
nonlinear dynamics phenomena.

A. Setup of the paper

In Sec. II, we briefly review the results for the Sprott A system.
We formulate the Sprott B system and show that it satisfies the same
symmetry conditions as the Sprott A system leading to an orga-
nizing center in the form of a periodic solution surrounded by an
infinite number of invariant tori. Sprott B contains a simple-looking
periodic solution for all values of the threshold parameter a.

In Sec. III, linearization of the flow near the periodic solution
shows the presence of an infinite number of instability segments
in the parameter space of a and corresponding instability Mathieu
tongues.

As expected from the symmetry established in Sec. II, we find
in Sec. IV canard behavior of the solutions that approach the z axis
closely. In this aspect systems, Sprott A and Sprott B are locally
similar.

In Sec. V, the dynamics in the first instability tongues is
explored. Using Poincaré maps, we locate periodic solutions with
bifurcations. Intersection of stable and unstable manifolds produce
chaos and strange attractors characterized by fractal dimensions.
Several homoclinic tangles can be identified.

The bifurcation analysis is extended in Sec. VI for larger values
of the parameter a. This turns out to produce many bifurcational
phenomena. As an example, the case a = 100 is explored.

Sections VII and VIII give preliminary results for a gener-
alization to a system with two parameters, A and B. Formally,
this generalization, containing two parameters, does not fit in the
Jafari–Sprott–Golpayegani project but fixing the value of A or B
does. The reason to include this preliminary version here is that
we expect interesting applications from the Sprott AB system, for
instance, in mathematical biology.

The asymptotic analysis is usefully combined with the tools
AUTO9 and MATCONT10 using ode78 under MATLAB and C.

II. THE SPROTT A AND SPROTT B SYSTEMS

We will briefly summarize some aspects of the Sprott A system.
In Sec. II B, we will introduce the Sprott B system.

A. The Sprott A system

We formulate the equations for the Sprott A system, also
known as NE1,

ẋ = y, ẏ = −x − yz, ż = y2 − a, (1)

with parameter a > 0. Differentiating the equation for x, we find

ẍ + zẋ + x = 0, ż = ẋ2 − a, (2)

an oscillator with variable friction and reminiscent in that sense of
self-excited oscillations; however, the dynamics is very different. It
was shown in Ref. 6 that in this dissipative system, an infinite num-
ber of tori are present that is caused by symmetries of the system. It is
discussed with other physical examples in Ref. 11 (also see Refs. 12
and 13 for the time-reversal background). An interesting aspect of
the Sprott A system but also NE9 is the observed presence of families
of invariant tori, known from conservative systems but it is remark-
able that we have here dissipative systems with a small parameter.
This aspect was studied in more detail for Sprott A in Refs. 4 and 5
who correctly observe that we have a kind of KAM tori, see for KAM
theory;3 the evidence is numerical, see for a Poincaré map of the
orbits of the Sprott A system near the origin [Fig. 1 (left)].

A novel result in Ref. 6 is that we can complete the theoreti-
cal picture for Sprott A (and NE9) by linking the tori bifurcation
phenomenon to time-reversal and canards. For the Sprott A system,
unbounded solutions can only be found on the z axis.

B. The Sprott B system

Consider the system,

ẋ = y, ẏ = −x − yz, ż = x2 + y2 − a, (3)

with a > 0. We call system (3) as Sprott B. The Sprott B system
describes again an oscillator with variable friction. Its thermostatic
effect arises from the equation for z. If the action 1

2
(x2 + ẋ2) is larger

than a/2, then the oscillations described by the system for (x, y) are
damped; if the action is smaller than a/2, then the system is excited.

As for the Sprott A system, we have that for system (3) with
a > 0, the z axis is an invariant manifold with unbounded solutions
x = y = 0, z(t) = z(0) − at. An interesting discrete symmetry fea-
ture of (1) was formulated in Ref. 6. It also holds for Sprott B system
(3). Sprott B is a special case of the generalized Sprott AB system that
will be discussed later on. We formulate the equations for the Sprott
AB system and give some interesting properties in terms of hidden
symmetries,

ẋ = y, ẏ = −x − yz, ż = Ax2 + By2 − a, (4)

with a > 0. A, B are fixed constants.

1. Discrete symmetry

If (x(t), y(t), z(t)) is a solution of system (4), then (−x(t), −y(t),
z(t)) is also a solution.
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FIG. 1. Poincaré map projected onto the plane y = 0 of Sprott B system (1) (left, in the terminology of Sec. VII, A = 0, B = 1) and right, Sprott B system (3) with
A = 1, B = 1 near the origin of phase space for a = 0.01. In both cases, the behavior near the z axis shows canard behavior for various initial conditions.

This is verified by substitution. An important feature involving
time reversal of (4) is:

2. Time-reversal symmetry of Sprott B

If (x(t), y(t), z(t)) is a solution of system (4), then by putting
x̄ = x, ȳ = −y, z̄ = −z and reversing time τ = −t, (x̄(τ ), ȳ(τ ), z̄(τ ))

is a solution.
Such time-reversal symmetry is called R-symmetry in Ref. 13.
Near the origin of phase space, a Poincaré map of the orbits is

depicted in Fig. 1.

C. An explicit periodic solution for Sprott B

We can formulate an explicit periodic solution about the z axis
in the x, y-plane for every value of a > 0,

x(t) =
√

a cos t, y(t) = −
√

a sin t, z = 0. (5)

We can study the stability of the periodic solution (5) by perturbing
near the periodic solution and linearizing. Introduce a small param-
eter ε > 0 and consider an ε-neighborhood of the periodic solution
by putting

x =
√

a cos t + εX, y = −
√

a sin t + εY, z = εZ.

System (3) transforms to










Ẋ = Y,

Ẏ = −X +
√

aZ sin t − εYZ,

Ż = 2
√

a(X cos t − Y sin t) + ε(X2 + Y2).

(6)

The periodic matrix of the linearized system has trace 0 which
corresponds to the sum of the corresponding Floquet exponents.
Linearization near a periodic solution in an autonomous system
produces at least one characteristic exponent 0, so we have for the
remaining two exponents λ1, λ2,

λ1 + λ2 = 0.

We conclude that there is either Lyapunov stability in linear approx-
imation (exponents imaginary) or instability with real exponents
λ1 = −λ2.

We will show that an infinite number of values of a exist that
lead to instability of the periodic solution. Consider system (6) and
differentiate the equation for Z,

Z̈ = 2
√

a(Ẋ cos t − X sin t − Ẏ sin t − Y cos t) + O(ε).

Using the first two equations of (6) and assuming a = O(1) yields

Z̈ = −2a sin2 tZ + O(ε)

or

Z̈ + a(1 − cos 2t)Z = O(ε), (7)

and after dividing by a and introducing a new time scale τ =
√

a t,

d2Z

dτ 2
+

(

1 − cos

(

2
√

a
τ

))

Z = O(ε). (8)

The linear part of the equation is the Mathieu equation that contains
an infinite number of instabilities of the trivial solution at an infinite
number of a values. The instabilities are found in so-called instabil-
ity Mathieu tongues and are located in an infinite number of discrete
segments of a values. Experimentally, we found, for instance, insta-
bility in the segment 0.658 ≤ a ≤ 1.800 with the initial values of
Fig. 3. As the eigenvalues at the instabilities are real, the nonlinear
terms do not change the stability character but will produce only
small quantitative changes.

III. INSTABILITY SEGMENTS AND MATHIEU TONGUES

The Mathieu equation appears in the literature in various
forms. One of the commonly used forms is

ÿ + (a − ε cos 2t)y = 0. (9)

Equation (7) is just a special case of the perturbed Mathieu equation.
Here, it is further required that the parameters a and ε are equal.
A sufficient condition for instability is to choose the parameter a in
Eq. (7) such that the point (a, a) falls within the instability regions of
the Ince–Strutt diagram of the Mathieu equation (see Fig. 2).

Determining the intervals in the instability tongues involves
finding the intersection points between the straight line and the
corresponding Mathieu tongues of the same order. Numerical cal-
culations of these intersection points yield the following results for
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FIG. 2. Instability tongues of the Mathieu equation, with tongue boundaries cor-
responding to periodic solutions. The green straight line represents ε = a, along
which we move when considering Eq. (7). The magenta segments within the
unstable tongue regions indicate the unstable intervals for the parameter a. This
ensures instability behavior; outside the tongues, stability is maintained. Whether
the segments of the green line within the stable regions result in stability or insta-
bility of specific solutions depends on the nonlinear part and requires further
investigation.

the unstable intervals with respect to the parameter a. For the first
three intervals, we obtain

I1 = [0.6580, 1.7796], I2 = [3.7164, 6.0782], and

I3 = [9.2539, 12.8517].

Additional intervals In for n ∈ N>3 can also be determined numeri-
cally.

The argument using Mathieu equation (8) does not longer hold
when a 6= O(1). For 0 < a � 1, we will perform approximation by
averaging. This has the advantage of determining also the stability
for this case. Consider an ε-neighborhood of the origin of phase

space and assume a = ε2a0 with positive a0. Rescaling Eq. (3) by
(x, y, z) 7→ ε(x, y, z) yields

ẋ = y, ẏ = −x − εyz, ż = ε(x2 + y2 − a0). (10)

Introducing amplitude-phase transformation (x, y) 7→ (r, φ) by
x = r cos(t + φ), y = −r sin(t + φ), we find from system (10),











ṙ = −ε sin2(t + φ)rz,

φ̇ = −ε sin(t + φ) cos(t + φ)z,

ż = ε(r2 − a0).

(11)

Averaging over t and keeping the same notation for the variables, we
find to O(ε),

ṙ = −ε
1

2
rz, φ̇ = 0, ż = ε(r2 − a0). (12)

The point r = √
a0, φ = φ0, z = 0 is a critical point of the averaged

equations. The rank of the linearized vector field at the critical point
is 2, so it follows from the 2nd Bogoliubov theorem that in an
ε-neighborhood of this point, a 2π-periodic solution exists. We
knew this already, it is of the form x = ε

√
a0 cos t,

y = −ε
√

a0 sin t, z = 0; but, moreover, we know that the stability of
the periodic solution is inherited by the stability of the critical point.
For the theoretical background of these statements, see Ref. 14 or
Ref. 15. We find purely imaginary eigenvalues and conclude that
the periodic solution is Lyapunov stable. Higher order approxima-
tions in ε cannot change this as moving of the eigenvalues into the
complex domain needs more dimensions.

In the sections after Sec. IV, we present analysis and a few
numerical experiments to demonstrate the dynamics of Sprott B
system (3) in the first instability segments. We will start close to
the periodic solutions on the tongues boundiries. In Fig. 3, we
show stable and unstable behavior for values of a near 0.65 and
9.2. We have plotted R(t) =

√
X2 + Y2 + Z2. Instability intervals are

for a ∈ [0.658 01, 1.779 64] and [3.716 42, 6.078 15]. Figure 4 shows
projections r(t), z(t) of the dynamics near the stable and unstable
solutions.

FIG. 3. Solutions R(t) of Sprott B system (6) for values of a near 0.65 and 9.2 starting close to the periodic solution (5). Left (a), the case a = 0.650 (stable, red) and
a = 0.658 (unstable, green). Right (b), the case a = 9.20 (stable, red) and a = 9.26 (unstable, green).
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FIG. 4. Solutions r(t), z(t) of Sprott B system (3) near the explicit periodic solution. (a) The case near the origin a = 0.01, x(0) =
√
a = 0.1, y(0) = 0, z(0) = 0.1. (b) The

unstable case a = 0.695, x(0) =
√
0.695, y(0) = 0, z(0) = 0.1. (c) The unstable case a = 0.7, x(0) =

√
0.7, y(0) = 0, z(0) = 0.1.

IV. CANARD BEHAVIOR OF SPROTT B NEAR THE

z-AXIS

In Sprott B system (3), we consider small values of a by putting
a = εa0 (a0 positive) and a neighborhood of the z axis by rescaling
(x.y) 7→

√
ε(x, y) resulting in

ẋ = y, ẏ = −x − yz, ż = ε(x2 + y2 − a0). (13)

This is a slow–fast system with fast moving x(t), y(t) and slow z(t);
a slow manifold M0 is given by y = 0, −x − yz = 0, corresponding
with the z axis. M0 is normally hyperbolic except close to the origin
x = y = z = 0. The dynamics resembles the behavior of the Sprott
A system near the z axis, see Ref. 6, for the theoretical background of
slow–fast systems and canards, see Ref. 16. Starting with z(0) > 0,
the solutions x(t), y(t) are strongly damped and approach M0. At
some time, we have ż < 0 as ż will be dominated by a0, we have
passed the origin and x, y will increase again. However, the increase
is delayed by canard behavior. Because of the discrete symmetry of
system (13) formulated in Sec. II B, the solutions x(t), y(t) will show
symmetric behavior near the z axis, see Fig. 5.

As in the case of the Sprott A system in Ref. 6, we find a
family of tori in three-space with the periodic solution with ampli-
tude

√
a obtained before as organizing center. This is based on the

time-reversal property formulated in Sec. II B.
Note that the organizing periodic solution is located at O(

√
ε)

distance from the origin, the orbits on the tori approach the z axis
exponentially close.

A more detailed analysis is given later on for possible canards
in the Sprott AB system, see Sec. VIII.

V. DYNAMICS IN THE FIRST INSTABILITY SEGMENT I1

We expect interesting dynamics when selecting the param-
eter a such that the periodic solution (5) becomes unstable.
From the infinite number of possible cases, consider the segment
I1 = [0.6580, 1.7796], the first magenta segment as depicted in Fig. 2.
Tracking periodic orbits and analyzing their stability using con-
tinuation methods is crucial for detecting bifurcations and under-
standing the resulting dynamics and routes to chaos in the system
under investigation. One of the most straightforward techniques for
identifying periodic orbits in ordinary differential equations (ODEs)
involves locating the fixed points of the corresponding Poincaré

return map P(x). When searching for periodic orbits, if the initial
guess is sufficiently close, the Poincaré return map will be well-
defined. For period-1 orbits, the map exhibits a fixed point x0 pre-
cisely at the periodic orbit. Finding this fixed point x0 corresponds
to solving the equation P(x) − x = 0. The Newton method is highly
efficient for this task, providing an advantage as it can track peri-
odic orbits regardless of their stability. However, the Poincaré return
map is typically not available in an analytical form and must be com-
puted numerically. Additionally, the Newton method requires both
the map P(x) and its first derivative DP(x). Mastery of the numerical
computation of the Poincaré map and its derivative is essential. For
more detailed expressions, including second-order derivatives of the
Poincaré map, refer to Ref. 17. In Sec. V A, we demonstrate the effi-
ciency of this method in identifying short periodic orbits through a
single return step within the Mathieu tongues under study. Periodic
orbits are crucial for comprehending the complex dynamics induced
by non-linearities and detecting chaotic behavior in the dynamical
system via bifurcation analysis. Applying the fixed point approach to

FIG. 5. Two canard solutions r(t), z(t) near the z axis located on tori of Sprott

B system (3) with r =
√

x2 + y2. We have a = 0.01 and near the z axis, x(0)
= y(0) = 0.01. For z(0) the cases, z(0) = 0.5 (red curve) and z(0) = 1 (green
curve). The solutions are not periodic and show symmetric canard behavior near
the z axis that is close to the slow manifold of the slow–fast system.
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FIG. 6. All six additional periodic orbits from Table I numerically detected via the computation of the fixed points of the Poincaré return map in the case a = 0.698 11. The
periodic orbits related by the discrete symmetry can easily be identified.
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TABLE I. List of all the periodic orbits numerically detected using the Poincaré map fixed point approach for a = 0.698 11. Orbit 4 corresponds with the explicit periodic orbit

discussed previously. Orbits (1,7); (2,6); and (3,5); respectively; are related through the discrete symmetry. Time-reversal symmetric periodic orbits can be inferred from these

seven periodic solutions using the time-reversal property of system (4) discussed earlier.

Orbit x0 y0 z0 Period Comment

1 −2.564 403 0.000 000 4.730 148 125.935 Stable (node)
2 −1.431 914 0.000 000 0.000 000 8.057 Unstable (saddle)
3 −1.214 453 0.000 000 0.000 000 6.778 Stable (focus)
4 −0.835 529 0.000 000 0.000 000 2π Unstable (saddle)
5 −0.403 853 0.000 000 0.000 000 6.778 Stable (focus)
6 −0.178 739 0.000 000 0.000 000 8.057 Unstable (saddle)
7 −0.001 613 0.000 000 −0.753 883 125.935 Stable (node)

P2(x), P3(x), . . . , Pn(x) yields higher periods 2, 3, . . . , n of the Sprott
B system. In the instability segments I1,...,9, we focus on P1.

A. The case a = 0.69811

Starting at the parameter value a = 0.698 11 in the first insta-
bility interval I1, we look for P1 periodic orbits with starting val-
ues on the xz-plane. We choose x0, z0 within a square of side
with length 4 centered around the explicit periodic orbit (5) with
(x(0), y(0), z(0)) = (

√
a, 0, 0), we find six additional periodic orbits,

see Table I and illustrations in Fig. 6. Only three of the found peri-
odic orbits are intrinsically different, the other three can be deduced
from the symmetries in the system mentioned earlier. The periodic
orbits are not detected by averaging as they do not arise as a contin-
uation of a known periodic orbit. This is clear from the periods in
Table I.

Looking at the dynamics close to the periodic orbits, we find
orbits showing complex motion suggesting chaotic dynamics, see
Fig. 7. Examining the Poincaré section of the system shows indeed
the picture of a strange attractor, see Fig. 8. The calculation of the

Lyapunov exponents finally reveals chaotic motion as the largest
Lyapunov exponent is positive,

λ1 = 0.012 719 265; λ2 = 2.807 378 8 × 10−6; λ3 = −0.012 719 288.
(14)

The manifolds shown in Figs. 7 and 8 are fractal.
Remarkably, the sum of the Lyapunov exponents is very close

to zero, see Fig. 9, obviously close to being a conservative system.

B. Bifurcation analysis in the first Mathieu tongue

The explicit orbit (5) (see Table I) is continued using the soft-
ware packages AUTO and MATCONT, see Fig. 10. At each of the
boundaries of the first tongue, there is a branching point cycle bifur-
cation BPC (square symbol). Orbit 3 of the table emerges from the
left BPC point as a stable cycle at the parameter value a = 6.579 13
× 10−1 while orbit 4 (5) looses stability due to the BPC bifurcation
and the entrance of the first Mathieu tongue. Continuation of orbit 3
yields a fold bifurcation (dianmond symbol), at the parameter value
a = 7.097 73 × 10−1, where orbits 3 and 2 collide and disappear.
Further continuation of orbit 2 yields a high period (T ' 182 ) at

FIG. 7. Orbits of Sprott B system (6) showing chaotic motion for values of a = 0.698 11 starting close to the periodic solution (5) at x(0) =
√
a, y(0) = 0, z(0) = 0.01.
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FIG. 8. Poincaré section (y = 0) of Sprott B system (6) showing a strange attrac-
tor for values of a = 0.698 11 starting close to periodic solution (5) at x(0)
=

√
a, y(0) = 0, z(0) = 0.01.

the value a = 0.5 suggesting the presence of a canard structure (see
Fig. 11). Orbits 1 and 7 are not related to any of the other orbits
found in Table I. They are stable within this tongue and do not
undergo any bifurcation as the parameter a is varied within the first
tongue. They are omitted here due to the very high periods and sta-
ble character. At the right BPC, a periodic orbit emerges that is not
detected in Table I because the orbit does not exist for a = 0.698 11.
This stable cycle undergoes a supercritical Period-Doubling (PD)
bifurcation (circle symbol) at the parameter value a = 1.588 27. It
looses stability to the period 2 cycle emerging from it. Further con-
tinuation of the unstable cycle yields no new bifurcations. Its period

increases rapidly and becomes T ' 93 at the parameter value a = 1
suggesting here also the presence of a canard structure (see Fig. 12).

1. Homoclinic tangles

One of the routes to chaos is via homoclinic tangles, this is
underlying the chaos as depicted in Figs. 8 and 13 and how we
numerically computed the stable and unstable manifolds of the sad-
dle. The original idea was conceived by Poincaré and can be found
in Ref. 18, vol. 3. Considering a saddle point of a Poincaré map, one
can identify stable and unstable manifolds emerging from the saddle.
The complexity of transversal crossing of the manifolds produces the
wild behavior that nowadays is identified as chaos and horseshoe
dynamics; the last geometric insight was of course still unknown in
Poincaré’s time.

VI. BIFURCATION ANALYSIS WHEN CONTINUING a

Continuation of the explicit periodic solution (5) by increasing
the parameter a as control parameter, we enter different instability
segments. As in the case of segment I1 the periodic solution under-
goes a series of branching point bifurcations (BPCs) exactly at the
Mathieu tongues boundaries that were computed above as bound-
aries of the intervals In, see Fig. 14. Here, the explicit periodic orbit
looses stability and a new cycle branches from it. Figure 14 shows
that the bifurcations within each tongue are quite different. There
are many different cases, in what follows we will restrict ourselves to
a few observations.

A. The case a =1

In Fig. 15, we show the behavior of r(t), z(t) with time. In
Fig. 16, we show a periodic solution with canard behavior, the slow
manifold y = 0 extends to negative values of z(t) .

FIG. 9. Lyapunov exponents of the SprottB system for a = 0.698 11 (left) and their sum (right).
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FIG. 10. Left: the bifurcation diagram of the explicit periodic orbit near the first Mathieu tongue (a ∈ I1 = [0.6580, 1.7796]). Each curve represents a periodic orbit that
bifurcates from the explicit periodic solution as the control parameter a enters the limits of the first tongue. Right: a zoomed-in view of the first tongue. A branching point cycle
bifurcation (BPC) is indicated by a square symbol, a fold bifurcation by a diamond symbol, and a period-doubling (PD) bifurcation by a circle symbol. Note the asymptotic
behavior of the period as the control parameter approaches 0.5 and 1. Refer to Figs. 11 and 12 for the corresponding orbits.

B. The case a =4

In this case, the solutions starting near the exact unstable peri-
odic solution tend to a stable periodic solution, see Fig. 17. As
z(t) assumes successively positive and negative values, this periodic
solution has the character of a self-excited oscillation.

There are many interesting phenomena. We mention the peri-
odic orbit starting at x(0) = −1.9283478735053221; y(0)
= 0; and z(0) = 0.0000000000641302. This orbit has one multiplier
1 and two on the unit circle in the complex plane.

For larger values of a (a = m2, m ∈ N≥3) at the instability
intervals, we find similar phenomena.

C. The case a �1

We discuss phenomena arising for a � 1. In Fig. 18, we show
the 9th and 10th instability tongues at a = 81, 100. Assume

a =
a2

0

ε2
,

with a0 > 0 and ε a small, positive parameter. The periodic solution
(5) becomes

x(t) =
a0

ε
cos t, y(t) = −

a0

ε
sin t, z = 0. (15)

FIG. 11. Orbit 2 at the parameter value a = 0.5 with high period T = 182.16 and initial conditions: x(0) = −1.5626736828, y(0) = −0.10021733463, and
z(0) = −15.785 176 678.
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FIG. 12. Orbit emerging from the right hand sidebranching point at the parameter value a = 1 with high period T = 93.74 and initial conditions x(0) =
−1.2374102968, y(0) = 6.3677142199, and z(0) = −18.448 524 598.

Consider a perturbation X, Y, z of the periodic solution, putting

x(t) =
a0

ε
cos t + X, y(t) = −

a0

ε
sin t + Y, z(0) = z0.

System (3) transforms to











Ẋ = Y,

εẎ = a0z sin t − εX − εYz,

εż = 2a0(X cos t − Y sin t) + ε(X2 + Y2).

(16)

Slow–fast system (16) has a set of slow manifolds of the form

X(t) = c sin t, Y(t) = c cos t, z(t) = 0, (17)

with c an arbitrary constant but small to be in a neighborhood of the
periodic solution. The slow manifolds are not hyperbolic, we have
a rather degenerate slow–fast system. Numerical simulations for
a = 100 show large excursions of z(t), see time series in Fig. 20. Note
that for a = 100, the system lies within the ninth Mathieu tongue
associated with a = 81, as depicted in Fig. 18. Numerical computa-
tion of the intersection points of the green line with the boundaries
of the ninth tongue yields the interval I9 = [94.343, 105.346]. Initi-
ating just outside the ninth tongue (a = 94) results in a torus near
the Lyapunov-stable exact periodic orbit, as shown in Fig. 19. Con-
versely, initiating inside the tongue confirms that the exact periodic
orbit is numerically unstable, as theoretically predicted. Figure 20
presents the time series and Poincaré sections for a = 100 starting

FIG. 13. 1D stable (blue) and unstable (red) manifolds of the Poincaré map of the saddle cycle intersecting transversally at the parameter value a = 0.698 11. The yellow dot
in the middle is the fixed point corresponding with the explicit saddle periodic orbit found before (left). Right is a blowup near the saddle showing the transversal intersection
leading to homoclinic tangles and complex Horseshoe dynamics.
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FIG. 14. Bifurcation diagram of the explicit cycle in the first three Mathieu tongues
with a as control parameter. The squares correspond to the BPC, diamonds are
points where a fold bifurcation takes place, and circles correspond to period-
doubling bifurcations that later turn out to be a strong resonance 1:2 where a
Neimark-sacker curve and a PD curve intersect with a double multiplier equal
to −1.

from two sets of initial values near the unstable exact 2π-periodic
solution. Conducting a detailed bifurcation analysis within the ninth
Mathieu tongue would enhance the understanding of the system’s
dynamics.

An interesting case arises when a = 100, denoted as point P
in Fig. 18. Here, two saddle periodic solutions exhibit a heteroclinic
connection for a critical value of a close to 100. These solutions are
identified as fixed points with period 2 in the Poincaré section y = 0
at coordinates (x, z) = (−7.796 65,-10.445 12), shown in Fig. 21(a)
as a magenta dot, and (x, z) = (−9.111 83,-5.891 99) as a green dot.
As the parameter a deviates from this critical value, the stable and
unstable manifolds of one periodic solution intersect in a nontriv-
ial, intricate manner with the stable and unstable manifold of the

FIG. 16. Projection of solution y(t), z(t) of Sprott B system (3) for a = 1
starting close to the explicit periodic solution in (5), with initial condition x(0)
=

√
a, y(0) = 0, z(0) = 0.1, and tending to another periodic solution with

canard behavior.

other. This intersection results in heteroclinic tangles and chaotic
dynamics.

VII. GENERALIZATION TO A SPROTT AB SYSTEM

We generalize the Sprott B system to Sprott AB system (4) by
adding two fixed parameters A, B. The Sprott B system is included
if we choose A = B = 1. We expect new dynamical features when
choosing A 6= B. This section and the next one are introductory,
there are many open questions for the Sprott AB system which need
to be studied in more detail in the future.

For any fixed A, B values, system (4) fits in the Jafari–Sprott–
Golpayegani project provided that for these values of parameters
A, B chaos is present. If both A and B are negative, z(t) will decrease
monotonically and the dynamics will remain simple; we, there-
fore, exclude this case. Note that the generalized Sprott AB system
reduces to the Sprott A system if A = 0, B = 1 and to the Sprott
B system for A = B = 1. The case A = B is strongly related to
the Sprott B system, we will, therefore, consider in what follows

FIG. 15. Solutions r(t), z(t) of Sprott B system (6) for values of a = 1 starting close to the explicit periodic solution in (5), with initial condition x(0) =
√
a, y(0) = 0,

z(0) = 0.1.
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FIG. 17. Solutions x(t), y(t) (left) and x(t), z(t) (right) of Sprott B system (3) with a = 4. Starting close to the unstable periodic solution (5) [x(0) = 2, y(0) = 0,
z(0) = 0.001], the solution moves to a stable periodic solution, the transitional behaviour is left out. Initial conditions x(0) = −1.90 653, y(0) = 0.549 365, and
z(0) = 3.762 22.

A 6= B. It turns out that near the origin of phase space, one param-
eter, A + B, plays an essential part in the dynamics. For reasons of
comparison, we will choose

A + B = 1.

As for the Sprott A and Sprott B systems, we have that for arbitrary
a > 0, the z axis is an invariant manifold with unbounded solutions
x = y = 0, z(t) = z(0) − at.

Note that by differentiating the equation for x, we can rewrite
system (4) as

ẍ + ẋz + x = 0, ż = Ax2 + Bẋ2 − a. (18)

A. A periodic solution near the origin

For the Sprott AB system with A 6= B, we do not have an exact
periodic solution at our disposal, but for a small and near the origin,
we can obtain existence and approximation of a periodic solution.

FIG. 18. 9th and 10th Mathieu stability tongues, a � 1.

Considering small values of parameter a and solutions ε-close to the
origin of phase space, we transform

x → εx, y → εy, z → εz, a = ε2a0, (19)

with a0 > 0 and ε a small positive parameter. System (4) becomes

ẋ = y, ẏ = −x − εyz, ż = ε
(

Ax2 + By2 − a0

)

, A + B = 1. (20)

Transforming (x, y) 7→ (r, φ), we use amplitude-phase coordinates
x = r cos(t + φ), y = −r sin(t + φ) and average over time t. For the
theory of averaging, see Ref. 19; we find to first order in ε,

ṙ = −
ε

2
rz, φ̇ = 0, ż =

ε

2

(

Ar2 + Br2 − 2a0

)

=
ε

2

(

r2 − 2a0

)

. (21)

Using again the second Bogoliubov theorem (see Ref.14), we know
that a critical point of system (21) under certain implicit function
conditions corresponds with a periodic solution of system (20) that
is ε-close to the critical point. We find for the critical point,

rc =
√

2a0

A + B
=

√

2a0, z = 0. (22)

If the Jacobian of the averaged system at the critical point is struc-
turally stable, the stability of the periodic solution follows from the
eigenvalues at the critical point. The eigenvalues are given by the
characteristic equation,

λ(λ2 + a0) = 0.

Following the same reasoning as in the case of the periodic solu-
tion of the Sprott B system, we conclude Lyapunov stability of the
periodic solution found by averaging.

An illustration of the dynamics near the origin of phase space is
shown in Fig. 22 for A = 0.65, B = 0.35. The picture suggests again,
at least for these values of A, B, the existence of tori and canard
behavior near the z axis.

VIII. CANARD BEHAVIOR OF SPROTT AB NEAR THE

z-AXIS

As before, we assume A + B = 1 but admit negative values of
A or B. It was shown in Ref. 6 that if a is small, we have a singular
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FIG. 19. Poincaré section (y = 0) showing a T
2 torus of system 3 near the trivial periodic orbit with a = 94 outside the 9th Mathieu tongue (left). The periodic orbit is

Lyapunov stable. Right the Poincaré section for y = 0 at a = 94.5 inside the 9th tongue showing the trivial periodic orbit is unstable; initial conditions for both cases are
x(0) =

√
a, y(0) = 0, andz = 0.1. The green dot corresponds to the trivial periodic orbit.

FIG. 20. Time series and Poincaré sections of the Sprott B system for a = 100, top initial values x(0) = 10, y(0) = 0, and z(0) = 0.1, below x(0) = 10,

y(0) = 0, and z(0) = −0.1. The sections are at y = 0. The time series left show r(t) =
√

x2 + y2; strong vertical motion corresponds with the fibers around the non-hy-
perbolic family of slow manifolds, mildly curved lines correspond with large positive (damping) values of z. The Poincaré section right for z(0) = ±0.1 show an attractor
consisting of two connected parts.
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FIG. 21. Poincaré section at y = 0 for a = 100, A = B = 1. The figure illustrates two unstable periodic solutions with a heteroclinic connection. Panel (b) shows the overall
heteroclinic connection. Panel (a) provides a zoomed-in view around the green fixed point, highlighting the intersection between the unstable manifold of the magenta dot
(red curve) and the unstable manifold of the green equilibrium (cyan curve). Panel (c) depicts the dynamics in the vicinity of the magenta dot.

perturbation problem with canard behavior for Sprott A system (1).
We study Sprott AB system (4) as a slow–fast system and will apply
Tikhonov’s theorem.20 Note that for system (4),

dr2

dt
= −2ẋ2z,

so, as for the Sprott A and Sprott B systems and as long as z(t) is
positive, the (x, y) phase-flow is strongly damped; if z(t) is negative,
the flow is excited. We expect that when starting with positive z(0),
large enough the solution tends relatively fast to a neighborhood of
x(t), y(t) = O(

√
ε) (near the z axis); after this, the canard behavior

near the z axis will start, see Fig. 23.
To put the system in the formulation of Tikhonov’s theorem,

we rescale system (4) slightly differently,

x = εx̄, y = εȳ, a = εa0.

Omitting the bar system (4) becomes

ẋ = y, ẏ = −x − yz, ż = −εa0 + ε2(Ax2 + By2), A + B = 1. (23)

Rescaling time τ = εt, we find the equivalent system as

ε
dx

dτ
= y, ε

dy

dτ
= −x − yz,

dz

dτ
= −a0 + ε(Ax2 + By2). (24)

According to geometric singular perturbation theory, system (24)
shows fast motion of the x, y-component in the timelike variable τ ,
except in an O(ε) neighborhood of the one-dimensional approxi-
mate slow (or critical) manifold M0 defined by

y = 0, −x − yz = 0. (25)

The approximate slow manifold M0 corresponds with the z axis
in three-dimensional phase space, it is normally hyperbolic when
excluding a neighborhood of z = 0 as we have for the fast part of the
system that the real part of the spectrum is −z/2. M0 approximates
the smooth slow manifold Mε that exists for solutions of system (24).
According to Sec. 15.7 of Ref. 16, when excluding a neighborhood of
z = 0, M0 approximates Mε exponentially close. To fix ideas, we take
initially x(0), y(0) small and z(0) > 0.

When starting outside M0 at positive z(0) = z0, z(t) of system
(24) will change little. An O(ε) approximation of the fast solutions

FIG. 22. Poincaré map in the plane y = 0
of Sprott AB system (4), for the random case
A = 0.65, B = 0.35 near the origin of phase
space, for a = 0.01. The behavior near the z axis
shows canard behavior for various initial condi-
tions.
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FIG. 23. Canard behavior of r(t), z(t) of Sprott B system (23), A = 0.5andB = 0.5. We have a0 = 0.1, ε = 0.1, z(0) = 0.5, x(0) = 0.1, y(0) = 0, and z(t) alternates in
sign. The value of z(0) forces the x(t), y(t) behavior to approach the z axis in its stable part, when passing the origin, this part of the z axis becomes unstable but the motion
along the axis persists for some time (canard behavior).

of the system will be of the form

X0(t) = x0e
−z0t/2 cos

(

√

4 − z2
0

t

2

)

. (26)

The approximation is valid on an interval O(1) in τ , O(1/ε) in t as
long as we do not enter a ε-neighborhood of M0. From (26), we can
estimate the fast time T1 needed to approach M0,

x(0)e−z0T1/2 cos

(

√

4 − z2
0

T1

2

)

= ε. (27)

Ignoring the oscillations, a rough estimate is

T1 ≈ −
2

z0

ln

(

ε

x0

)

. (28)

The approximate time needed for the motion until z = 0 along
M0 is T2 = z0/(εa0). Using the R-symmetry for system (4)
(Subsection II B), we find the estimate of the return time T ≥ 2(T1

+ T2) of the flow. The pulse-like behavior for the fast motion of the
flow is shown in Fig. 23. The solutions of the slow–fast system will
traverse an O(

√
ε) neighborhood of the origin spending the same

time for positive and negative values of z.
Geometric singular perturbation theory in combination with

time reversal and symmetry produces the behavior shown in the
Poincaré maps of Fig. 1. Increasing ε we expect the tori to break up,
maybe with Cantor gaps as in near-integrable Hamiltonian systems.
In Ref. 6, it was shown by the SDDS NAFF algorithm of Ref. 7 that
in the tori region, we can locate an accumulation of frequencies of
the quasi-periodic and periodic solutions on the tori producing loss
of regularity of the frequency map. This is carried out by looking
for quasi- periodic and periodic solutions on the tori and identify-
ing by Fourier analysis the relevant periods of the solutions. After
constructing the frequency map, this yields chaotic motion between
the tori. The analysis carries over to the Sprott AB system.

IX. DISCUSSION AND CONCLUSIONS

1. The Sprott B system is an important addition to the thermostatic
systems proposed in Ref. 1. The thermostatic control involves
the energy of the controlled system.

2. The Sprott B system shows the same reversal symmetry as sys-
tems Sprott A and NE9 leading to application of dissipative
KAM theory.

3. Because of the unusual presence of an exact 2π-periodic solu-
tion for all positive values of the parameter a, we can explore the
phenomena arising in the infinite many instability intervals of
the exact solution.

4. A wealth of information arises from exploring these instability
intervals. This leads to the discovery of families of periodic solu-
tions, isolated tori corresponding with quasi-periodic solutions
and strange attractors. The type of bifurcation depends on the
value of the parameter a.

5. For large values of a, we find slow–fast dynamics with a fam-
ily of non-hyperbolic slow manifolds causing irregular fiber
oscillations.

6. We note that there is a natural generalization from Sprott B
to Sprott AB by adding one parameter. Near the z axis sys-
tem, Sprott AB shows again the presence of a family of tori and
canard behavior. Its dynamics might be useful for applications,
it can be a subject of future papers.
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