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Quadratic 3-dimensional autonomous systems may display complex behaviour. Studying the systems Sprott A and NE9
we find families of tori and periodic solutions both involving canards. Using time-reversal and symmetry we are able to
explain in these 2 systems both the analysis and origin of tori, periodic solutions and the numerics of these objects. For
system NE9 unbounded solutions exist that admit analytic description by singular perturbation theory of the flow near
infinity, also we observe torus destruction and a new chaotic attractor (Kaplan-Yorke dimension 2.1544) produced by a
period-doubling scenario. The subtle numerics of periodic solutions involving canards is explained in a final section.

In dissipative systems the presence of an infinite family
of tori is unusual. We explain these phenomena for two
systems of ODEs, Sprott A and NE9, by showing certain
symmetries in the systems. A remarkable additional as-
pect is that the tori show canard behaviour. Because of
the canards the presence of periodic solutions on the tori
present special numerical integration problems. There are
more surprising phenomena in both simple-looking sys-
tems: chaotic behaviour in both systems and in system
NE9 an isolated invariant manifold with in its neighbour-
hood again canard solutions, produced by a stability tran-
sition of the manifold.

I. INTRODUCTION

A number of chaotic 3-dimensional systems, in fact 17
autonomous systems with linear and quadratic terms only
and one parameter (a), have been listed and studied in7, see
also15; all these systems are dissipative, i.e. the 3-dimensional
phase-flow is not volume-preserving. The systems are num-
bered NE1, . . . , NE17 with one of them, called Sprott A (or
NE1). The study of these 17 systems is very instructive as 3-
dimensional systems generally show much more complexity
than 2-dimensional ones and as the 17 systems are relatively
simple, quadratic and with one parameter. The evidence for
chaos in7 is mainly numerical and an interesting start.
A remarkable aspect of the systems Sprott A and NE9 is the
observed presence of families of invariant tori, known in con-
servative systems but in contrast we have here dissipative sys-
tems with the parameter a small. This aspect was studied in
more detail for Sprott A in12 and13 who correctly observe that
we have a kind of KAM tori.

A novel result is that we can complete the theoretical pic-
ture both for Sprott A and NE9 by linking the tori bifurcation
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phenomenon to time-reversal and canards. The scalings near
the origin of phase-space in section II and III are related to
geometric desingularisation of degenerate singularities. For
the vast literature see8 and11. For both systems we can iden-
tify a number of periodic solutions on the tori. For the Sprott
A system unbounded solutions can only be found on the
z-axis. Another novel aspect is that for system NE9 this is dif-
ferent; we find ‘rings’ of initial values leading to unbounded
solutions. Scaling near infinity and using again geometric
singular perturbation theory provides insight in this dynamics.

We formulate the equations. The system Sprott A is:

ẋ = y, ẏ =−x− yz, ż = y2 −a, (1)

with a ≥ 0. The Sprott A system is a special case of the Nosé-
Hoover oscillator; for the physics references of this oscillator
and a nice introduction to the theory see14. For a number of a
values the system (1) suggests chaotic behaviour; if a ̸= 0 no
equilibria exist. In7 the case a= 1,x(0) = 0,y(0) = 5,z(0) = 0
of system (1) produces a structure that looks like an attractor.
The ‘attracting’ object has Kaplan-Yorke dimension 3.0, see7.
System NE9 shows related but also different characteristics.
The equations are:

ẋ = y, ẏ =−x− yz, ż =−xz+7x2 −a, a ≥ 0. (2)

System NE9 has no equilibrium if a ̸= 0.

A. Set-up of the paper

In the Introduction we formulate a number of useful
lemma’s for periodic solutions in the Sprott A and NE9 sys-
tems and we observe the time-reversal character of the 2 sys-
tems. In section II we consider the Sprott A system adding
more details to the canard results of1 producing for 0 < a ≪ 1
pulse-like behaviour of the solutions. Time-reversal leads to
the presence of a tori family around a periodic solution that
serves as an organising centre. Infinite families of tori are typ-
ical for Hamiltonian systems, see2. It is interesting to find
such families in dissipative systems. We expect to find peri-
odic solutions on the tori with rather long periods because of
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their passage through slow manifolds. It takes subtle numer-
ical methods to find the periodic solutions, both stable and
unstable (see section V for comments on the numerics). More
insight in the presence of tori and the transition to chaos is
obtained by using the frequency method of Laskar, see sub-
section II D.
A striking difference between Sprott A and the NE9 system is
the presence of families of unbounded solutions in NE9. The
behaviour near infinity requires again singular perturbation
analysis and yields insight in the presence of domains where
solutions are attracted to infinity. In system NE9 a chaotic at-
tractor with Kaplan-Yorke dimension 2.1544 is detected that
emerges from a period doubling sequence. It is demonstrated
how periodic solutions, tori and chaos are connected.

B. Some useful observations

Consider systems (1), (2). For arbitrary a the z-axis is an
invariant manifold with, if a ̸= 0, unbounded solutions:

x = y = 0,z(t) = z(0)−at. (3)

An interesting discrete symmetry feature of (1) is:

Lemma I.1
If (x(t),y(t),z(t)) is a solution of system (1) then also
(−x(t),−y(t),z(t)) is a solution.

This is verified by substitution. An important feature involv-
ing time reversal of (1) is:

Lemma I.2
If (x(t),y(t),z(t)) is a solution of system (1) then by
putting x̄ = x, ȳ = −y, z̄ = −z and reversing time τ = −t,
(x̄(τ), ȳ(τ), z̄(τ)) is also a solution.

Such time-reversal symmetry is called R-symmetry in9. For
system NE9 we have a similar reversibility as in lemma I.2:

Lemma I.3
If (x(t),y(t),z(t)) is a solution of system (2) then by
putting x̄ = −x, ȳ = y, z̄ = −z and reversing time τ = −t,
(x̄(τ), ȳ(τ), z̄(τ)) is also a solution.

By differentiating the equation for x we rewrite system (1)
as:

ẍ+ ẋz+ x = 0, ż = ẋ2 −a. (4)

Consider the Sprott A system in the form (4). It is easy to
prove the following lemma:

Lemma I.4
Assume that x(t)= ξ (t),y= dξ/dt,z(t)= ζ (t) are T -periodic
(T > 0) solutions of system (4) for a > 0, then:∫ T

0
ζ (t)dt = 0. (5)

Proof
The equation for x with z = ζ (t) becomes:

ẍ+ζ (t)ẋ+ x = 0.

According to Floquet theory the solutions of the x-equation
are of the form exp(Bt)Φ(t) with T -periodic matrix Φ(t) and
constant 2 × 2 matrix B. For the characteristic exponents
λ1,λ2 we have in the periodic case

λ1 +λ2 =
1
T

∫ T

0
ζ (t)dt = 0,

which proves the lemma (the corresponding multipliers ρ1,ρ2
satisfy the relation ρ1ρ2 = 1).

A different proof adds insight to the periodic solutions of
system (1).

Alternative proof of lemma I.4
Consider for the solutions of system (4) the function:

F(x,y,z) =
1
2
(x2 + y2 + z2). (6)

Differentiation and using the equations yields easily

dF
dt

=−az,

or

F(x(t),y(t),z(t)) = F(x(0),y(0),z(0))−a
∫ t

0
z(s)ds.

If (x.y.z) is T -periodic we have F(x(0),y(0),z(0)) =
F(x(T ),y(T ),z(T )) and so, if a > 0:∫ T

0
z(s)ds = 0.

The addional insight is that the quantity F(x(0),y(0),z(0)) is
conserved with error O(a) on periodic solutions.

It was observed and proved by averaging in12 that Sprott
A system (1) has a periodic solution near the origin of
phase-space and for 0 < a ≪ 1. The scaling needed is:
x = ε x̄,y = ε ȳ,z = ε z̄,a = ε2a0 with a0 a positive constant.
The location is given by (x(0),y(0),z(0)) = (

√
2a0,0,0).

According to1 the periodic solution exists also for system
NE9 with the same scaling; the location for NE9 is given by
(x(0),y(0),z(0)) = (

√
2a0/7,0,0). In both systems the peri-

odic solution is neutrally stable to 2nd order approximation.

Using Poincaré compactification it was shown in13 for the
Sprott A system that the only orbits that can reach infinity are
the solutions starting on the z-axis. So all solutions starting
outside the z-axis are bounded. The proof does not carry over
to system NE9, it is easy to find solutions escaping to infinity
numerically.
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II. THE SPROTT A SYSTEM

We summarise the degenerate case a = 0 studied in12 as
the dynamics for 0 < a ≪ 1 shows very interesting different
aspects. We will use the spherical radius R and the distance r
to the z−axis defined by:

R2 = x2 + y2 + z2, r2 = x2 + y2. (7)

A. The limit case a = 0

It was shown in12 that for a = 0 the behaviour is more reg-
ular, in fact integrable. We summarise:

• If a = 0, x = y = z = 0 is a degenerate critical point of
the vector field (equilibrium of the system).

• We differentiate using system (1)

d
dt
(R2) = 2(xẋ+ yẏ+ zż) =−2az.

So if a = 0 the spheres with radius R) are invariant man-
ifolds of the system but system (1) is still dissipative.

• If a = 0, the z-axis consists of equilibria puncturing the
invariant spheres in north- and south-pole. If 0 < R <
2, the south-pole is an unstable focus, the north-pole a
stable focus on each invariant sphere. To see this we
differentiate the vector field of system (1): 0 1 0

−1 −z −y
0 2y 0

 .

If (x,y,z) = (0,0,±R), the eigenvalues are on the invari-
ant sphere with radius R: 1

2 (R±
√

R2 −4) (north-pole)
and 1

2 (+R±
√

R2 −4) (south-pole). If R ≥ 2 the 2 pole
equilibria are nodes, for z(0)> 2 respectively stable and
unstable.
The implication is that for 0 < z(0) < 2 the solutions
near the invariant z-axis are winding towards the axis in
the x,y plane, for −2 < z(0) < 0 the solutions near the
invariant z-axis are winding outwards in the x,y plane
with respect to the z-axis.

B. Slow-fast and canard behaviour for a small

Consider now the case a = ε (a small, positive parameter).
We choose the initial values of (x,y,z) in an interior subset D
of the sphere with R = 2. If x(0)2+y(0)2+z(0)2 < 4 we keep
the rotating character of the flow around the z-axis observed
for a = 0. It was shown in1 that if a is small we have a singu-
lar perturbation problem with canard behaviour; the behaviour
of the solutions for a = 0 and 0 < a ≪ 1 is dynamically and
topologically very different. We will give the analysis in more
detail here, add quantitative aspects and we discuss its geo-
metric consequences.
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FIG. 1. Poincaré map in the plane y = 0 of the Sprott A system (1)
near the origin of phase-space for a = 0.01. The behaviour near the
z-axis shows canard behaviour for various initial conditions.

If a is small it is basic to see system (1) as a slow-fast sys-
tem and to apply Tikhonov’s theorem16. Note that

dr2

dt
=−ẋ2z,

so, as long as z(t) is positive the (x,y) phase-flow is strongly
damped, if z(t) is negative, the flow is excited. When start-
ing with O(1) initial values and z(0) > 0, the time needed
to produce x(t),y(t) = O(

√
ε) is O(| lnε|). To put the sys-

tem in the formulation of Tikhonov’s theorem we rescale:
x =

√
ε x̄,y =

√
ε ȳ. Omitting the bars system (1) becomes:

ẋ = y, ẏ =−x− yz, ż = ε(y2 −1), (8)

and rescaling time τ = εt we find the equivalent system:

ε
dx
dτ

= y, ε
dy
dτ

=−x− yz,
dz
dτ

= y2 −1. (9)

According to geometric singular perturbation theory system
(8) shows fast motion of the x,y-component except in an O(ε)
neighbourhood of the 1-dimensional slow (or critical) mani-
fold M0 defined by:

y = 0,−x− yz = 0. (10)

FIG. 2. Pulses of r2(t) showing the fast motion of the (x,y)-flow
with respect to the z-axis that is near the slow manifold. Left we
have a = 0.01,x(0) = 1,y(0) = 0,z(0) = 1, right a = 0.1,x(0) =
0.3162,y(0) = 0,z(0) = 1. The behaviour near the z-axis shows ca-
nard behaviour.
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The slow manifold M0 corresponds with the z-axis in 3-
dimensional phase-space, it is normally hyperbolic when ex-
cluding a neighbourhood of z = 0 as we have for the fast part
of the system that the real part of the spectrum is −z/2. M0
approximates the smooth slow manifold Mε that exists for so-
lutions of system (8). According to section 15.7 of18, when
excluding a neighbourhood of z = 0, M0 approximates Mε ex-
ponentially close. To fix ideas we take initially

x(0) = x0,y(0) = 0,z(0) = z0, 0 < x0,z0 < 2.

We assume that x0,z0 are not ε-close to 0 or 2. According to
Tikhonov we have when starting outside M0 at positive z(0) =
z0 an O(ε) approximation of the fast solutions of system (8)
of the form:

X0(t) = x0e−z0t/2 cos(
√

4− z2
0

t
2
). (11)

The approximation is valid on an interval O(1) in τ , O(1/ε)
in t as long as we do not enter a ε-neighbourhood of M0. From
(11) we can estimate the fast time T1 needed to approach M0:

x0e−z0T1/2 cos(
√

4− z2
0

T1

2
) = ε. (12)

Ignoring the oscillations a rough estimate is

T1 ≤− 2
z0

ln
(

ε

x0

)
. (13)

The approximate time needed for the motion until z = 0
along M0 is T2 = z0/ε . Using the symmetry result of lemma
I.2 we find the estimate of the return time T ≥ 2(T1 + T2)
of the flow in system (8). The pulse-like behaviour for the
fast motion of the flow is shown in fig. 2. The slow-fast
system (8) is actually valid in an O(

√
ε) neighbourhood of

the origin whereas in fig. 2 we start the solutions outside
this region; this is possible because of the strong damping
if z(t)> 0 but it will produce a lower bound of the return time.

Geometric singular perturbation theory in combination with
time reversal and symmetry produces the behaviour shown in
the Poincaré maps of fig. 1. Increasing ε we expect the tori
to break up, maybe with Cantor gaps as in near-integrable
Hamiltonian systems.

C. Tori and periodic solutions for small a

In this subsection periodic orbits will be described obtained
by the procedure outlined in section V.
It has become clear that lemma I.2 regarding time reversal
and symmetry plays an essential part in producing recurrence
of the canards and tori-like structures. As we will show in
subsection II E unfolding system (1) destroys the reversal
symmetry and the tori-like structures. Time-reversal symme-
try plays a part in what is sometimes called “dissipative KAM
theory”, see for surveys14,3,9.
For the Sprott A system this was conjectured in12 and13 with

strong numerical evidence. There exist a large number of
papers describing the emergence of quasi-periodic solutions
and tori near equilibria with purely imaginary eigenvalues,
sometimes in 3-space with a zero eigenvalue added. However,
the framework for the Sprott A system is different as for
a (or ε) zero we have an infinite set of equilibria whereas
for a > 0 we have no equilibrium in the system, the infinite
set persists as invariant manifold of the system. For a = 0
phase-space is foliated into invariant spheres that collapse to
tori for 0 < a ≪ 1. In our analysis we have a periodic solution
at O(ε) distance of 3-dimensional phase-space. This periodic
solution is surrounded by the infinite set of slow-fast solutions
we derived in subsection II B. This follows from the estimates
in section 15.7 of18, when excluding a neighbourhood of
z = 0 and the time-reversal characteristic.

It makes sense to have a closer look at the tori. First we
note that the theory of canards guarantees the presence of slow
manifolds for a small enough. The slow manifolds are tunnel-
ing exponentially close to the z-axis parametrised by z(0). The
reversibility result of lemma I.2 yieds a tori family of which
the dynamics still has to be explored.

It is interesting to look for periodic solutions embedded in
tori by using lemma I.4. Define

I(t) =
∫ t

0
z(s)ds.

Look for T -periodic zeros of I(t), maybe varying ε for fixed
z0; T will be close to the return times of the tori.
It might help to consider maps of the x, I-plane into itself for
y = 0. These maps will be used to find periodic solutions
numerically later on.

It was shown in12 and13 and to 2nd order in1 that on scaling
x,y,z = O(ε) and a = ε2a0 a Lyapunov stable periodic solu-
tion exists O(ε2)-close to the invariant manifold z = 0 and the
circle x2+y2 = 2a0ε2. As a0 is an arbitrary O(1) constant this
means that we have found a family of periodic solutions that
gives for each fixed a an organising centre of the family of
tori. An example of this family is periodic orbit 2 of table I.

FIG. 3. Five orbits in tori and O(ε2)-close to 5 members of the fam-
ily of periodic solutions in the Sprott A system (1) with projection
in the (x,y) plane given by x2 + y2 = 2a. We took successively
a = 0.1, 0.075, 0.05, 0.025, 0.01 corresponding to y(0) = 0,z(0) =
0.00575,0.003,0.0018,0.0009,0.00001.

A different periodic solution is shown in fig. 4. This
periodic solution of system (1) in a torus near the origin is
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found by numerical bifurcation analysis for a = 0.013149;
x(0) = −0.0985,y(0) = 0.09811,z(0) = 0.9951. The slow
manifold shows up in the centre of the (x,y) projection (left
figure) and in the vertical z motion in the (x,z) projection
(middle); the observed asymmetry in the (x,y) projection
gives us the mirrored periodic solution (right in figure)
guaranteed by lemma I.1. For the 3 Lyapunov exponents of
this periodic solution we find zero.

FIG. 4. Periodic solution of system (1) in a torus near the ori-
gin of phase-space for a = 0.013149; x(0) = −0.0985,y(0) =
0.09811,z(0) = 0.9951. The vertical motion in the x,z projec-
tion (middle) corresponds with the slow manifold. Right the cor-
responding mirrored periodic solution with a = 0.013149; x(0) =
0.0985,y(0) =−0.09811,z(0) = 0.9951.

Numerical integrations show that the recurrence of the or-
bits in the tori is generally not periodic, but we can find
more isolated, stable periodic solutions; see again table I. We
have strong dependence of the tori on the initial conditions
(x(0),y(0)) = O(

√
ε) and z(0).

Orbit x(0) y(0) z(0) Comment
1 1.8695994059332728 0.2944520589918199 0.0110866612202986 symm?
2 0.4291037205668491 0.0987225690750841 0.0218388331274574 symm?
3 0.4744357151957521 0.0983426673450300 0.8576750212812009 asymm
4 0.2774893842985010 0.0995749781953782 -1.3419264311707517 asymm
5 2.3540732574727441 0.0930243663640321 0.0038354394368108 asymm
6 1.7908932567444744 0.0014155008257577 0.0000790590874794 asymm
7 1.3437830881665427 -0.0049654722303571 -0.0003694822052058 asymm
8 1.2257230457685124 -0.0079551776672382 -0.0006488696242273 symm ?
9 1.4671282026917492 -0.0004444199767620 -0.0000302875267243 symm ?
10 2.2333901966540153 -0.0066173642003448 -0.0002962481436574 asymm
11 1.7428203499839363 -0.0051638432948303 -0.0002962650562144 asymm

TABLE I. Initial values of 11 periodic orbits with a= 0.1. According
to lemma I.1 the 7 asymmetric orbits (asymm) yield additional peri-
odic orbits by the symmetry −x(t),−y(t),z(t). In the cases of orbits
1, 2, 8, 9 with ‘symm ?’ in the last column the orbits are looking
symmetric in the (x,y) projection but a proof is lacking.

The periodic orbits of table I
The Poincaré maps of the periodic orbits show collections of
segments that consist of isolated points that correspond with
the transitions of the transversal plane of section. Segments
arise because of the slow-fast dynamics of the orbits if a is
small.
The exception is orbit 2 that is part of the family that forms
the organising centre of the tori. For orbit 2 in this family the
Poincaré section is a fixed point, the (x,y) projection is close
to a circle.
As mentioned in the caption of table I at least 7 additional pe-
riodic orbits exist because of symmetry considerations. In fig.
5 we present a few typical examples of table I. Orbit 8 looks
rather complex; we illustrate its behaviour with time in fig. 6

FIG. 5. Periodic solutions of system (1) from table I. Succesively
the orbits 3 (asymmetric but simple), 8 and 10 (more complex or-
bits). Left the Poincaré sections consisting of many points, right the
projections on the (x,y) plane.

FIG. 6. Timeseries x(t) and z(t) ot orbit 8 in table I. .

for x(t),z(t). In accordance with lemma 5 we find for the z, I-
diagram (I =

∫ t
0 z(s)ds) a closed loop (picture not shown).

The stability of the periodic solutions follows from the 3 Lya-
punov multipliers. As the Sprott A system is autonomous one
multiplier ρ1 will always be 1; lemma I.4 and the time re-
versality yields that for the 2 remaining multipliers we have
ρ2 = 1/ρ3; see table II. We have stability if |ρi|= 1, i= 1,2,3.

To find unstable periodic orbits is more difficult. We list 5
unstable cases in table III. The Poincaré sections and projec-
tions on the (x,y) plane are shown in fig. 7

The R-symmetric orbits of table I have all their complex
multipliers on the unit circle, the orbits are Lyapunov stable.
It is important to note that there exist also periodic orbits with
real multipliers outside the unit circle in the complex plane,
they are unstable; see tables III and IV.
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Orbit Period Multipliers ρ1,ρ2,ρ3
1 80.35 1; 0.0576 + 0.99839i; 0.0576 - 0.9983i
2 6.21 1; -0.3702 + 0.9289i; -0.3702 - 0.9289i
3 25.80 1; 0.9822 + 0.1878i; 0.9822 - 0.1878i
4 34.40 1; 0.8610 + 0.5086i; 0.8610 - 0.5086i
5 98.53 1; 0.5801 + 0.8145i; 0.5801 - 0.8145i
6 1.15 1; 0.9878 + 0.1560i; 0.9878 - 0.1560i
7 59.69 1; 0.7648 + 0.6443i; 0.7648 - 0.6443i;
8 111.19 1; 0.9952 + 0.0974i; 0.9952 - 0.0974i
9 128.46 1; 0.9713 + 0.2379i; 0.9713 - 0.2379i
11 149.48 1; 0.9158 + 0.401i; 0.9158 - 0.401i

TABLE II. Periods and multipliers of 11 stable periodic orbits of
table I (system (1)). Of the 16 decimals we show for the periods 2
decimals for the multipliers 4. In each case |ρi|= 1, i = 1,2,3.
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FIG. 7. Five unstable periodic solutions of system (1) from table
III. Left the Poincaré sections consisting of many points, right the
projections on the (x,y) plane.

D. Fundamental frequencies in the chaotic regions

The method of fundamental frequencies was first intro-
duced by Laskar in 1990 where he used it to estimate the size
of the chaotic zones in a 15 degrees of freedom dynamical
system. The idea behind it is that the frequency map is still
exactly defined on the Cantor set of the invariant tori. It can
be thought of as a diffeomorphism on this set. Chaotic zones
will therefore appear as loss of regularity regions for the fre-
quency map. This approach is more accurate than using Lya-

Orbit x(0) y(0) z(0) Comment
1B 0.1098911232981790 0.2989444197534100 0.8477261500128190 asymm
2B 0.0095275650439012 -0.2948986335634720 1.0915960293149600 symm ?
3B 0.3237216296199650 -0.3267602829787110 0.9563835367900220 asymm
4B -0.4511487807561070 0.3220096397325680 1.1744662306990299 symm ?
5B 0.0205762776384968 0.1036550852086490 1.0076518007216200 asymm

TABLE III. Initial values of 5 periodic orbits with a= 0.1. According
to lemma I.1 the 3 asymmetric orbits (asymm) correspond with a
periodic orbit −x(t),−y(t),z(t). In the cases of orbits 2B,4B the
orbits are looking symmetric in the x,y) projection but a proof is
lacking.

Orbit Period Multipliers ρ1,ρ2,ρ3
1B 25.82 1; 0.8278; 1.2080
2B 59.85 1; 0.4951; 2.01977
3B 85.44 1; 0.9858; 1.0144
4B 128.46 1; 0.7867; 1.2711
5B 307.59 1; 0.9779 1.0226

TABLE IV. Periods and multipliers of 5 unstable periodic orbits of
table III (system (1)). Of the 16 decimals we show for the periods 2
decimals for the multipliers 4.

punov exponents and computing the Kaplan-Yorke dimension
as the frequency variations directly signal the break-up of in-
variant tori. This criterion is used here to identify chaotic be-
havior in the SprottA system. The fundamental frequencies
were computed using the SDDS NAFF algorithm by Laskar,
see10 for more details on the approach of numerical analysis
of the frequencies (NAFF).

In fig. 8 we show the fundamental frequencies as a func-
tion of x(0) in the tori and chaotic regions for a = 0.1. Left in
fig. 8 we run x(0) from 0 to 0.13 showing a clear and regular
pattern. Right in the figure we have zoomed in near the ori-
gin (−0.0004 < x(0) < +0.0004); near x(0) = 0 we have an
accumulation of frequencies and loss of regularity of the fre-
quency map yielding therefore chaotic motion in the SprottA
system at parameter value a = 0.1.
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FIG. 8. The frequencies in the neighbourhood of the origin in the tori
and in the regions between them.

E. Unfolding near eigenvalue zero

The time reversality is essential for our results; we show
this by unfolding of the singularity and breaking time rever-
sality. If a = 0 we have a zero eigenvalue for the critical point
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at the origin. We propose the following unfolding using posi-
tive parameter c:

ẋ = y, ẏ =−x− yz, ż = y2 −a− cz. (14)

Lemma I.2 does not hold anymore, the time symmetry is
broken. The z-axis is still an invariant manifold; starting at
(x,y,z) = (0,0,z0) the solution is:

z(t) =−a
c
+(z0 +

a
c
)e−ct . (15)

If a = 0,c > 0, the origin is a stable focus with 1 nega-
tive eigenvalue and 2 purely imaginary ones. The spheres
R2 = x2 + y2 + z2 = constant are no longer invariant mani-
folds; dR2/dt =−2cz2.
If a> 0,c> 0, we have on the negative z-axis the critical point
(x,y,z) = (0,0,−a/c); if a is fixed and c tends to zero, this
critical point moves to minus infinity and is stable. We will
characterise the dynamics near the invariant z-axis in the case
0 < a,c ≪ 1.
In eq. (14) we rescale x =

√
ε x̄,y =

√
ε ȳ,a = εa0,c = εc0;

omitting the bars we obtain:

ẋ = y, ẏ =−x− yz, ż = εy2 − εa0 − εc0z. (16)

This is a slow-fast system with again slow manifold x = y =
0, the slow manifold is hyperbolic unless z = 0. If z(0) >
0 the (x,y) oscillations are strongly damped and the phase-
flow moves to the z-axis. The Tikhonov theorem16 can be
used as in the case c = 0. We find again recurrent canard
behaviour but not the presence of invariant tori as it turns out
that the solutions tend for 0 < a,c ≪ 1 to a stable periodic
solution near the origin. We show this using a different scaling
of eq. (14): x = ε x̄,y = ε ȳ,z = ε z̄,a = ε2a0,c = εc0; omitting
the bars we obtain:

ẋ = y, ẏ =−x− εyz, ż = εy2 − εa0 − εc0z. (17)

Using transformation to cylindrical coordinates:

x = r cos(t +ψ), y = ẋ =−r sin(t +ψ), z = z, (18)

we find the variational system:
ṙ =−εr sin2(t +ψ)z,
ψ̇ =− 1

2 ε sin(2t +2ψ)z,
ż = εr2 sin2(t +ψ)− ε(a0 − c0z).

(19)

Averaging to first order produces equations governing the ap-
proximations for r,ψ,z:

ṙ =−ε

2
rz, ψ̇ = 0, ż =

ε

2
(r2 −2a0 −2c0z). (20)

If r=
√
(2a0),z = 0, we have an equilibrium of the averaged

system (20). According to theorem 11.5 in17 (so-called 2nd
Bogoliubov theorem) the autonomous system (17) has a pe-
riodic solution in an O(ε) neighbourhood of the equilibrium
if the n× n Jacobian matrix at this point has rank n− 1; this
is the case here. We find 2 complex eigenvalues and 1 neg-
ative eigenvalue O(ε), so an isolated stable periodic solution
exists in an O(ε) neighbourhood of the origin.The behaviour
of the Sprott A system unfolded near the origin is similar to
the behaviour of system NE8, see for details1.

III. SYSTEM NE9 FOR PARAMETER a SMALL

FIG. 9. Poincaré map in the plane y = 0 of system (2) near the origin
of phase-space for a = 0.01. The numerics shows tori near the origin
of phase-space as in the Sprott A system..

The analysis of Sprott A system (NE1) for a small carries
partly over to system NE9 as similar time-reversal plays a part
but there are interesting new aspects like the presence of sets
of unbounded solutions, tori destruction and a new chaotic set.
If a= 0 the origin of phase-space is an equilibrium with eigen-
values ±i,0. The first 2 equations of system (2) are the same
as for the Sprott A system, the implication is that also in sys-
tem NE9 the (x,y) flow is strongly damped as long as z(t)> 0.
See fig. 9 for the tori that emerge near the origin of phase-
space and a small; this region near the origin is smaller than
in the case of the Sprott A system.
The behaviour of the canards and the corresponding pulses are
quantitatively different from the Sprott A system, see fig. 10

FIG. 10. Pulses of r2(t) showing the fast motion of the (x,y)-flow
with respect to time including the slow manifold for system (2), NE9.
Left we have a= 0.05,x(0)= 0.1,y(0)= 0,z(0)= 0.4, right the same
initial conditions but a = 0.01. The behaviour near the z-axis shows
canard behaviour but for a = 0.01 the pulses are more irregular.

A. Tori and periodic solutions for small a

As in subsection II C the numerical analysis of periodic
solutions in system NE9 refers to section V.
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We rescale x,y,z = O(ε) and a = ε2a0. It was shown in1 that
a Lyapunov stable periodic solution exists O(ε2)-close to the
invariant manifold z = 0 and the circle x2+y2 = 2

7 a0ε2. As a0
is an arbitrary O(1) constant this means that we have found
again a family of periodic solutions that we expect to produce
for fixed a an organising centre of a family of tori. Lemma
I.3) guarantees time reversal and symmetry.

To analyse the canards we use a different scaling. Again
we put a = ε with small parameter ε ≥ 0. As in section II
we put the system in the formulation of Tikhonov’s theorem,
here by rescaling x = ε x̄,y = ε ȳ. Omitting the bars system (2)
becomes:

ẋ = y, ẏ =−x− yz, ż = ε(−xz+7εx2 −1), (21)

FIG. 11. Five orbits in tori and O(ε2)-close to 5 members of the
family of periodic solutions in the NE9 system (2) with projection
in the (x,y) plane given by x2 + y2 = 7

2 a. We took successively a =
0.1, 0.075, 0.05, 0.025, 0.01.

The slow manifold M0 corresponds as before with the z-axis
in 3-dimensional phase-space, it is normally hyperbolic when
excluding a neighbourhood of z = 0. M0 approximates the
smooth slow manifold Mε that exists for solutions of system
(21) exponentially close when excluding a neighbourhood of
z = 0 (see again section 15.7 of18). As for system NE1 the
family of canard solutions surround the small family of peri-
odic solutions near the origin as in subsection I B.
From the canard behaviour we have via time reversal and sym-
metry (lemma I.3) the emergence of tori for parameter a small.
However, the pulses for system NE9 in fig. 10 show more vari-
ation than in the NE1 case. These variations are caused by the
different terms in the z-equation.
In fig. 12 we show a few examples of periodic solutions.

IV. SYSTEM NE9, BOUNDEDNESS AND CHAOS

System NE9 has many other interesting features if we admit
larger values of the parameter a. We will discuss boundednes
of solutions and explore for O(1) values of parameter a the
presence of tori and strange attractors.
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FIG. 12. We show a R-symmetric periodic stable so-
lution of system NE9, a = 0.01 (top position). Mul-
tipliers [0.999999999510044 ;0.901390727296870 +
0.433006647792041i;0.901390727296870 - 0.433006647792041i].
Left the Poincaré section and right the projection on the (x,z)-
plane, period: 69.3070. Below an unstable solution, period
75.7092. Multipliers [0.999999999630394;0.992154675576315 +
0.125016399303422i;0.992154675576315 − 0.125016399303422i,
located on the unit circle. Left the Poincaré section, right the
projection on the (x,z)-plane.

.

A. Bounded and unbounded solutions

FIG. 13. The solutions of system NE9, a = 0.01 that become un-
bounded start in the coloured regions of the (x,z)-plane, the lim-
iting value xc is indicated by the colour; the black regions corre-
spond with bounded solutions. Left initial conditions starting at
−2 < x < 2,−4 < z < 4, right a zooming in at the upper corner.

Consider again system NE9 (2) but now regarding bound-
edness of the solutions. In fig. 13 we present regions of ini-
tial conditions (yellow) that produce unbounded solutions if
a = 0.01; the black regions correspond with initial conditions
for bounded solutions. We repeat the search for bounded and
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unbounded solutions for a−= 0.55, see the results in fig. 14.

FIG. 14. The solutions of system NE9, a = 0.55 that become un-
bounded start in the coloured regions of the (x,z)-plane, the limiting
value xc is indicated by the colour; the black regions correspond with
bounded solutions.

The numerics shows that z(t) becomes unbounded, y(t)
tends in this case to zero whereas x(t) tends to a fixed num-
ber, dependent on the initial conditions, see fig. 13. Using this
information we give arguments for the behaviour near infinity
by transforming z = 1/w; system (2) becomes:

ẋ = y, ẏ =−x− y
w
, ẇ = xw−7x2w2 +aw2, a ≥ 0. (22)

We have that w = 0 is a solution if y(t) tends to zero and faster
than w(t); another condition will be that for certain t0 and
t ≥ t0, we have x(t)< 0. Suppose that w(t) ̸= 0 but O(ε). We
rescale w = εw̄, system (22) can be written as:

ẋ = y, ε ẏ =−εx− y
w̄
, ˙̄w = xw̄−ε7x2w̄2 +εaw̄2, a ≥ 0. (23)

According to singular perturbation theory, see18, y(t), t ≥ t0
moves to zero in a fast fiber if w(t0) > 0 with timelike vari-
able t/ε , w̄ tends to zero with timelike variable t. This shows
that w = 0, with the assumptions given above, corresponds
with a set of solutions of system (22); we have for this set
y(t) → 0 and x(t) tends to xc = x(t0)+O(ε). The computa-
tion gives also a hint regarding the origin of the structure of
‘rings’ of initial conditions leading to bounded and unbounded
solutions. We noted that for w = (1/z) = 0 to be an attractor
we have the condition x(t)< 0, t ≥ t0. We expect that for var-
ious starting values of x(t) this component of the system will
still oscillate before it enters the neighbourhood of w = 0 for
t ≥ t0. Its sign at t = t0 will determine the final boundedness.
As qualitative arguments this reasoning is sound but note that
the analysis of the quantitative behaviour is for a large part
numerical.

The case a = 1

A special unbounded solution arises if a = 1. We find on
the manifold z = 7x the solutions:

x(t) =− t
7
+ x(0), y =−1

7
, z(t) =−t +7x(0). (24)

The family of solutions is parameterised by x(0), the sign of
x(0) is for a= 1 clearly not important. Linearisation of system
(2) for a = 1 at this special solution produces structural stabil-
ity of the solution when a neighbourhood of x = 0 is excluded.
The solution is asymptotically stable if x > 0 and unstable if
x < 0. The structural stability implies continuation for a finite
interval of time when excluding a neighbourhood of x = 0.
This agrees with the picture of fig. 16 where a = 0.99.The
solution for a = 0.99 follows the set z = 7x and shows canard
behaviour when passing the region where x= 0. We transform
x,y,z 7→ x,v,w by:

x = x, y = y, w = z−7x. (25)

We find the system satisfying w = 0,a = 1:

ẋ = y, ẏ =−x− yw−7xy, ẇ =−xw−7y−a. (26)

In fig. 15 the bounded solutions are shown in yellow regions
of the x,z-diagram for a = 1 and a = 0.99 Choosing a close to

FIG. 15. Left the bounded solutions indicated by yellow regions in
the x,z-plane of system NE9 with a = 1; the solutions start at y(0) =
−1/7.The manifold z = 7x shows up, the nearby behaviour looks
complex. Right the case a = 0.99, again starting at y(0) =−1/7.

1, say a = 1− ε ,the structural stability of the exact solution
enables us to approximate w(t) as long as we do not enter a
neighbourhood of x = 0. We have no need for the usual slow
manifold scaling. We find with exact solution (24) for the
equation with approximate w(t):

ẇ =−(x(0)− t
7
)w+ ε,w(0) = 0. (27)

The approximate solution is:

w(t) = εe(−x(0)t+ t2
14 )

∫ t

0
e(x(0)s−

s2
14 )ds, 0 ≤ t ≤ 7x(0).

The term t2/14 dominates the expression with consequence
that the canard behaviour, following the manifold z = 7x
where it has become unstable, depends with O(ε) on x(0).
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FIG. 16. Solutions in the x,z-plane of system NE9 with a = 0.99; the
solutions start at z(0) = 7x(0),y(0) =−1/7 for x(0) = 0.5,2,3, they
can hardly be distinguished.

This is confirmed by the numerics of the system, see fig. 16.
We find a family of periodic solutions with canard behaviour
as the slow manifold z = 7x is followed for some time where
it is unstable, but as w(7x(0)) = O(ε) the solutions are very
close (in fig. 16 ε = 1−a = 0.01).

Bifurcation analysis of the periodic orbit near the canard

Continuation of the periodic orbit at a = 0.99 with respect
to the parameter a yields the following bifurcation diagram.

Continuation of the periodic solution with respect to the
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Continuation of the periodic orbit near the canard at a = 0.99

FIG. 17. Bifurcation diagram of the periodic orbit near the canard so-
lution. The diamond symbol (upper figure) correspond with Period
doubling bifurcations. The square symbol indicates a fold bifurca-
tion. Dashed lines mean the periodic orbit is unstable.
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a = 0.411888

FIG. 18. Time-reversal symmetrically related orbits collide in a sym-
metric orbit and disappear

parameter a and starting at a = 0.99 yields twice a period
doubling. The first one occurs at a = 5.75379× 10−1 where
the orbit undergoes a supercritical period doubling bifurca-
tion with normal form coefficient l1 =−4.893206×10−5 and
period T = 8.24) , becomes unstable and a stable period 2
orbit bifurcates from it. The unstable periodic period 1 orbit
undergoes a second supercritical period doubling bifurcation
with Normal form coefficient l1 − 6.610245× 10−3) and pe-
riod T = 6.93 at the parameter value a = 4.65681×10−1. The
other two period doubling are related to the first two by the
symmetry in the NE9 system. At a = 4.11888× 10−1 a fold
bifurcation occurs where the time-reversal symmetrically re-
lated orbits collide in a symmetric orbit and disappear. See
fig. 18.

B. Tori and chaos for NE9
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Double torus in the N9 system loosing smoothness
and getting destroyed

FIG. 19. Projection of a torus on the x,z-plane in system NE9,
a ≈ 0.19. Varying a it gets into a state of non-smoothness and then
becomes a double torus.

The presence of periodic solutions and tori was demon-
strated for small values of a in section III A. Interestingly
destruction of tori can be observed when decreasing the pa-
rameter a. Decreasing from a = 0.1925 until a = 0.19026 we
observe the changes of a double torus that is loosing smooth-
ness, collapsing on itself and getting destroyed at some point;
see fig. 19. In7 a chaotic set is identified for a = 0.55,x(0) =
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FIG. 20. Left the projection of a chaotic attractor on the x,z-
plane in system NE9, a = 0.20601, initial values (x,y,z)(0) =
−0.08311175, 0.071374,−0.7114557. Right the Poincaré section
of the attractor transversing the plane y = 0.

0.5,y(0) = z(0) = 0, Kaplan-Yorke dimension DKY = 2.1544.
One can identify more chaotic sets, see fig. 20 for the case
a = 0.20601, the attractor is reminiscent of a full torus per-
forated an infinite number of times. It is important to under-
stand its origin by analysing the corresponding chaotic sce-
nario. It turns out that by continuation of certain periodic
solutions a cascade of period doublings produces a chaotic
attractor. This is the case when starting for instance with the
periodic solution found by averaging, see the start of subsec-
tion III A. plaats vindt. The period doublings of periodic or-
bits Pi, i= 1, . . . ,5 for several values of a are shown in table V.
The ratio’s (a(Pi+1)−a(Pi))/(a(Pi+2)−a(Pi+1), i= 1,2,3 are

Orbit Value a
P1 0.203744391
P2 0.205393369
P3 0.205695124
P4 0.205758533
P5 0.205772131

TABLE V. Period doublings and corresponding values of a in system
NE9..

5.46463, 4.75887, 4.66311 and tend to the Feigenbaum con-
stant δ = 4.6692. In fig. 21 we show the cascade of period
doubling starting with a periodic R-asymmetric orbit.

Another way to display the chaotic attractor of fig. 20 is
showing it in 3-space, see fig. 22.

V. NUMERICAL COMPUTATION OF PERIODIC ORBITS

We describe the procedure that we followed to determine
periodic solutions for the systems Sprott A and NE9. This is
not straightforward as the solutions are embedded in families
of tori and have to pass through slow manifolds.
Finding (unstable) periodic solutions in dynamical systems is
important for understanding and clarifying the mechanisms
behind the emergence of strange attractors and the ensuing
chaos. A whole branch of mathematics called Periodic Orbit
Theory is devoted to this problem. There is a broad litera-
ture available in this area. See, for example4 and the literature

FIG. 21. The period doubling cascade in system NE9 starting at
a = 0.2 leading to the chaotic set of fig. 20 at a = 0.20601.

FIG. 22. Strange attractor from fig. 20 at a = 0.20601 arising from a
cascade of period doublings, here displayed in 3-space.

therein. There is also a vast amount of literature and open
source tools available on CAPD Computer Assisted Proofs in
Dynamics and interval arithmetics to bridge the gap between
what is numerically observed in simulations and what can ac-
tually be proved theoretically.
In this paper, a combination of techniques has been used to
locate periodic orbits. First, the time-reversal symmetry is ex-
ploited to find R-symmetric periodic solutions. Theorem 4.1
in9 is heavily used to reduce the dimensionality of the space
of initial conditions that yield R-symmetric periodic solutions
from 3 to 1. For completeness we reformulate here theorem
4.1 as stated in9 for flows.

Theorem V.1
Let o(x) be an orbit of the flow of an autonomous vector field
with time-reversal symmetry R. Then:

• An orbit o(x) is symmetric with respect to R if and only
if o(x) intersects Fix(R), in which case the orbit inter-
sects Fix(R) in no more than two points and is fully
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contained in Fix(R2).

• An orbit o(x) intersects Fix(R) in precisely two points
if and only if the orbit is periodic (and not a fixed point)
and symmetric with respect to R.

In the case of the sprottA system, Fix(R) is the x−axis.
A direct consequence of the time-reversal symmetry is that
R-symmetric periodic solutions of the sprottA system are
Lyapunov stable and have all multipliers on the unit circle.
The Lyapunov stability of the R-symmetric periodic solutions
makes numerical detection feasible. Using theorem V.1, orbits
starting on the x-axis are numerically integrated and the num-
ber of intersections with Fix(R) is monitored. All orbits that
approximately intersect Fix(R) twice are labelled as ’poten-
tially’ periodic. This set of orbits is then used as first guess in
continuation tools like Matcont5 and Auto6 to pinpoint their
location exactly and compute their multipliers. Continua-
tion even further with respect to the parameter a of the R-
symmetric orbits as seeds yields branching point bifurcations
with symmetry breaking yielding non-symmetric saddle pe-
riodic orbits. New unstable orbits are easily obtained from
the R-symmetric ones through Branching Point Bifurcations.
Most of the periodic orbits numerically found in this paper
were obtained using this procedure. Note that the procedure
is not exhaustive, in the sense that it does not guarantee the
finding of all periodic solutions in the SprottA system. It is
merely intended to be used as a ’light weight’ and easy to im-
plement technique to quickly find stable and unstable periodic
orbits and investigate their involvement, if any, in the observed
complexity and chaos in the SprottA and later on in the NE9
system. Not all unstable periodic solutions in the SprottA sys-
tem branched off from an R-symmetric periodic solution. A
second approach to find these saddles numerically was im-
plemented by using the result from lemma I.4. The lemma
guarantees a necessary condition for periodicity regardless of
its stability character. The results of a numerical 3-d sweep of
initial conditions yields potential candidates for periodic so-
lutions that are then used as first guess in Matcont to generate
the precise location and the multipliers accurately.

DISCUSSION AND CONCLUSIONS

1. As stated in13, the presence of infinite families of tori
for dissipative systems is a surprising phenomenon in
systems Sprott A and NE9. It is analogous to the
phenomenon of KAM tori near stable equilibrium of
Hamiltonian systems. We have shown that for these dis-
sipative systems it arises from the time reversal property
of the systems.

2. Using rescaling of the differential equations, geometric
singular perturbation theory adds valuable information
on the qualitative and quantitative behaviour of the so-
lutions near the origin of phase-space and near infinity.

3. It would be interesting to study the remaining 14 sys-
tems listed in7 for the presence of time reversal, sym-
metry and invariant manifolds. It was shown in1 that

for 0 < a ≪ 1 system NE8 contains a family with ca-
nard behaviour but after some time the solutions tend to
a stable periodic solution. System NE8 contains the z-
axis as an invariant manifold but misses out on the time
reversal with symmetry.

4. We found isolated tori and chaotic sets for the Sprott A
and NE9 systems. It is an interesting open question how
many more tori and chaotic sets exist in these systems.
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