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Abstract
Equations with periodic coefficients for singularly perturbed growth can be analysed

by using fast and slow timescales which involves slow manifolds, canards and the dy-
namical exchanges between several slow manifolds. We extend the time-periodic P.F.
Verhulst-model to predator-prey interaction where two slow manifolds are present. The
fast-slow formulation enables us to obtain a detailed analysis of non-autonomous sys-
tems. In the case of sign-positive growth rate, we have the possibility of periodic solu-
tions associated with one of the slow manifolds, also the possibility of extinction of the
predator. Under certain conditions, sign-changing growth rates allow for canard peri-
odic solutions that arise from dynamic interaction between slow manifolds.

Mathematics Subject Classification. 34E, 37N, 58F, 92D.

Keywords canard, predator-prey, slow manifold, periodic solution.

1 Introduction

This note is a continuation of [?] which considers simple time-periodic systems with slow-
fast motion in a singularly perturbed setting; the slow motion involves exponential closeness
of solutions to slow manifolds. The theory of slow manifolds was developed by N. Fenichel,
for an introduction and references see [?]. In the case that the solution moves along a stable
slow invariant manifold and at some point the slow manifold becomes unstable, we have
the possibility of “exponential sticking” or canard (French duck) behaviour. In this case, the
solution continues for an O(1) time along the slow invariant manifold that has become un-
stable and jumps after that away, for instance to the neighbourhood of another invariant set.
Following Pontrjagin, see Neishtadt [?], one also calls this “delay of stability loss”.
This delay- or sticking process is closely connected to the so-called canard phenomenon for
differential equations that can be described as follows: Canard solutions are bounded solutions
of a singularly perturbed system that, starting near a normally hyperbolic attracting slow manifold,
cross a singularity of the system of differential equations and follow for an O(1) time a repelling slow
manifold.
The canard behaviour will depend on the dimension of the problem and the nature of the
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singularity. An example of canard behaviour was found by the Strassbourg group working
in non-standard analysis for a Van der Pol-equation with additional perturbation parameter;
see for details and references [?]. In this example, the singularity crossed is a fold point. The
analysis of this problem is quite technical.
Canards arising at transcritical bifurcations have been described in [?], [?] and [?]. The pur-
pose of the present note is to study such phenomena in examples that can be handled both
analytically and numerically; this may increase our understanding. In section ?? we sum-
marize some of the results of [?] for the P.F. Verhulst-model extended to growth phenomena
with daily or seasonal fluctuations. They are a natural modification of the logistic model
introduced in [?].
After section ??, we study an extension of the periodic P.F. Verhulst-model by coupling the
equation to a predator population. It is of interest to see what remains of the phenomena
found in the one-dimensional model equation in the cases of sign-definite and sign-changing
growth rates.
The numerics which we used for illustrations is based on CONTENT [?] using RADAU5. The
results may serve as examples of periodic solutions contained in slow manifolds and canard
periodic solutions arising from dynamic interaction between different slow manifolds.

2 The periodic P.F.Verhulst model

In [?] we considered an extension of the classical logistic equation of [?], in particular the
presence of periodically varying growth rate r(t) and carrying capacity K(t), both with pe-
riod T. Here and in the sequel we will often express the T−periodic growth rate in the form:

r(t) = a + f (t), F(t) =
∫ t

0
f (s)ds, F(T) = 0.

The constant a is the T-periodic average of r(t). We summarise some of the results of [?].
In standard notation for the population size N(t) with positive growth rate r(t), the equation
is

εṄ = r(t)N
(

1− N
K(t)

)
, N(0) > 0. (1)

We have K(t) > m > 0 with m a positive constant independent of ε. Without the fast growth
perspective, the equation was studied in [?], [?] and [?]. The solution can be written as:

N(t) =
e

1
ε Φ(t)

1
N0

+ 1
ε

∫ t
0

r(s)
K(s) e

1
ε Φ(s)ds

, Φ(t) =
∫ t

0
r(s)ds = at + F(t) (2)

If for limited intervals of time, the growth rate r(t) can take negative values, we modify the
logistic equation to:

εṄ = r(t)N − N2

R(t)
, N(0) > 0. (3)

with R(t) > 0 and T-periodic. Without this modification, a negative growth rate would be
accompanied by a positive nonlinear term; there is no rationale for this. The solution of eq.
(??) is:

N(t) =
e

1
ε Φ(t)

1
N(0) +

1
ε

∫ t
0

1
R(s) e

1
ε Φ(s)ds

, Φ(t) =
∫ t

0
r(s)ds = at + F(t). (4)
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Figure 1: Two solutions of eq. (??) with sign changing growth rate. We have R(t) =
2 + cos t, ε = 0.01; left r(t) = 0.4 + sin t, right r(t) = 0.05 + sin t. In both cases, the pop-
ulation periodically faces extinction, but in the case of smaller growth a = 0.05, these canard
intervals of time become more extended.

The following results are straightforward.

Lemma 2.1 1. If in eq. (??) 0 < K(t) ≤ K0 with K0 a positive constant, then, after some
time, the solution of eq. (??) will satisfy N(t) ≤ K0 + O(exp.(−at/ε)).
If in eq. (??) r(t) ≤ r0, 0 < R(t) ≤ R0 with r0, R0 positive constants, then N(t) ≤ r0R0
plus exponentially small terms.

2. If r(t) ≥ δ > 0, 0 ≤ t ≤ T with δ a positive constant independent of ε, a unique
T-periodic solution N(t) exists with

N(t) = K(t) + O(ε).

3. If r(t) changes sign and its average a ≤ 0, no periodic solution exists. The solutions de-
crease monotonically (see for the general theory [?]) and they show permanent canard
behaviour in the terminology of [?].

4. If r(t) changes sign and its average a > 0, a unique T-periodic solution exists with
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canard behaviour. The periodicity condition is:

N(0) =
e

aT
ε − 1

1
ε

∫ T
0

1
R(s) e

1
ε Φ(s)ds

. (5)

As during each period an exchange takes place between the neighbourhoods of the
slow manifold N(t) = r(t)R(t) (when r(t) > 0) and the slow manifold N(t) = 0, the
population faces near-extinction during each period; see fig. ??.

3 A predator-prey problem

The near-extinction stage in the periodic logistic equation with slow manifolds could be
sensitive to stochastic perturbations and to coupling to a predator population P(t). Will
such a coupling mean extinction of the population N(t)? We distinguish between the case
of positive definite growth rate and the sign-changing case.

3.1 Positive definite growth rate

Consider for r(t) = a + f (t) ≥ δ > 0 and continuous, T-periodic r(t) and K(t) the system:{
εṄ = r(t)N

(
1− N

K(t)

)
− cNP, N(0) ≥ 0,

Ṗ = c̄NP− dP, P(0) ≥ 0,
(6)

with positive parameters c, c̄, d. The parameter c̄ tends to zero as c tends to zero as the case
c = 0, c̄ > 0 would mean predation without a reduction of the prey population N(t). By
rescaling N and P, we could put c = c̄ = 1, but we will not do this as this makes the
interaction between prey and predator less transparent.
We identify the exact slow (critical) manifold N = 0 and a critical manifold of dimension
two in solution space:

SM1 : N = 0 and SM2 : N = K(t)
(

1− c
r(t)

P
)

. (7)

SM2 exists if cP(t) ≤ r(t). Linearization near the critical manifolds produces for SM1(N =
0) the ‘eigenvalue’ (r(t) − cP(t))/ε; the second critical manifold, SM2, has ‘eigenvalue’
(−r(t) + cP(t))/ε. We have existence and stability of the second slow manifold, O(ε) close
to SM2, if the growth rate is big enough, r(t) > cP(t) (or P(t) is small enough); the trivial
solution N = 0 is unstable in this case. If r(t) < cP(t), SM2 is not present, SM1 is stable.
From system (??) we derive by integration

P(t) = P(0)e
∫ t

0 (c̄N(s)−d)ds. (8)

Independent of the size of the positive parameter ε, we have the following statements:

Lemma 3.1 1. If N(t)→ 0, then P(t)→ 0.
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2. Assume that N(t) and P(t) are T-periodic solutions, then we have:

1
T

∫ T

0
N(t)dt =

d
c̄

. (9)

3. Denoting the solution of eq. (??) with initial value N(0) by Nv(t), we have for the
solution N(t) of system (??):

N(t) ≤ Nv(t). (10)

Consider the equation
Ṗ = c̄Nv(t)P− dP, P(0) ≥ 0.

with solution Pv(t). We have for P(t) of system (??) the estimate:

P(t) ≤ Pv(t). (11)

Proof
1. This follows directly from eq. (??).
2. Consider the integral

I =
∫ T

0
(c̄N(s)− d)ds.

As P(0) = P(T), we have I = 0 which yields the result.
3. Observe that if P(0) > 0, P(t) > 0 for t ≥ 0. As Nv(t) is bounded (lemma ??), N(t) of
system (??) is bounded. N(t) is majorized by the solutions of an equation where a negative
term has been deleted, and P(t) is majorized by the solution of an equation where a positive
terms has been replaced by a larger positive term.
This completes the proof.

Note that if P(t) vanishes, N(t) is T-periodic. If I < 0, P(t) → 0, the predator becomes ex-
tinct. The case I > 0 will be discussed below. See fig. ??. It also follows that the propositions
of section ?? where the population N(t) becomes extinct, remain valid in the predator-prey
model.

The slow manifold close to SM2 is approximated with error O(ε) by the expression in (??).
Substituting this into the equation for P of system (??) yields:

Ṗ = (c̄K(t)− d)P− c̄c
K(t)
r(t)

P2. (12)

P(0) > 0 is given; as long as r(t) > cP(t), the seasonal or other periodic changes yield the
predator population given by eq. (??). Using variation of constants, we find for P(t) the O(ε)
approximation in SM2:

P(t) =
eΨ(t)

1
P(0) + c̄c

∫ t
0

K(s)
r(s) eΨ(s)ds

, Ψ(t) =
∫ t

0
(c̄K(s)− d)ds. (13)

We consider two cases:
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1. Assume

Ψ(T) =
∫ T

0
(c̄K(s)− d)ds > 0. (14)

For a positive T-periodic solution of P(t) to exist, there has to be a P(0) > 0 such that
P(0) = P(T). This requirement produces with eq. (??):

P(0) =
eΨ(T) − 1

c̄c

∫ T

0

K(s)
r(s)

eΨ(s)ds. (15)

As exp(Ψ(T) > 1, we have a positive solution for P(0), see figs. ??-??. From eq. (??)
we conclude that the periodic solution P(t) is bounded from below by a constant inde-
pendent of ε. The approximate periodic solution N(t), P(t) is located in the attracting
manifold SM2. There are no canards in this case.

2. Assume

Ψ(T) =
∫ T

0
(c̄K(s)− d)ds < 0.

There is no periodic solution for P(t). In the Fourier expansion of Ψ(t), a negative
constant will be the first term, the predator population will tend to zero with time. The
population N(t) will tend to a T-periodic solution approximated by K(t), see fig. ??.

We conclude with a result on the existence and approximation of periodic solutions:

Proposition 3.1 Consider system (??) with positive definite growth rate r(t), r(t) and K(t)
are continuous and T-periodic; moreover

1. Condition (??) holds:Ψ(T) > 0;

2. For the solution N(t), P(t) given by eq. (??) and eq. (??) with initial condition (??) we
have cP(t) < r(t) for 0 ≤ t ≤ T (cP(t) can be calculated using eq. (??) or estimated
using inequality (??);

then N(t), P(t) given by eq. (??) and eq. (??) are O(ε) approximations of periodic solutions
that exist in the slow manifold O(ε)-close to SM2.

Proof
The stable, normally hyperbolic slow manifold, O(ε) approximated by SM2, exists for all
time. Consider the time-T map of the N, P-plane into itself and in particular a compact,
convex O(ε) neighbourhood Ωε of N(0), P(0) determined by eq. (??) and eq. (??). Ωε is con-
tinuously mapped into itself by the flow of system (??) and contracts with rate exp((−r(t) +
cP(t))/ε). According to Brouwer’s fixed point theorem there exists at least one fixed point
of this map corresponding with a T-periodic solution.

Note that in the case of proposition 3.1, the critical manifold is attracting for all time and it
might be possible to use a contraction argument to obtain a unique periodic solution for this
problem. However, such an approach would not be possible in the problem of sign-changing
growth rate; also in the case of higher-dimensional problems, one cannot expect uniqueness.
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Example 3.1 Assume that the conditions of the theorem have been satisfied and in particular
that:

K(t) = k0 + k1(t),
∫ T

0
k1(t)dt = 0,

K(t)
r(t)

= e−c̄
∫ t

0 k1(s)ds.

From eqs. (??, ??) we find:

N(t) =
d
c̄
+ k1(t), cP(t) = (k0 −

d
c̄
)ec̄

∫ t
0 k1(s)ds,

with condition d/c̄ > k1(t), 0 ≤ t ≤ T.

3.2 Sign-changing growth rate r(t)

Using our modeling from section ?? we formulate:{
εṄ = r(t)N − N2

R(t) − cNP, N(0) > 0,

Ṗ = c̄NP− dP, P(0) ≥ 0,
(16)

with positive parameters c, c̄, d. The growth rate r(t) and the function R(t) are continuous
and T-periodic, R(t) > 0, 0 ≤ t ≤ T.

Lemma 3.2 The statements of lemma ?? carry over to the case of sign changing r(t) if we replace in
the fourth item eq. (??) by eq. (??).

If r(t) is sign-changing and a < 0, it will turn out we have a permanent canard. Two slow
manifolds of dimension two in solution space may exist:

SM1 : N = 0 and SM3 : N = (r(t)− cP(t))R(t). (17)

The second critical manifold SM3 exists and is stable on intervals of time where r(t) > cP(t),
SM1 is unstable in this case. Stability changes of SM1 are forced when r(t)− cP(t) changes
sign; as r(t) < 0 at certain intervals of time, this can not be avoided.
Near the exact slow manifold SM1, the first order approximation of P(t) is found immedi-
ately:

P(t) = P(0)e−dt + O(ε).

This simple result shows that during the same interval of time, N(t) will approach the ex-
tinction phase N = 0 much closer than P(t) approaches the extinction phase P = 0.
Applying variation of constants to the equation for N(t) in system (??) we find:

N(t) =
e

1
ε

∫ t
0 (r(s)−cP(s))ds

1
N(0) +

1
ε

∫ t
0

1
R(s) e

1
ε

∫ s
0 (r(u)−cP(u))duds

. (18)

From eq. (??) and the periodicity condition N(0) = N(T) we derive:

N(0) =
e

1
ε

∫ T
0 (r(s)−cP(s))ds − 1

1
ε

∫ T
0

1
R(s) e

1
ε

∫ s
0 (r(u)−cP(u))duds

. (19)
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From periodicity condition (??) we have that a periodic solution N(t) exists if P(t) is T-
periodic and ∫ T

0
(r(t)− cP(t))dt > 0 or a >

c
T

∫ T

0
P(t)dt. (20)

Note that periodicity condition (??) does not imply uniqueness. A necessary requirement to
have positive, periodic solutions N(t), P(t) is a > 0; this is not surprising as for the problem
without predator in section ??, we have the same requirement for the existence of a periodic
solution. From lemma ?? we have that P(t) ≤ Pv(t), so a sufficient condition for the existence
of a periodic solution N(t) is that P(t) is T-periodic and

a >
c
T

∫ T

0
Pv(t)dt. (21)

Surprisingly enough, we will show that a > 0 is a necessary and sufficient condition for
periodic solutions N(t) to exist for system (??) .
If a < 0 in the case of sign-changing r(t), we have a permanent canard. This follows from
the estimates in section ?? in combination with eq. (??) or directly from eq. (??).
Consider for the case a > 0 as an introduction the following scenario. The stable manifold
SM3 exists initially and is stable, r(t)− cP(t) > 0 and initially

∫ T
0 (c̄N(s)− d)ds > 0. P(t)

will increase so that, after some time, r(t)− cP(t) < 0, which will destroy the slow manifold
SM3. The slow manifold N(t) = 0 will become stable, N(t) will decrease and so will P(t).
P(t) decreases exponentially and if P(t) is small enough, N(t) = 0 will become unstable
again and the process can start over again. Numerical experiments are shown in figs. ??-
??. As expected for this type of system, N(t) and P(t) are out-of-phase, but it may look
surprising that the exponential smallness of N(t) which is experienced periodically because
of the attraction of the slow manifold N = 0, is not always reflected by a corresponding
smallness of P(t). However, from eq. (??) we deduce that the exponential rate for P(t) is
O(1). Consider in figs. ??-?? solutions of system (??) with various parameter values. In these
cases P(t) approaches P = 0 periodically, the periodic solutions show canard behavior.

Proposition 3.2 Consider system (??) with sign-changing growth rate r(t); the functions r(t)
and R(t) are continuous and T-periodic; moreover a > 0 (in the notation of section ??). Then,
for ε small enough, a T-periodic solution N(t) exists.

Proof
Note that if P(t) vanishes, the existence of a T-periodic solution follows directly from eqs.
(??-??). Assume now that P(t) does not tend to zero.
The stable critical manifold SM3 exists on intervals where r(t)− cP(t) > 0, for instance for
t0 < t < t∗; negative values of this quantity may arise. Such a t∗ always exists as r(t)
changes sign. Suppose that r(t∗)− cP(t∗) = 0. For t0 < t < t∗, the solution moves along
SM3 approaching SM1 (N = 0). At t = t1 < t∗ we have N(t1) = O(δ(ε)) with ε = o(δ(ε))
and δ(ε) = o(1). Consider a δ(ε)-neighbourhood Dδ of the slow manifold N = 0. Rescale
N = δ(ε)N̄. This rescaling produces for system (??) with initial values N̄(t1), P(t1):{

ε ˙̄N = r(t)N̄ − cN̄P− δ(ε) N̄2

R(t) , N̄(t1) > 0,

Ṗ = −dP + δ(ε)c̄N̄P, P(t1) > 0,
(22)
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Putting 0 < c̄N̄ ≤ C, we find from the equation for P(t) in Dδ the inequality:

P(t) ≤ P(t1)e−dt+δ(ε)Ct,

with constant C independent of ε. For N̄(t) we formulate a differential inequality in Dδ:

ε
dN̄
dt
≥ r(t)N̄ − cN̄P(t1)e−dt+δ(ε)Ct + O(δ(ε)).

Putting d0 = d− δ(ε)C and solving this differential inequality we find:

N̄(t) ≥ N̄(t1)e
1
ε [(a+O(δ(ε)))(t−t1)+F(t)−F(t1)+

c
d0

P(t1)(e−d0t−e−d0t1 )].

It is clear from this estimate that in Dδ, N(t) will always increase after some time. We con-
clude that the solutions N(t) of system (??) have a positive lower bound; the solutions have
a positive upper bound Nv(t) (lemma ??) where Nv(t) starts at Nv(t∗) = N(t∗). Consider
for t > t∗ the interval of N-values bounded by a positive lower bound of N(t) and upper
bound of Nv(t); the period-T map of this interval into itself under the flow of system (??)
will have a fixed point according to the Brouwer theorem. This concludes the proof.

Example 3.2 Consider the system:

εṄ = (a + sin t)N − N2

3 + sin t
− NP,

Ṗ = 4NP− 4P.

If a = 0.9 we have a periodic solution N(t), P(t) for which the predator P(t) is periodically
near to extinction, see fig. ??. Decreasing a, both N(t) and P(t) become periodically very
small, see fig. ?? where a = 0.3.

3.3 Extreme values and synchonisation

The maxima and minima values of prey N and predator P will depend on the parameters.
It follows from systems (??) and (??) that Ns = d/c̄ corresponds with stationary values of
P(t). It follows from lemma ?? that in the case of the existence of a periodic solution P(t) this
value of N corresponds with the average of N(t), so Ns will not be a maximum or minimum
of N(t). We conclude that maxima and minima of N(t) and P(t) are not alternating in the
sense that a maximum of P(t) corresponds with a minimum of N(t).
A more explicit result can be obtained in the case of positive growth rate. Assume r(t) > 0
for all time. The slow manifold SM2 persists for 0 ≤ t ≤ T if cP(t) < r(t) (subsection ??). In
this case we have from eq. (??) and the periodicity condition:

cP(t) =
eΨ(t)

c̄
∫ T

0
K(s)
r(s) eΨ(s)ds

eΨ(T)−1
+ c̄
∫ t

0
K(s)
r(s) eΨ(s)ds

, (23)

with Ψ(t) =
∫ t

0 (c̄K(s)− d)ds and the requirement Ψ(T) > 0.
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In the critical manifold SM2 we have from eq. (??) that in the case of positive growth rate
and if cP(t) < r(t) that P(t) is inverse proportional to c and depends in a more complicated
way on c̄. We can consider the explicit example ?? for illustration of the behaviour. Note
that for the choice of K(t) and r(t) in example ??, we have assumed synchronisation of the
carrying capacity and the growth rate.
It is of interest to look into the part played by synchronisation as we expect different be-
haviour if varying capacity and growth rate are out of phase.

4 The predator-prey problem with weak interaction

The interaction coefficient c in system (??) is O(1) which implies that the predator P(t) profits
strongly from the large growth rate of the prey N(t). Suppose now that this interaction is
O(1), we replace c by εc. In the model c̄ still has to tend to zero if c tends to zero, but we have
to take O(1) values for c̄. Paradoxally, this poses another modeling problem in the case of
positive growth rate. The critical manifold SM2 of the preceding section has as a condition
of existence the inequality r(t) > cP(t), this limits the growth of P(t). In the case of weak
interaction, the slow manifold is of the form N(t) = K(t) + O(ε) and for the equation

Ṗ = c̄N − d,

P(t) will grow without bounds if ∫ T

0
(c̄K(t)− d)dt > 0.

So we have to add a logistic term to limit the growth of the solutions P(t).

4.1 Positive definite growth rate

Consider for continuous, T-periodic coefficient r(t) = a + f (t) ≥ δ > 0 and continuous,
positive T-periodic K(t), C(t) the system:εṄ = r(t)N

(
1− N

K(t)

)
− εcNP, N(0) ≥ 0,

Ṗ = c̄NP− dP− P2

C(t) , P(0) ≥ 0,
(24)

with positive parameters c, c̄, d. We have the exact slow manifold N = 0 and an O(ε) ap-
proximate slow manifold of dimension two in solution space:

SM1 : N = 0 and SM4 : N = K(t). (25)

The dynamics is relatively easy to describe as the critical manifold SM4 is stable. The equa-
tion describing the slow drift is:

Ṗ = c̄K(t)P− dP− P2

C(t)
.

10



Using again Ψ(t) from eq. (??) we find with variation of constants:

P(t) =
eΨ(t)

1
P(0) +

∫ t
0

1
C(s) eΨ(s)ds

, Ψ(t) =
∫ t

0
(c̄K(s)− d)ds. (26)

If Ψ(T) < 0, we will have P(t) → 0 as t → ∞. Assuming that P(t) is T-periodic, we find
from the periodicity condition P(0) = P(T):

P(0) =
eΨ(T) − 1∫ T

0
1

C(s) eΨ(s)ds
.

The condition for existence of a unique periodic solution P(t) is:

Ψ(T) > 0.

4.2 Sign changing growth rate

For positive R(t), C(t) the system becomes:{
εṄ = r(t)N − N2

R(t) − εcNP, N(0) ≥ 0,

Ṗ = c̄NP− dP− P2

C(t) , P(0) ≥ 0,
(27)

with positive parameters c, c̄, d. From the O(1) boundedness of N(t), P(t) (lemma ??) and
the (exact) solution (??), replacing c by εc, we have:

N(t) =
e

1
ε

∫ t
0 r(s)ds

1
N(0) +

1
ε

∫ t
0

1
R(s) e

1
ε

∫ s
0 r(u)duds

+ O(ε). (28)

From periodicity condition (??) applied to this case we conclude that a T-periodic solution
N(t) exists if P(t) is T-periodic and a > 0.
If P(t) is not periodic, P(t) will tend to zero; if a > 0, N(t) will tend to a periodic solution.

5 Conclusions

In general the analysis of two-dimensional, nonlinear ODEs with time-periodic coefficients
is difficult. It is remarkable that one can obtain many explicit results in a slow-fast setting
using slow manifold theory.
Two major open problems should be considered. In contrast to the results for the time-
periodic P.F. Verhulst equations in [?], the periodic solutions obtained for the predator-prey
systems in this article are not necessarily unique. Numerical experiments show that in partic-
ular the case of sign-changing growth rates looks interesting in this respect. These questions
should be studied using bifurcation theory.
Secondly, it would be interesting to consider the time-periodic P.F. Verhulst equations and
the time-periodic predator-prey problems in the context of spatial diffusion. This will pose
interesting stability problems.
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Figure 2: The solution N(t) of system (??) with positive growth rate r(t) = 1.5 + sin t in two
cases with K(t) = 3 + sin t, ε = 0.01, c̄ = 1, c = 0.1. For the top solution we have d = 5, so
Ψ(T) = −2 and P(t) → 0, N(t) → K(t) (the thin line approximating N(t) closely). For the
solution below we have d = 1 so that N(t), P(t) approach a periodic solution with positive
varying P(t).
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Figure 3: N, P-diagram of system (??) corresponding with fig. ??. The closed curve corre-
sponds with periodic N(t), P(t) for d = 1. In the case d = 5, the predator P(t) becomes
extinct, N(t) is periodic.
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Figure 4: Growth rate with sign changes: r(t) = 0.9 + sin t, R(t) = 3 + sin t, ε = 0.1 with
c̄ = 0.9, c = 0.1, d = 1 in system (??). The periodic N(t), P(t) solution left shows the decay
of slow manifold SM3, followed by motion near SM1(N = 0). The fast motion between the
two slow manifolds is displayed in fig. ??.
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Figure 5: Growth rate with sign changes: r(t) = 0.9 + sin t, R(t) = 3 + sin t, ε = 0.1 with
c̄ = 0.9, c = 0.1, d = 1 in system (??). The projected periodic N(t), P(t) solution is shown in
fig. ??. The fast motion with time between the two slow manifolds is displayed for N(t). A
canard arises when the quantity r(t)− cP(t) changes from negative to positive.
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Figure 6: Growth rate with sign changes: r(t) = 0.9 + sin t, R(t) = 3 + sin t, ε = 0.1 with
c̄ = 4, c = 1, d = 4 in system (??). Left the N, P-diagram; P(t) is out-of-phase with N(t) and
is periodically near to extinction (right figure).
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Figure 7: Growth rate with sign changes: r(t) = 0.3 + sin t, R(t) = 3 + sin t, ε = 0.1 with
c̄ = 4, c = 1, d = 4 in system (??). Left the N, P-diagram; if a is decreased, P(t) becomes
smaller and is periodically near to extinction (right figure).
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