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Abstract

This article is mainly historical, except for the discussion of integra-
bility and characteristic exponents in section 2. After summarising the
achievements of Henri Poincaré, we discuss his theory of critical exponents.
The theory is applied to the case of three degrees-of-freedom Hamilto-
nian systems in (1 : 2 : n)-resonance (n > 4). In addition we discuss
Poincaré’s mathematical physics, in particular the theory of partial differ-
ential equations, rotating fluid masses and relativity. Attention is given
to the priority question of Special Relativity.

1 Key results of Henri Poincaré

For most of us, understanding a new topic in mathematics or physics
and subsequently extending it substantially, is quite an achievement. It
is truly amazing that Henri Poincaré developed whole new fields from
scratch, and, in the case that other people started earlier on the subject,
that he gave an essentially new approach to the problems after which
the research field was never the same again. The basic results of Henri
Poincaré in pure and applied mathematics, physics and around science
include the following topics:
1. Automorphic functions, uniformisation (involving Riemann sheets and
non-Euclidean geometry). 2. The qualitative theory of differential equa-
tions with its emphasis on global understanding of the flow of solution
in suitable spaces. 3. Asymptotic expansions, normal forms that pro-
vide a quantitative complement to the qualitative theory. 4. Dynamical
systems including bifurcation theory and integrability of Hamiltonian sys-
tems. 5. Mathematical physics that ranges from the abstract theory of
partial differential equations to topics like Maxwell’s electromagnetic the-
ory and cosmogony. 6. Topology (analysis situs) with its extension of
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the Euler characteristic to smooth manifolds, the concept of homology
and the Poincaré conjecture. 7. Philosophy in which conventionalism in
mathematics gives the freedom to develop different but in itself consistent
mathematical theories; in addition the notion that an axiomatic built-up
of mathematics based on logic can never be complete as intuition is es-
sential.

In his 1913 ‘éloge’, Darboux [1], considered the topic of automorphic
functions Poincaré’s finest achievement. It is clear that its combination
of (complex) analysis and geometry appealed strongly to Darboux, it fit-
ted with his own style of doing mathematics. Automorphic functions is
a beautiful and difficult part of complex function theory with still fun-
damental open questions regarding the theory of more than one complex
variable. But nowadays it is not so easy to give a preference to one of
Poincaré’s theories as during the last hundred years the focus of math-
ematics and physics shifted a number of times. However, we can safely
say that many of Poincaré’s papers and ideas opened new vistas. In this
article we will only consider a few aspects of his work. For other parts of
Poincaré’s work, details and references see [26].

1.1 Differential equations and dynamical systems

The results in this field can be found in various papers and in the ‘Méthodes
Nouvelles de la Mécanique Céleste’ [19]. The term ‘Méthodes Nouvelles’
indicates a new approach with respect to the classical methods of La-
grange, Laplace, Delaunay and Jacobi. The new methods from the papers
and the books include:

• Index theory.

• The Poincaré-Bendixson method for periodic solutions.

• The Poincaré-Lindstedt expansion method as continuation method
and as bifurcation method for periodic solutions.

• Characteristic exponents and expansion of exponents in the presence
of a small parameter; exponents when first integrals exist.

• The famous proof that in general for time-independent Hamiltonian
systems no other first integrals exist besides the energy .

• The divergence of series expansions in celestial mechanics.

• The recurrence theorem.

• Homoclinic (doubly asymptotic) and heteroclinic solutions; the im-
age of the corresponding orbit structure.

In this long list, the first two items obtained a complete form in the papers
of Poincaré’, the other items have seen a long development after him. In
our paper we will only consider in section 2 the theory of critical exponents
with its relevance for modern integrability research.
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1.2 Mathematical physics

Poincaré is known nowadays among applied mathematicians and physi-
cists mostly for his work on dynamical systems, including celestial mechan-
ics, but his results on mathematical physics are definitely of fundamental
importance. We first mention the spectral theory of partial differential
equations which precedes the work of David Hilbert. As we shall see,
he was also the first to introduce the concept of a generalised function
and, inspired by work of Tchebytcheff, convergence in (what we now call)
L2-norm. Rotating fluid masses in relation to the cosmogonic theories of
that time got his attention; these papers and books are still of interest,
partly because of the mathematical results, but also because of the lucid
assessment of contemporary work. At the end of the nineteenth century,
the discussion started of the electromagnetic field theory of Maxwell, the
theory of the electron and the atom, the new concepts of mass, space and
time developed by Hendrik Lorentz. Poincaré contributed extensively to
these discussions, for instance with his introduction of the Poincaré group
for Lorentz transformations and the formulation of the principle of rela-
tivity. We shall describe part of this in section 3; see again [26] for more
details.

2 Critical exponents

To study the stability of equilibria of differential equations, we can com-
pute eigenvalues of a matrix obtained by linearisation near such an equi-
librium. For time-dependent solutions, Poincaré and independently Lya-
punov, came up with a more general concept. These are the characteristic
exponents introduced in chapter four of the ‘Méthodes Nouvelles’. Con-
sider an n-dimensional autonomous equation of the form

ẋ = X(x),

and suppose we know a particular solution x = φ(t). We call this a
generating solution, it will usually be a periodic solution. When studying
neighbouring solutions of φ(t) we put

x = φ(t) + ξ.

The variational equations of φ(t) are obtained by substituting x = φ(t)+ξ
into the differential equation and linearising for small ξ to obtain

ξ̇ =
∂X

∂x
|x=φ(t)ξ.

If φ(t) is a periodic solution, the variational equations are a Floquet sys-
tem. In what follows we assume periodicity.

The variational equations are forming a linear system of equations with
periodic coefficients of which the characteristic eigenvalue equation pro-
duces the characteristic exponents. Poincaré develops conditions for the
characteristic exponents that are leading to periodic solutions bifurcating
from φ(t).

In addition, there is a relation between characteristic exponents and
integrability in the case of Hamiltonian systems.
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• It is clear from the linear system determining the characteristic ex-
ponents that in the autonomous case, the periodic function φ̇(t) is a
solution, so one of the characteristic exponents is zero.

• If the vector field X is autonomous and we have p independent first
integrals, p < n, we have at least p+1 characteristic exponents zero.

A number of special results hold in the case that our nonlinear system of
differential equations is Hamiltonian and autonomous. Poincaré proves,
that in this case the 2n characteristic exponents of a periodic solution,
emerge in symmetric pairs λi,−λi, equal in size and of opposite sign. In
addition, the energy integral produces a characteristic exponent zero so
we have for a periodic solution of a time-independent Hamiltonian sys-
tem two characteristic exponents zero; if there exist p independent first
integrals we have either 2p + 2 characteristic exponents zero or, in the
exceptional case, the functional determinants of the integrals restricted to
the periodic solution vanish. For the proof, Poincaré uses Poisson brack-
ets and the theory of independent solutions of linear systems.

One can try to turn the argument around. If we find for a time-
independent Hamiltonian system a periodic solution with more than two
zero characteristic exponents, this can be caused by the presence of an-
other first integral besides the energy or it may be the exceptional case.

The technical problems connected with drawing conclusions from the
presence of more than two zero characteristic exponents, have probably
prevented its general use in research of conservative dynamics, but the
statement “a continuous family of periodic solutions on the energy man-
ifold is a non-generic phenomenon” is one of the remaining features in
the literature. Nowadays the analysis of characteristic exponents is made
easier by the use of numerical continuation methods.

The normal forms of two degrees-of-freedom time-independent Hamil-
tonian systems near stable equilibrium are always integrable, so these
cases are in this respect less interesting. Examples of more than two
zero characteristic exponents are often found in the normal forms of three
degrees-of-freedom systems, for instance in the 1 : 2 : n-resonance with
n > 4, where normalisation to the cubic part of the Hamiltonian written
in the usual (p, q)-coordinates produces two families of periodic solutions
on the energy manifold. Such cases are studied in [24]. The normal form
truncated to cubic terms is integrable. The families break up when adding
higher order normal form terms. More explicitly, consider the Hamilto-
nian in action-angle variables τ, φ and integer n:

H(τ, φ) = τ1 + 2τ2 + nτ3 + H3 + H4 + . . . n > 4.

In the three degrees-of-freedom Hamiltonian written in (p, q) coordinates,
the cubic part has 56 terms, the quartic part 126 terms. In action-angle
coordinates, the degrees change, but we keep referring to H2, H3 etc.
where the index gives the degree for (p, q) coordinates. The normal form
is indicated by a bar. Calculating the normal form (see [24] or [21]) of the
cubic terms, we find if n > 4:

H̄3(τ, φ) = 4a1τ1
√

τ2 cos(ξ1),
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Figure 1: The three degrees of freedom (1 : 2 : n)-Hamiltonian resonance with
n > 4; left the periodic solutions in an action simplex of the Hamiltonian nor-
malised to H3, indicated by a dot (the τ3-normal mode) and the hatched strips
for families of periodic solutions; on the right the results of normalisation to H4

in the case n = 5 (figure courtesy Springer).

where we have the combination angle ξ1 = 2φ1 − φ2 − a2, the real con-
stants a1, a2 are the only constants surviving the normalisation process.
The action simplex of the normal form H2 + H̄3 is displayed on the left
in fig. 1. There are two families of periodic solutions branching off the
τ3-normal mode on the energy manifold, each of them producing four
zero characteristic exponents and two nonzero ones. This normal form is
integrable as the third degree of freedom is decoupled at this level of ap-
proximation; the independent integrals are H2 + H̄3, H2 and τ3. In three
degrees-of-freedom Hamiltonian systems, there are at least two character-
istic exponents zero; O indicates two extra characteristic exponents zero,
H indicates hyperbolic behaviour, E elliptic.

Adding the normal form H̄4 of the quartic terms changes the picture
for n = 5, 6. If n > 6 the normal form to H4 remains integrable. For
illustration we give the normal form for n = 5 and the corresponding
action simplex on the right in fig. 1. The two families of periodic solutions
break up into isolated periodic solutions. Introducing the combination
angle ξ2 = φ1 + 2φ2 − φ3 − b8 we find with real constants b1, · · · , b8:

H̄4(τ, φ) = 4(b1τ
2
1 +b2τ1τ2+b3τ1τ3+b4τ

2
2 +b5τ2τ3+b6τ

2
3 +b7τ2

√
τ1τ3 cos ξ2.

It is possible that chaotic behaviour can be demonstrated in a three
degrees-of-freedom Hamiltonian normal form. An indication for this can
be the presence of a periodic solution with complex eigenvalues; in such
a case this can lead to Shilnikov-Devaney bifurcation. From the simplex
in fig. 1, it is clear that this case does not present itself in the (1 : 2 : 5)-
resonance; from [24] it follows that also the (1 : 2 : 6)-resonance has no
complex eigenvalues. The only remaining candidate for this behaviour is
the τ3-normal mode in the (1 : 2 : n)-resonance with n > 6.
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We note finally, that it is remarkable that we have an exceptional case
for the general (1 : 2 : 2)-resonance, which is a first order resonance.
First, the cubic normal form turns out to be integrable with respectively
energy integral, a quadratic integral and a cubic integral. Moreover, on the
energy manifold we find one continuous family of periodic solutions and
two isolated solutions. So we have here an exceptional case as described
by Poincaré. The resonance is studied in [25].

3 Mathematical physics

In this section we will briefly describe methods developed by Poincaré for
partial differential equations and in the following subsections a number of
physical theories. We aim at conveying the ideas while leaving technical
details to the literature cited.

3.1 Partial differential equations

The survey [10] gives details, for instance noting the first instance where
the idea of a generalised solution is formulated, and ends with the conclu-
sion:

Poincaré’s contributions to the equations of mathematical physics
would have sufficed to place him among the greatest mathe-
maticians of the end of the 19th and the beginning of the 20th
century.

In 1890, Poincaré [12] observed how similar the equations are from very
different fields of physics and chemistry. Considering the static or dy-
namic theory of electricity, optics, the theory of heat, elasticity or hydro-
dynamics, one is always led to the study of the same group of differential
equations with as primary example the Laplace equation. Also the bound-
ary conditions that are supplementing the equations show this similarity.
This forms a good reason for paying special mathematical attention to
these typical equations.

3.1.1 The balayage or sweeping method

When considering the Newtonian attraction properties of bodies with a
given distribution of mass, one is led to a study of the Laplace and Poisson
equations. One of the basic problems is to solve the equation

∆V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0 in D,

with D ∈ R3 a bounded domain. A twice differentiable function satisfying
the Laplace equation ∆V = 0 is called harmonic. If we require that on
the boundary S of D we have V = Φ with Φ a known function, this is
called the Dirichlet boundary value problem for the Laplace equation.

An elegant method to solve the Dirichlet boundary value problem is
to consider the Dirichlet functional

I(V ) =

Z

D

||∇V ||2dxdydz
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with V an element of the set of twice differentiable functions on D that
are continuous on D ∪ S. The nabla operator ∇ produces the gradient of
V , ||.|| is the Euclidean norm. The Dirichlet principle states that if one
minimises the functional I(V ) over the subset of functions V that satisfy
the boundary condition, this solves the boundary value problem.

Around 1890, the validity of the Dirichlet principle was not yet proved,
indeed Weierstrass had thrown doubt on it, so scientists were looking for
alternative solution methods.

Poincaré’s balayage or sweeping method was published in [12], a di-
dactical presentation is given in his lecture notes Théorie du potentiel
Newtonien (1899). In the lecture notes, the balayage method is explained
for the interior of a sphere after which more complicated geometries can
be studied. The method uses that the potential of a mass distribution will
not change when we replace each element of mass in the sphere by a mass
layer on the surface with appropriate density. The mass distribution on
the surface is called the equivalent layer. With this procedure we perform
a sweeping (balayage) of all the mass in the interior.

To consider, more in general, a bounded, connected domain with
smooth boundary surface, Poincaré uses a covering of the domain by a
denumerable set of balls and a corresponding sequence of harmonic func-
tions.

In modern potential theory one considers domains in Rn with Borel
measures (instead of mass distributions) on sets of a general nature where
the balayage produces another suitable measure. Nowadays, the balayage
method plays a part only in abstract potential theory.

3.1.2 Spectral analysis

Consider an evolution equation on a bounded domain D ∈ R3 with smooth
boundary S and a Dirichlet boundary condition φ|S ; t ≥ 0. Initially, when
t = 0, we prescribe φ(x, y, z, 0). When looking for solutions in a form that
separates space and time, we often find an equation on D with spatial
derivatives only:

∆U + kU = 0. (1)

The boundary condition, if it is linear, also separates; we choose the mixed
condition

∂U

∂n
+ hU = 0 on S.

∂U/∂n is the exterior normal derivative, h is a given constant. For the
real number k we will find an infinite, denumerable set of values such that
U satisfies the boundary condition. We indicate these solutions by Uk,
the eigenfunctions, the corresponding numbers k1, k2, · · · are called the
eigenvalues. One usually normalises

Z

D

U2
kdxdydz = 1.

Any linear combination of eigenfunctions will solve the spatial boundary
value problem, the separation process is called separation of variables or
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Fourier analysis. In Poincaré’s time, the spectral analysis of such eigen-
value problems was not rigorous, except for certain simple geometries of
the domain D.

A first step is estimation of the eigenvalues by variational techniques.
In the period 1887-1890 Poincaré formulated an extension of the Dirichlet
principle, see [12]. Consider the expression

B(F ) = h

Z

S

F 2dσ +

Z

D

||∇F ||2dxdydz

and the normalisation condition

A(F ) =

Z

D

F 2dxdydz = 1.

The method of Lagrange multipliers gives us that the first eigenfunction
U1 with corresponding eigenvalue k1 minimises B(F ) over the set of non-
trivial C1-functions that satisfy A(F ) = 1. Moreover we have

k1 ≤ B(F )

A(F )

for all nontrivial functions F . Minimising B(F ) over the smaller set of
functions satisfying

Z

D

F 2dxdydz = 1,

Z

D

FU1dxdydz = 0,

we find the second eigenfunction U2 with eigenvalue k2. This minimali-
sation process can be continued. In addition Poincaré also obtained an
upper bound for the eigenvalues. Introducing F as a linear combination

F =

nX
j=1

αjFj ,

and introducing the set Sn over which will be minimalised:

Sn = {
nX

j=1

αjFj : α ∈ Rn},

it follows that we have the minimax characterisation of eigenvalues:

kn = min
Sn

max
F∈Sn

B(F )

A(F )
.

The last result is implicit in his calculations. By considering lower bounds
for the eigenvalues, Poincaré could show that kj →∞ as j →∞.

3.1.3 The Poincaré inequality

An important generalisation by Poincaré of the estimates on eigenvalues is
to give bounds on a function in terms of its derivatives and the geometry of
the domain of definition; such bounds are nowadays formulated in norms
corresponding with Sobolev-spaces. A typical result for a continuously
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differentiable function V defined on a convex set D in three-dimensional
space such that

R
D

V dxdydz = 0 is

Z

D

V 2dxdydz ≤ c

Z

D

||∇V ||2dxdydz

with suitable, but at this stage unknown constant c.
In studies appearing after Poincaré, the estimates were extended for

eigenvalue problems in Rn, optimal values for the numerical constants
have been obtained.

3.1.4 Existence questions of spectral analysis

The proof of the existence of an infinite number of eigenvalues and eigen-
functions for the Dirichlet problem of elliptic equations like eq. (1), is
usually attributed to Fredholm and Hilbert. A first proof however, was
given in 1894 by Poincaré in [13] and [14]. Consider the heat equation
∂φ/∂t = ∆φ on a bounded domain D ∈ R3 with smooth boundary S and
boundary condition ∂U/∂n+hU = 0; h represents the emission coefficient
of heat from the surface. Assuming that the body contains a source of
heat, the equation is modified to

∂φ

∂t
= ∆φ + q,

where we have to specify q as a function of space and time. With simpli-
fying assumptions the separated equation becomes

∆U + ξU + f = 0 in D,
∂U

∂n
+ hU = 0 on S,

with f a constant, ξ a parameter. Following the approach of Schwarz,
Poincaré expands the solution in powers of ξ:

U = U0 + ξU1 + ξ2U2 + · · · .

For the coefficients one obtains the sequence of equations

∆U0 + f = 0, ∆Un + Un−1 = 0, n = 1, 2, · · · .

The boundary conditions for the Un are inherited from the boundary
condition for U . Considering first the Dirichlet problem U = 0 on S,
one can construct the Un, using the function of Green for the Laplace
operator. From these integral expression, one can estimate the Un to
conclude that the series converges absolutely and uniformly with positive
radius of convergence in ξ. In the construction, functions Pk arise that
are called harmonic; they satisfy the equation

∆Pk + kPk = 0,

k is called characteristic number. Nowadays we call Pk eigenfunction and
k corresponding eigenvalue.
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3.1.5 Convergence in the mean

In the lecture notes Théorie analytique de la propagation de la chaleur,
(1893-1894), classical convergence of series expansions for non-stationary
heat flow, were based on methods devised by Cauchy. In [13] chapter 3,
Poincaré notes the following problem. Consider again the boundary value
problem for a cooling body in the form

∂V

∂t
= ∆V in D,

∂V

∂n
+ hV = 0 on S.

At the initial time, say t = 0, the temperature V = V0(x, y, z) is given
and, using the derivatives at t = 0, we can formulate an expansion in
powers of t. It is strange that the shape of the domain D does not enter
in this expansion. To be more explicit, in the one-dimensional case with
Neumann conditions we have:

V (t, x) =

∞X
m=0

Am(t) cos mx.

The function will in general be discontinuous near the boundary, the ex-
pansion with respect to powers of t obtained above, seems to make no
sense. Poincaré was at this point inspired by Tchebytcheff [22], who devel-
oped orthogonal polynomial expansions to solve a very different kinemat-
ical, geometric problem, but who found no convergence of his expansions.
Tchebytcheff ‘solved’ his problem by requiring the error of his expansion
to satisfy a minimal value in the sense of least squares. In a similar way,
Poincaré, referring to Tchebytcheff, required the solution of the cooling
problem to have a small average error S(t) at time t by considering:

S(t) =

Z

D

 
V (t, x)−

NX
m=0

Am(t) cos mx

!2

dx,

that becomes smaller as N increases. This convergence in the mean is
now called convergence in L2-norm.

3.2 Rotating fluid masses

In the 18th century, scientists became interested in the equilibrium shapes
of rotating fluid masses under the action of their own gravity and the fluid
pressure that is present; such fluids are called self-gravitating. The inter-
est arose from discussions about the shape of planets and stars. The
underlying physical assumptions were far removed from modern insights
like internal energy production, internal motions and dissipative effects,
so the modelling is too simple for modern astrophysics, but the results
and analysis are still basically of mathematical and even some astrophys-
ical interest. A relatively recent survey of the literature can be found in
[5], for Poincaré’s results we will use his lecture notes Figures d’équilibre
d’une masse fluide (1902). One of his earlier publications was in the Acta
Mathematica for 1885. Poincaré’s interest was triggered by an idea put
forward by William Thomson (Lord Kelvin) who observed that our plan-
etary system consists of many bodies and also that star systems seems to
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be more often multiple than not; he then made the hypothesis that such
multiplicity arose from fission of rotating fluid masses. A possible mech-
anism for such an instability would be small friction, see also the classic
monograph of Thomson and Tait [23] or the modern survey [3].

When linearising around an equilibrium state to determine its stabil-
ity, one calculates the eigenvalues. If these are all purely imaginary, the
equilibrium was called ‘ordinary stable’, in modern times this is called
‘neutrally stable’ or ‘Lyapunov-stable’. If all the eigenvalues have real
parts negative, it was called ‘secularly stable’, this is now called ‘asymp-
totically stable’. In the following we will keep to the modern terminology.

3.2.1 Classical results

Without rotation, the sphere gives the stable equilibrium solution. Maclau-
rin (1698-1746) derived an explicit expression for a rotating fluid mass
that is an oblate spheroid. The flattening (eccentricity) depends on ω,
the angular velocity around a fixed axis of rotation through the centre;
the rotation of the fluid mass is assumed to be solid. Later, the results
of Maclaurin were generalised to ellipsoids with all axes unequal, the so-
called triaxial Maclaurin ellipsoids.

Jacobi (1804-1851) assumed a slightly simpler expression for the po-
tential and found a second family of triaxial ellipsoids that is independent
of Maclaurin’s ellipsoids. Interestingly, there is one point in parameter-
space where they coincide, a bifurcation point of the families of ellipsoids.

Both families represent special solutions of solid mass rotation with
corresponding density distributions, eccentricities and rotational veloci-
ties.

Important steps forward were made by successively Dirichlet (1805-
1859), Dedekind (1831-1916) and Riemann (1826-1866). They started
with the partial differential equations of fluid mechanics to find solutions
by a similarity approach. Assuming a certain spatial structure leaves
equations to solve as functions of time; Dirichlet could solve the equations
in the case of a homogeneous ellipsoid. Dedekind gave more details of
Dirichlet’s model and added an ellipsoid that is characterised by motions
of constant vorticity. Riemann in his turn clarified these models and added
stability considerations.

3.2.2 Poincaré’s contribution

The fission hypothesis of Thomson was to consider evolution of steady
state solutions, like the rotating Maclaurin ellipsoids with increasing ro-
tational velocity, that at some stage of evolution would split into two
equilibrium figures. The mechanism to produce such a bifurcation could
be rotation or dissipation-induced instability caused by the small viscos-
ity of the fluids. Among the scientists who studied this scenario assuming
solid body rotation, were Lyapunov and Poincaré; the earlier results on
ellipsoids with internal dynamics were largely ignored.

In Poincaré’s lecture notes Figures d’équilibre d’une masse fluide (1902),
the theory is developed from first principles, starting with Newtonian
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gravitational attraction, defining the gravitational potential Φ and stat-
ing the usual basics of potential theory, the Laplace equation, the Poisson
equation, the theorems of Gauss and Green. Following the analysis of
Maclaurin and Jacobi, a homogeneous fluid is considered. In this case the
constant angular velocity ω has an upper limit, a necessary condition for
equilibrium is in suitable physical units:

ω2 ≤ 2π.

For the two types of triaxial ellipsoids attributed to Maclaurin and Jacobi,
Poincaré derives the conditions ω < 4π × 0.112 and ω < 4π × 0.093.

According to Dirichlet, for an equilibrium to be stable, a certain energy
functional has to be maximal. Thomson [23] observed that the equilib-
rium is in this case also asymptotically stable if we add friction. If an
equilibrium, corresponding with a stationary point of the functional, does
not maximise the expression, it can be Lyapunov-stable, but in this case
it may be unstable with respect to dissipative effects. Poincaré shows that
in the case of triaxial ellipsoids, stable equilibrium requires rotation about
the smallest axis.

In Poincaré’s lecture notes considerable attention is payed to suitable
orthogonal special functions. These are the spherical functions, poly-
nomials derived in polar coordinates from the Laplace equation, and the
Lamé functions, polynomials derived in ellipsoidal coordinates. The Lamé
functions play a prominent part in the expansions for Maclaurin’s and Ja-
cobi’s triaxial ellipsoids. At this point, using higher order Lamé functions,
Poincaré discovered a new series of solutions branching off the Jacobi el-
lipsoids. He called them ‘pear-shaped’.

If the constriction of the pear-shaped figures would narrow during evo-
lution, Poincaré expects cooling of the fluid; such slowly evolving equilibria
would be suitable candidates for the fission theory of planetary and stellar
systems. His stability analysis depended on linearisation of the equations
and was not completed during his life-time.

Regarding the stability of the new equilibrium figures found by Poincaré,
the pear-shaped figure (which he thought very promising) turned out to
be unstable, but some of his other solutions, emerging from higher order
harmonics, show interesting aspects. Paul Appell was one of the contrib-
utors to solving the stability problems of the pear-shaped figures. For the
developments since Poincaré’s time, see [5].

Poincaré introduced an interesting result that plays a part in general
bifurcation theory: the phenomenon of ‘exchange of stabilities’. For in-
stance in the so-called transcritical bifurcation, two solutions exist if a
certain parameter µ is smaller and larger than a critical value. At the
critical value they coincide; one of the solutions is stable, the other unsta-
ble and this characteristic is exchanged while passing the critical value.
A simple example is the equation

ẋ = µx− x2

with critical value µ = 0.
Another interesting feature of the lecture notes is Poincaré’s analysis

of the rings of Saturn. There are three possiblities for the rings: they are
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solid, liquid or consisting of particles. A solid ring turns out to be unstable
for physically realistic values of the parameters. For a liquid ring, Poincaré
computes the gravitational potential of a rotating torus; for stability a
necessary condition is a very low density of the ring. On the other hand,
for stability the pressure should be large enough. These requirements are
incompatible. What remains is the possibility of a ring of particles that
are separated from each other; this can be a stable configuration.

Interestingly, Christiaan Huygens, who in the seventeenth century was
the first to identify the rings of Saturn, drew the same conclusion where
he based this on his observations and the fairly restricted physics theory
of that time.

3.3 Relativity, the Poincaré group

In the last decade of the nineteenth century, Poincaré got interested in
the discussion on electromagnetic field theory for optics and electricity. In
that period there were also the intriguing Michelson-Morley experiments
trying to demonstrate the motion of the Earth with respect to the ether.
Poincaré’s first important paper in this field appeared in 1895, the topic
kept his interest until his untimely death in 1912.

The Larmor papers in 1895

In 1895, Poincaré wrote a series of four articles on the theory of Lar-
mor, see [15] and [11], vol. 9. It contains a lucid discussion of theory and
experiments regarding optics and electricity, referring to Larmor, Fresnel,
Lorentz, Helmholtz and Hertz. It is of interest that his ideas in 1895
already showed a preparation for the theory of special relativity.

In the preliminary conclusions ([11] vol. 9, pp. 409-413), he states that
none of the present theories combines both the theoretical requirements of
consistency and an explanation of the experiments; the best one seems to
be the theory of Lorentz. Altogether, he considers this an unsatisfactory
state of affairs. He concludes in 1895 with a revolutionary statement:

The experiments have produced a lot of facts that can be sum-
marised in the following form: it is impossible to demonstrate
the absolute motion of matter, or better formulated, the rel-
ative motion of substantial matter with respect to the ether;
what can be made evident is the motion of substantial matter
with respect to substantial matter.

Referring to an experiment by Michelson, he adds that it is not only im-
possible to demonstrate any motion of matter with respect to the ether
but as a second fact that the problem of incorporating the law of ‘action
is reaction’ (Newton’s third law) in a description of interaction between
matter and ether is unsolved. He concludes that both facts have to be
related to each other.

The paper for Lorentz in 1900
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On December 11, 1900, a celebration took place at the university of
Leiden on the occasion of the 25th anniversary of the doctorat of H.A.
Lorentz. Poincaré used this occasion to discuss again the problem of
the law of ‘action is reaction’ in electrodynamics (published as [16]). He
modifies his earlier remarks that were calling Lorentz’ theory the best
available but were still mildly critical.

When considering the forces on a collection of electrons bounded in a
certain volume and to satisfy the ‘action is reaction’ law, Poincaré has to
assume the presence of non-electric forces. One of the consequences is (p.
471 in [11]):

As the electromagnetic energy behaves in our point of view
like a fluid endowed with inertia, we have to conclude that a
device, after having produced electromagnetic energy, radiates
in a certain direction, the device has to recoil as a canon has
to recoil when it has launched a projectile.

At this point, in 1900, Poincaré nearly made the step of equating electro-
magnetic energy with mass, but this step is still too big. A numerical ex-
ample of the phenomenon shows that the recoil effect is small and difficult
to observe. For further understanding one has to consider the motions as
relative. If in one dimension, a particle has position x with respect to the
observer and v is its velocity in a moving frame of reference, the position
in a reference frame indicated by x′ satisfies the relation:

x′ = x− vt,

But according to Lorentz we have to introduce local time t′ by the trans-
formation:

t′ = t− vx

c2
.

The explanation for the need of local time is given and repeated exten-
sively in Poincaré’s Göttingen lecture [20]. The constant c is the velocity
of light, in the reference frame the local time is a second order effect with
respect to 1/c. For the relative motion in the reference frame, the total
energy is not equal to the energy observed at position x, it appears that
an additional force acts in the reference frame. This looks like a contra-
diction, but we have to conclude that the energy radiated by the device
at the position of the observer is not equal to the energy, in fact bigger,
then the energy radiated by the device that is placed in a moving frame.
The apparent radiation and the apparent recoil energy will make up the
difference. In this way, the principle of ‘action is reaction’ in the theory
of Lorentz can be interpreted and saved.

The principle of ‘action is reaction’ is fundamental in physics, so it is
not surprising that the discussion of the principle went on with contribu-
tions by Abraham, Planck, Lorentz and others. For references see [11],
vol. 9, p. 698.

The dynamics of the electron, 1905-1906

A ‘comptes rendus’ paper [17] in 1905 and its long version in 1906 [18]
are concerned with the dynamics of the electron and relativity. Another
description and comments can be found in [4].
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The paper [17] was submitted on June 5, 1905 which means that it
was submitted earlier than Einsteins famous paper on Special Relativity.
The five pages, announcing [18], contain the following ideas:

1. All the physical experiments show that the impossibility to show the
absolute motion of matter is a general law of nature.

2. Lorentz has proposed to explain this by the contraction of moving
bodies in [6]. It explains the present experiments and asks for testing
against new experiments.

3. The Lorentz transformation contains several parameters, among which
a multiplicative factor function l(ε). The motion is in the x-direction,
ε indicates the ratio of velocity of the body to the velocity of light,
ε = v/c, and we have with k = 1/

√
1− ε2:

x′ = kl(x + εt), y′ = ly, z′ = lz, t′ = kl(t + εx);

they are forming a group of transformations. Lorentz gives some
arguments to put l = 1, but Poincaré notes in [17] that the trans-
formation should have invariance for rotation which implies l = 1.

4. When in motion, an electron can be deformed and compressed as if
an exterior force acts.

5. Applying Lorentz’ transformation to all forces of nature, one should
conclude that the propagation of a gravitational force has to be
with the velocity of light. The gravitational attraction of a moving
body should take into account the position and velocity of the body
to determine the emitted gravitational wave. The difference with
Newton’s gravitational law is expected to be inverse proportional to
the square of the velocity.

There are various statements of Poincaré on the principle of relativity.
One of them is in [18] ([11] p. 495):

I semble que cette impossibilité de mettre en évidence expérimentalement
le mouvement absolu de la Terre soit une loi générale de la Na-
ture; nous sommes naturellement porté à admettre cette loi,
que nous appellerons le Postulat de Rélativité et à l’admettre
sans restriction.
(It seems that this impossibility to establish experimentally the
absolute motion of the Earth is a general law of nature; we are
of course set towards admitting this law that we will call the
Postulate of Relativity and to admit it without restriction.)

The first part of [18] (submitted July 23, 1905) is concerned with the anal-
ysis of the Lorentz transformation for a given coordinate system. Con-
sider an electron as the moving body in the x-direction and a small sphere
around the electron. The comoving sphere is described by the equation

(x− ξt)2 + (y − ηt)2 + (z − ζt)2 = r2.

Lorentz transformation changes this sphere into an ellipsoid and if the
electron charge is invariant, the electrical charge density ρ becomes

ρ′ =
k

l3
(ρ + ερξ).
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The continuity equation

∂ρ′

∂t′
+
X ∂ρ′ξ′

∂x′
= 0

has been satisfied. This result differs slightly from Lorentz’ density ρ′ in
[6]. In the same way, Poincaré derives the new electric and magnetic field
expressions and in addition the forces acting in the moving frame. Here
again, there is a difference with the expressions of Lorentz. The equations
for the electric and magnetic fields are the same, the equation for the
moving ellipsoid is not. How to explain this difference?

To derive the transformations, one has to use the principle of relativity
and the minimalisation of a functional (‘le principe de moindre action’).
This variational approach leads to Lorentz’ expressions for apparent po-
sitions and time, but eventually to Poincaré’s results described above.

The announcement in [17] that the Lorentz transformations are form-
ing a group is worked out in section 4 of [18]. The group of transformations
consists of dilations, boosts and rotations. Combinations of these trans-
formations are permitted and result in a linear transformation, conserving
the quadratic form

x2 + y2 + z2 − t2. (2)

By putting y4 =
√−1t as fourth coordinate, Poincaré introduces (vol. 9

of [11] p. 542) the metric

ds2 = dy2
1 + dy2

2 + dy2
3 + dy2

4 .

This is the metric, also introduced by Minkowski in 1908.
In the Lie group we can apply the commutator of the infinitesimal

generators. If we turn the system over an angle π around the y-axis, the
transformation becomes:

x′ = kl(x− εt), y′ = ly, z′ = lz, t′ = kl(t− εx).

However, in a group, the inverse transformation

x′ =
k

l
(x− εt), y′ =

y

l
, z′ =

z

l
, t′ =

k

l
(t− εx),

should be identical. It follows that l = 1/l or l = 1.
The formulation of the Lorentz group, now also called the Poincaré

group, and the establishing of l = 1 belong to the permanent results of
the paper on the dynamics of the electron.

In the last section of [18] the consequences for the theory of gravitation
are analysed. The change with respect to the classical theory will be
that gravitation will not only depend on position and mass, but also on
the velocity of the mass at time t0. In addition, as gravitation takes
time to travel, we have to take into account the position and velocity
at time t0 + t when the propagation of the force started; so t will be
negative. In addition Poincaré notes that the substitutions of the group
do not change the quadratic form (2). Points in space have coordinates
x, y, z,

√−1t; applying the coordinate transformations and the invariants,
the only consistent choice that does not lead to contradictions is that
gravitation propagates with the velocity of light. As the deviations from
Newtons laws are quadratic in the ratio of velocity of the body and the
velocity of light, the effect will be difficult to observe.
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3.4 Relativity: the priority question

The main priority controversy regarding the new mechanics, replacing
Newtonian classical mechanics by relativity, is on Special Relativity with
prominent candidates Einstein, Lorentz and Poincaré. The relativity of
motion itself was studied and formulated already by Galilei and Huygens,
but they still assumed the existence of an absolute reference frame for mo-
tion. Its perspective changed drastically by the experiments around 1900
showing that the velocity of light is independent of the inertial system
chosen by the observer. H.A. Lorentz (1853-1928) used this constancy of
the velocity of light in each inertial system as the basis of his mechanics.
It is the maximum velocity that can be observed and to allow for this he
made the brilliant assumption that size and mass of a body are dependent
on the velocity in a given inertial system. His formula for the so-called
Lorentz-contraction gives this relation explicitly. In addition Lorentz in-
troduced the fundamental concept of local time, which means time as
dependent on position and velocity in a given inertial system. So, like size
and mass, time has no absolute meaning, there is no absolute reference
frame for motion.

Poincaré noted already in 1900 that radiation could be considered
as a fictitious fluid with the behaviour of an equivalent mass. He derived
this interpretation from Lorentz’s ‘theory of electrons’ which incorporated
Maxwell’s radiation pressure. It is of course remarkable that Poincaré,
who was always correct and even generous in citing people, did not men-
tion Einstein in his 1909 lecture in Göttingen [20]. The only explanation
is that he was not aware of Einsteins paper on special relativity.

This also illustrates that many physicists and mathematicians of that
time considered H.A. Lorentz as the prominent contributor to the theory
of the new mechanics, now called Special Relativity. It is typical that
still in 1913 Darboux writes [1] that Poincaré discussed ‘the mechanics of
Lorentz’. There are indications however that Lorentz considered his obser-
vations as provisional hypotheses whereas Einstein presented a complete
and new vision of physical reality, certainly when in 1916 he formulated
general relativity. In 1927 Lorentz ([9]) formulated it at a conference as
follows:

I considered my time transformation only as a heuristic working
hypothesis. So the theory of relativity is really solely Einstein’s
work. And there can be no doubt that he would have conceived
it even if the work of all his predecessors in the theory of this
field had not been done at all. His work is in this respect
independent of the previous theories.

Regarding the theory of Special Relativity, this was maybe overly gener-
ous.

Poincaré and Lorentz certainly show an ambivalence when mentioning
the ether as a matter of fact in their writings, they seem to be reluctant
to ignore or to do without it; Poincaré’s also uses the ether as a working
hypothesis in his philosophical books which were aimed at a wide public.
In his lecture [8] Lorentz put it like this:

Why can we not speak of the ether instead of vacuum? Space
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and time are not symmetric, a material point can at different
times be at the same spot, but not in different places at the
same time.

Still, in a discussion of priorities, the fundamental contributions of
Lorentz to the formulation of special relativity theory, for instance his
transformation formulae and the concept of local time, should be recog-
nised together with Poincaré’s contributions: his formulation of the Lorentz
or Poincaré group and the principle of relativity. In a way Lorentz’ 1927
formulation given above, should be supplemented with his appreciation of
Poincaré’s ‘dynamics of the electron’ papers, given in [7], p. 298:

Poincaré, on the other hand, has obtained a perfect invariance
of the equations of electrodynamics and he has formulated the
‘relativity postulate’, in terms that he was the first to use.

In a lecture at the Royal Academy of Sciences in Amsterdam, Lorentz put
it in 1915 as follows [8]:

I could point out to you (if I had more time, F.V.) how Poincaré
in his study of the dynamics of the electron, about the same
time as Einstein, has formulated many ideas that are charac-
teristic for his theory, and also has formulated what he calls
“le postulat de relativité”.

Einstein, when describing in 1949 the development of relativity [2], men-
tions many scientists, in particular Lorentz, but does not mention Poincaré.
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2012.

20


