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THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS

by David A. Cox

Introduction

The arithmetic-geometric mean of two numbers a and b is defined to be

the common limit of the two séquences {an}?=0 and {b n}?= 0 determined

by the algorithm

(0.1)

Note that a 1 and b^ are the respective arithmetic and géométrie means of a

and b, a2a 2 and b2b

2 the corresponding means of a l and bl,b

1 , etc. Thus the limit

(0.2)

really does deserve to be called the arithmetic-geometric mean of a and b.

This algorithm first appeared in a paper of Lagrange, but it was Gauss who

really discovered the amazing depth of this subject. Unfortunately, Gauss

published little on the agM (his abbreviation for the arithmetic-geometric
mean) during his lifetime. It was only with the publication of his collected
works [12] between 1868 and 1927 that the full extent of his work became

apparent. Immediately after the last volume appeared, several papers (see [15]
and [35]) were written to bring this material to a wider mathematical
audience. Since then, little has been done, and only the more elementary
properties of the agM are widely known today.

In § 1 we review thèse elementary properties, where a and b are positive
real numbers and the square root in (0.1) is also positive. The convergence
of the algorithm is easy to see, though less obvious is the connection
between the agM and certain elliptic intégrais. As an application, we use

M(N/2, 1) to détermine the arc length of the lemniscate. In §2,we allow a
and b to be complex numbers, and the level of difficulty changes dramatically.



The convergence of the algorithm is no longer obvious, and as might be

expected, the square root in (0.1) causes trouble. In fact, M(a, b) becomes a

multiple valued function, and in order to détermine the relation between the

various values, we will need to "uniformize" the agM using quotients of the
classical Jacobian thêta functions, which are modular functions for certain

congruence subgroups of level four in SL(2, Z). The amazing fact is that
Gauss knew ail of this ! Hence in § 3 we explore some of the history of
thèse ideas. The topics encountered will range from Bernoulli's study of elastic
rods (the origin of the lemniscate) to Gauss' famous mathematical diary
and his work on secular perturbations (the only article on the agM published
in his lifetime).

I would like to thank my colleagues David Armacost and Robert Breusch

for providing translations of numerous passages originally in Latin or
German. Thanks also go to Don O'Shea for suggesting the wonderfully
quick proof of (2.2) given in § 2.

1. The arithmetic-geometric mean of real numbers

When a and b are positive real numbers, the properties of the agM M(a, b)

are well known (see, for example, [5] and [26]). We will still give complète

proofs of thèse properties so that the reader can fully appreciate the difficulties

we encounter in § 2.

We will assume that a b>o, and we let {an}?=0 and {bn}?= 0 be as

in (0.1), where b
n +1 is always the positive square root of an

b
n . The usual

inequality between the arithmetic and géométrie means,

immediately implies that an
b

n for ail n 0. Actually, much more is true :

we hâve

(1.1)

(1.2)

To prove (1.1), note that an
5s b

n and an +l
bn+lb

n+1 imply

and (1.1) foliows. From b
n +I>bnwe obtain



and (1.2) follows by induction. From (1.1) we see immediately that lim a n

«-?oo

and lim b
n exist, and (1.2) implies that the limits are equal. Thus, we can

n-> oo

use (0.2) to define the arithmetic-geometric mean M(a, b) of a and b.

Let us work out two examples.

Example 1. M(a, a) =a.
This is obvious because a=b implies an =bn =a for ail n 0.

Example 2. MU 2, 1) = 1.1981402347355922074

The accuracy is to 19 décimal places. To compute this, we use the fact

that an M{a, b) b
n for ail n 0 and the following table (ail entries are

rounded off to 21 décimal places).

Such computations are not too difficult thèse days, though some extra
programming was required since we went beyond the usual 16 digits of
double-précision. The surprising fact is that thèse calculations were done not
by computer but rather by Gauss himself. The above table is one of four
examples given in the manuscript "De origine proprietatibusque generalibus
numerorum mediorum arithmetico-geometricorum" which Gauss wrote in
1800 (see [12, 111, pp. 361-371]). As we shall see later, this is an especially
important example.

Let us note two obvious properties of the agM :

(1.3)

Both of thèse follow easily from the définition of M(a, b).

Our next resuit shows that the agM is not as simple as indicated by
what we hâve done so far. We now get our first glimpse of the depth
of this subject.



Theorem 1.1. // a b>o, then

Proof. Let I(a, b) dénote the above intégral, and set [i =M(a, b). Thus

we need to prove I(a, b) = {n/I}^' 1

. The key step is to show that

(1.4)

The shortest proof of (1.4) is due to Gauss. He introduces a new variable
cj)' such that

(1.5)

Note that 0 §' tu/2 corresponds to 0 (j) < n/2. Gauss then asserts

"after the development has been made correctly, it will be seen" that

(1.6)

(see [12, 111, p. 352]). Given this, (1.4) follows easily. In "Fundamenta nova
theoriae functionum ellipticorum," Jacobi fills in some of the détails Gauss

left out (see [20, I, p. 152]). Specifically, one first proves that

(thèse are straightforward manipulations), and then (1.6) follows from thèse

formulas by taking the differential of (1.5).

Iterating (1.4) gives us

so that I(a, b) = lim I(an , b
n) = tt/2u since the functions

n-* oo

converge uniformly to the constant function |i *. QED

This theorem relates very nicely to the classical theory of complète

elliptic intégrais of the first kind, i.e., intégrais of the form



To see this, we set k = . Then one easily obtains
a + b

so that (1.4) is équivalent to the well-known formula

(see [16, p. 250] or [17, p. 908]). Also, the substitution (1.5) can be written as

which is now called the Gauss transformation (see [32, p. 206]).

For someone well versed in thèse formulas, the dérivation of (1.4) would
not be difficult. In fact, a problem on the 1895 Mathematical Tripos was

to prove (1.4), and the same problem appears as an exercise in Whittaker
and Watson's Modem Analysis (see [36, p. 533]), though the agM is not
mentioned. Some books on complex analysis do define M(a, b) and state
Theorem 1.1 (see, for example, [7, p. 417]).

There are several other ways to express Theorem 1.1. For example, if
0 k<l, then one can restate the theorem as

(1.7)

Furthermore, using the well-known power séries expansion for F(k, n/2)
(see [16, p. 905]), we obtain

(1.8)

Finally, it is customary to set k' = - k 2
. Then, using (1.3), we can

rewrite (1.7) as

(1.9)



This last équation shows that the average value of the function

{1-k2 sin 2y)" 1/2 on the interval [0, tc/2] is the reciprocal of the agM of the

reciprocals of the minimum and maximum values of the function, a lovely
interprétation due to Gauss ? see [12, 111, p. 371].

One application of Theorem 1.1, in the guise of (1.7), is that the algorithm
for the agM now provides a very efficient method for approximating the

elliptic intégral F(k, tu/2). As we will see in § 3, it was just this problem
that led Lagrange to independently discover the algorithm for the agM.

Another application of Theorem 1.1 concerns the arc length of the

lemniscate r2r
2 = cos 20 :

Using the formula for arc length in polar coordinates, we see that the total
arc length is

The substitution cos 29 = cos 2
cj) transforms this to the intégral

Using Theorem 1.1 to interpret this last intégral in terms of M(v/2, 1),

we see that the arc length of the lemniscate r2r
2 = cos 29 is Ik/ML/Ï, 1).

From Example 2 it follows that the arc length is approximately 5.244,

and much better approximations can be easily obtained. (For more on the

computation of the arc length of the lemniscate, the reader should consult [33].)
On the surface, this arc length computation seems rather harmless.

However, from an historical point of view, it is of fundamental importance.

If we set z = cosc|), then we obtain



The intégral on the right appeared in 1691 in a paper of Jacob Bernoulli

and was well known throughout the 18th century. Gauss even had a spécial

notation for this intégral, writing

Then the relation between the arc length of the lemniscate and M(y/2, 1)

can be written

To see the significance of this équation, we turn to Gauss' mathematical

diary. The 98th entry, dated May 30, 1799, reads as follows:

We hâve established that the arithmetic-geometric mean between 1 and

y/l is 7i/& to the eleventh décimal place; the démonstration of this

fact will surely open an entirely new field of analysis.

(See [12, X.l, p. 542].) The genesis of this entire subject lies in Gauss'

observation that thèse two numbers are the same. It was in trying to
understand the real meaning of this equality that several streams of Gauss'

thought came together and produced the exceptionally rich mathematics
which we will explore in § 2.

Let us first examine how Gauss actually showed that M(^/2, 1) = n/GS.

The proof of Theorem 1.1 given above appeared in 1818 in a paper on
secular perturbations (see [12, 111, pp. 331-355]), which is the only article
on the agM Gauss published in his lifetime (though as we've seen, Jacobi
knew this paper well). It is more difficult to tell precisely when he first
proved Theorem 1.1, although his notes do reveal that he had two proofs
by December 23, 1799.

Both proofs dérive the power séries version (1.8) of Theorem 1.1. Thus
the goal is to show that M(l + /c, 1? k)' 1 equals the function

(1.10)

The first proof, very much in the spirit of Euler, proceeds as follows.
Using (1.3), Gauss dérives the identity

(1.11)



He then assumes that there is a power séries expansion of the form

By letting k = t2t
2 and 2t/(l + t2) in this séries and using (1.11), Gauss obtains

Multiplying by 2t/(l + t 2 ), this becomes

A comparison of the coefficients of powers of t gives an infinité System of
équations in A, B, C, ... . Gauss showed that this System is équivalent to the

équations 0 = 1 -4A = 9A - 168 = 258 - 36C = ... , and (1.8) follows
easily (see [12, 111, pp. 367-369] for détails). Gauss' second proof also

uses the identity (1.11), but in a différent way. Hère, he first shows that
the séries y of (1.10) is a solution of the hypergeometric differential équation

(1.12)

This enables him to show that y satisfies the identity

so that by (1.11), F(k) = M(l + k,l-k)y(k) has the property that

Gauss then assert s that F(k) is clearly constant. Since F(0) = 1, we obtain a

second proof of (1.8) (see [12, X.l, pp. 181-183]). It is interesting to note
that neither proof is rigorous from the modem point of view: the first

assumes without proof that M(l+/c, 1 ? /c)" 1 has a power séries expansion,
and the second assumes without proof that M(l + /c, 1 ? k) is continuous (this
is needed in order to show that F(k) is constant).

We can be certain that Gauss knew both of thèse proofs by December 23,

1799. The évidence for this is the 102nd entry in Gauss' mathematical



diary. Dated as above, it states that "the arithmetic-geometric mean is itself

an intégral quantity" (see [12, X.l, p. 544]). However, this statement is not

so easy to interpret. If we turn to Gauss' unpublished manuscript of 1800

(where we got the example M(N/
/2, 1)), we find (1.7) and (1.8) as expected,

but also the observation that a complète solution of the differential équation

(1.12) is given by

(1.13)

(see [12, 111, p. 370]). In eighteenth century terminology, this is the "complète

intégral" of (1.12) and thus may be the "intégral quantity" that Gauss was

referring to (see [12, X.l, pp. 544-545]). Even if this is so, the second proof
must predate December 23, 1799 since it uses the same differential équation.

In § 3 we will study Gauss' early work on the agM in more détail.

But one thing should be already clear: none of the three proofs of Theorem 1.1

discussed so far live up to Gauss' May 30, 1799 prédiction of "an entirely
new field of analysis." In order to see that his claim was justified, we will
need to study his work on the agM of complex numbers.

2. The arithmetic-geometric mean of complex numbers

The arithmetic-geometric mean of two complex numbers a and b is not
easy to define. The immédiate problem is that in our algorithm

(2.1)

there is no longer an obvious choice for bn+l.b

n+1 . In fact, since we are
presented with two choices for b

n +1 for ail n 0, there are uncountably
many séquences {an}?=0 and {£>?}?% for given a and b. Nor is it clear
that any of thèse converge î

We will see below (Proposition 2.1) that in fact ail of thèse séquences
converge, but only countably many hâve a non-zero limit. The limits of
thèse particular séquences then allow us to define M(a 9 b) as a multiple
valued function of a and b. Our main resuit (Theorem 2.2) gives the relation
shipbetweenthe various values of M(a, b). This theorem was discovered



by Gauss in 1800, and we will follow his proof, which makes extensive use

of thêta functions and modular functions of level four.
We first restrict ourselves to consider only those a's and Vs such that

a#o,b 0 and a/±b. (If a=o,b=oora=±b, one easily sees that the

séquences (2.1) converge to either 0 or a, and hence are not very interesting.)
An easy induction argument shows that if a and b satisfy thèse restrictions,
so do a n and b

n for ail n oin (2.1).

We next give a way of distinguishing between the two possible choices

for each b
n + 1 .

Définition. Let a, beC* satisfy a# ±b. Then a square root b x of ab is

called the right choice if |a1 ?b1 | |a1 +bl| and, when |a1 ?bx\
= lai + b

1 |, we also hâve Imibja^ > 0.

To see that this définition makes sensé, suppose that YmHJbJa^ = 0.

Then bl/b
1 /a 1 = reR, and thus

since r / 0. Notice also that the right choice is unchanged if we switch a

and b, and that if a and b are as in §1, then the right choice for {ab) 111 is the

positive one.

It thus seems natural that we should define the agM using (2.1) with
bn+lb

n+1 always the right choice for (an
b

n) 1/2
. However, this is not the only

possibility: one can make some wrong choices for b
n +1 and still get an

interesting answer. For instance, in Gauss' notebooks, we find the following
example :

(see [12, 111, p. 379]). Note that b l is the wrong choice but b
n

is the right
choice for n 2. The algorithm appears to converge nicely.

Let us make this idea more précise with a définition.



Définition. Let a, beC* satisfy a# ±b. A pair of séquences {a n }%L 0

and {b n}?= 0 as in (2.1) is called good if &n&

n +1 is the right choice for

(an
b

n) 112 for ail but finitely many n 0.

The following proposition shows the spécial rôle played by good séquences.

Proposition 2.1. // a, beC* sûtfzs/j' a ±b, then any pair of
séquences {an}f=0 and {&?}*= 0 as in (2.1) converge to a cammon limit,
and this common limit is non-zero if and only if {an} =̂0 and {bn }^= 0 are
good séquences.

Proof. We first study the properties of the right choice b
1 of (ab) 1/2

in more détail. Let 0 ang(a, b) <n dénote the unoriented angle between a

and b.

Then we hâve

(2.2)

(2.3)

To prove (2.2), note that

Since |a± - b 1
\ < |ax + b

1 |, (2.2) follows immediately. To prove (2.3), let
0j = ang(a 1 ,

b
x ) and 0= ang(a, b). From the law of cosines

we see that Q
x tt/2 because |ax-bx\<|al+bl\. Thus

To compare this to 0, note that one of ±b x , say b\, satisfies ang(a, b\)
= ang(bi , b) = 0/2. Then the following picture



shows that ang(a ls b\) 0/2. Since b\ = ±b l9 the above inequalities imply
that

proving (2.3).

Now, suppose that {an }%L 0 and {b n }?=0 are not g°°d séquences. We set

M n = max{| a n
|

, |bn |}, and it suffices to show that lim M n = 0. Note that
n->oo

M n +1 Mn for n 0. Suppose that for some n,bn +lis not the right choice

for (an
b

n
) 1/2

. Then ? 6n+l6

n+1 is the right choice, and thus (2.2), applied to an

and b
n , implies that

However, we also hâve \bn +2\ Mn . It follows easily that

(2.4)

Since {an }?=0 and {bn }?=0 are not good séquences, (2.4) must occur infinitely
often, proving that lim M n = 0.

n-* oo

Next, suppose that {ûf n }^°= 0 an<i {bn }?=o are good séquences. By neglecting
the first N terms for N sufficiently large, we may assume that b

n +1 is

the right choice for ail n 0 and that ang(a, b) <n (this is possible by (2.3)).

We also set Q
n ? ang(an , b

n). From (2.2) and (2.3) we obtain

(2.5)

Note that an - an+l = (1/2) (an - b
n), so that by (2.5),

Hence, if m > n, we see that

Thus {aj =̂o converges because it is a Cauchy séquence, and then (2.5)

implies that lim an = lim b
n .

n-* oo n-* oo

It remains to show that this common limit is nonzero. Let

Clearly |bn+l\> mn . To relate \an+ï \ and mn , we use the law of cosines:



It follows that mn+lmn+1 cos(QJ2)mn
since 0 9n9

n <n (this uses (2.5) and the

fact that 0O0

O = ang(a, b) < n). Using (2.5) again, we obtain

However, it is well known that

(See [16, p. 38]. When 0O0

O = 0, the right hand side is interpreted to be 1.) We

thus hâve

for ail n 1. Since 0 0O0

O < tt, it follows that lim an = lim b
n #0. QED

n-* oo n-* oo

We now define the agM of two complex numbers.

Définition. Let a, beC* satisfy a ±b. A nonzero complex number u

is a value of the arithmetic-geometric mean M{a, b) of a and b if there

are good séquences {an }?=0 and {b n }?=0 as m (2-1) such that

Thus M(a, b) is a multiple valued function of a and b and there are a

countable number of values. Note, however, that there is a distinguished
value of M(a, b), namely the common limit of {an }?=0 and {^ n }^°= 0 where
b

n +lis the right choice for (an
b

n
) 112 for ail n 0. We will call this the

simplest value of M(a-, b). When a and b are positive real numbers, this
simplest value is just the agM as defined in § 1.

We now corne to the major resuit of this paper, which détermines how
the various values of M(a, b) are related for flxed a and b.

Theorem 2.2. Fix a,beC* which satisfy a ±b and \a\^\b\,
and let u and X dénote the simplest values of M{a,b) and M(a + b,a ?b)
respectively. Then ail values |ï of M(a, b) are given by the formula



where à and c are arbitrary relatively prime integers satisfying
à = 1 mod 4 and c = 0 mod 4.

Proof. Our treatment of the agM of complex numbers thus far has

been fairly elementary. The proof of this theorem, however, will be quite
différent ; we will finally discover the "entirely new field of analysis" predicted
by Gauss in the diary entry quoted in § 1. In the proof we will follow
Gauss' ideas and even some of his notations, though sometimes translating
them to a modem setting and of course filling in the détails he omitted
(Gauss' notes are extremely sketchy and incomplète ? see [12, 111, pp. 467
468and 477-478]).

The proof will be broken up into four steps. In order to avoid writing a

treatise on modular functions, -we will quote certain classical facts without
proof.

Step 1. Thêta Functions
Let §={tgC: Inrc >0} and set q= eni\ The Jacobi thêta functions

are defmed as follows :

Since | q | < 1 for x g §, thèse are holomorphic functions of x. The notation

p, q and r is due to Gauss, though he wrote them as power séries in
e~ n\ Ret >0 (thus he used the right half plane rather than the upper half

plane §? see [12, 111, pp. 383-386]). The more common notation Q 3 ,
040

4

and 020
2 is from [36, p. 464] and [32, p. 27].

A wealth of formulas are associated with thèse functions, including the

product expansions :

(2.6)



(which show that p(x), q(x) and r(x) are nonvanishing on §), the trans

formations :

(2.7)

(where we assume that Re(-rc) 1/2 > 0), and finally the identities

(2.8)

and

(2.9)

Proofs of (2.6) and (2.7) can be found in [36, p. 469 and p. 475], while

one must turn to more complète works like [32, pp. 118-119] for proofs of
(2.8). (For a modem proof of (2.8), consult [34].) Finally, (2.9) follows easily
from (2.8). Of course, Gauss knew ail of thèse formulas (see [12, 111,

pp. 386 and 466-467]).
What do thèse formulas hâve to do with the agM? The key lies in (2.8):

one sees that p(2x)2 and q{2x)2 are the respective arithmetic and géométrie
means of p(x) 2 and q(x) 2 ! To make the best use of this observation, we
need to introduce the function k'(x) = g(t) 2/p(x)2

.

Then we hâve :

Lemma 2.3. Let a, beC* satisfy a# +b, and suppose there is xg§
such that fc'(x) = b/a. Set \i = a/p(x)2 and, for n 0, an =\i p(2nx) 2

and b
n = \i q{2n x) 2

. Then

W {an}?=o and {b n }£°=o are Qood séquences satisfying (2.1)

(ii) lim an = lim b
n = \i

n-* oo n~* oo

Proof. We hâve a0 = a by définition, and b0 = b follows easily from
/c'(x) = b/a. As we observed above, the other conditions of (2.1) are clearly



satisfied. Finally, note that exp(7u2n T) -» oasn-? 00, so that lim p(2nx) 2

n-*co

= lim q(2n x) 2 =1, and (ii) follows. Since n 0, Proposition 2.1 shows that

Kh^o and {&?}"= o are g°od séquences. QED

Thus every solution x of k\x) = b/a gives us a value u = a/p(x)2 of

M(a, b). As a first step toward understanding ail solutions of k\x) = b/a, we

introduce the région F± c §;

The following resuit is well known

Lemma 2.4. /c' 2 assumes every value in C? {0, 1} exactly once in

F\ = F x - (SFiOlxeSißeKO}).
A proof can be found in [36, pp. 481-484]. Gauss was aware of similar

results which we will discuss below. He drew F 1 as follows (see [12, 111,

p. 478]).

Note that our restrictions on a and b ensure that (b/a) 2 sC ? {o,l}.
Thus, by Lemma 2.4, we can always solve k\x)2 = (b/a) 2

, i.c, fc'(x) = ±b/a.
We will prove below that

(2.10)



which shows that we can always solve k'(x) = b/a. Thus, for every a and b

as above, M{a, b) has at least one value of the form a/p(x)2
, where k\x) = b/a.

Three tasks now remain. We need to find ail solutions x of fc'(x) = b/a,

we need to see how the values a/p(x)2 are related for thèse x's, and we need

to prove that ail values of M(a, b) arise in this way. To accomplish thèse

goals, we must first recast the properties of k\x) and p(x)2 into more modem

terms.

Step 2. Modular Forms of Weight One.

The four lemmas proved hère are well known to experts, but we include
their proofs in order to show how easily one can move from the classical

facts of Step 1 to their modem interprétations. We will also discuss what
Gauss had to say about thèse facts.

We will use the transformation properties (2.7) by way of the group

which acts on § by linear fractional transformations as follows: if

y=(a Je SL(2, Z) and xe§, then yx = f?LJ_
.

\c a) ex +à
For example, if

which are the transformations in (2.7). It can be shown that S and T
generate SL(2, Z) (see [29, Ch. VII, Thm. 2]), a fact we do not need hère.

We will consider several subgroups of SL(2, Z). The first of thèse is F(2),
the principal congruence subgroup of level 2 :

Note that - 1 g T(2) and that T(2)/{± 1} acts on §.

Lemma 2.5.

(i) r(2)/{±l} acts freely on §

(ii) T(2) is generated by - 1, U=r 2\ and V=fl °V

(iii) Given xe§, there is ye T(2) such that yzeF lm



Proof. Let y=( 7)bean élément of F(2).
V dJ

(i) If tg9) and yx = x, then we obtain ci 2 + (d ? a)x ? b = 0. If c = 0,

then y=+l follows immediately. If c 0, then (d ? a) 2 + 4bc<o because

xe§. Using ad ? bc = 1, this becomes (a + d) 2 < 4, and thus a H- d = 0

since a and d are odd. However, b and c are even so that

This contradiction proves (i).

(ii) We start with a variation of the Euclidean algorithm. Given y as

above, let r x =a? 2a I c, where is chosen so that \r 1
\ is minimal.

Then \ rl\r
1

\ |c|, and hence |rx | < |c| since a and c hâve différent parity.
Thus

Note that c and r x also hâve différent parity. Continuing this process, we

obtain

since GCD(a, c) = 1. Then one easily computes that

Since the left-hand side is in F(2), the right-hand side must be of the form

± Um
, and we thus obtain

(iii) Fix ie§. The quadratic form |xx+y|2 is positive deflnite for

x, yeß,so that for any Sç Z2
, |xx+y|2 assumes a minimum value at

some (x, y) eS.In particular, |ex+d|2, where y=( Je F(2), assumes a

minimum value at some y0 e F(2). Since Im yx =Imx|ex+d| " 2
, we see



that x' = y ox has maximal imaginary part, i.e., Im x' Im yx' for ye F(2).

Since Im x' = Im Ux', we may assume that | Re x
;

| < 1. Applying the above

inequality to F* 1
e F(2), we obtain

Thus |2x±l| 1, or |x± (1/2) | 1/2. This is équivalent to |Re 1/x' | 1,

and hence l'e^. QED

We next study how p(x) and q{x) transform under éléments of F(2).

Lemma 2.6. Let y=( )e F(2), and assume that a=d= 1 mod 4.
Vc à)

Then

(i)p(yx) 2 = (cx + d)p(T)\

(ii) 2= ii c{cT + d)q{T)\

Proof. From (2.7) and V=( )) U ~\ )we obtain

(2.11)

Thus (i) and (ii) hold for U and V. The proof of the previous lemma shows

that y is in the subgroup of F(2) generated by U and V. We now proceed
by induction on the length of y as a word in U and V.

(i) If y=(a j and p(yx) 2 = (cT + d)p(x) 2 then (2.11) implies that

However Uy =( ) , Vy =( )
, so that (i) now holds for

\c a) \2a +c 2b +dJ
Uy and Vy.

(ii) Using (2.11) and arguing as above, we see that if y = ( )

Ve dJ
= £/ûl Vbl

... Ua " Vb"
, then



However, U and V commute modulo 4, so that

Thus c = 2Lbi mod 4, and (ii) follows. QED

Note that (2.10) is an immédiate conséquence of Lemma 2.6.

In order to fully exploit this lemma, we introduce the following subgroups
ofT(2):

Note that F(2) = {±I}-F(2)O and that F2(4)F

2(4) has index 2in F(2)o . From
Lemma 2.6 we obtain

(2.12)

Since thèse functions are holomorphic on §, one says that p(x)2 and q(x) 2

are weak modular forms of weight one for F(2)o and F2(4)F

2(4) respectively.
The term more commonly used is modular form, which requires that the

functions be holomorphic at the cusps (see [30, pp. 28-29] for a précise

définition). Because F(2)o and F2(4)F

2 (4) are congruence subgroups of level

N = 4, this condition reduces to proving that

(2.13)

are holomorphic functions of ql/2q
1/2 = exp(27iix/4) for ail ye SL(2, Z). This will

be shown later.

In gênerai, it is well known that the square of a thêta function is a

modular form of weight one (see [27, Ch. I, § 9]), although the gênerai theory
only says that our functions are modular forms for the group

(see [27, Ch. I, Prop. 9.2]). We will need the more précise information
given by (2.12).

We next study the quotients of § by F(2) and F2(4).F

2 (4). From Step 1,

recall the région F t Ç §. We now define a larger région F:



We also sei

Lemma 2.7. F\ and F' are fundamental domains for F(2) and F2(4F

2 (4

respectively, and the functions k' 2 and k' induce biholomorvhic mavs

Proof A simple modification of the proof of Lemma 2.6 shows that ii

y=L Je F(2)' then P(YT)4 =i^+ J)2 PW
454

5 4= (cx + d)1 q(x)\ Thus

k' 2 is invariant under F(2).

Given xe§, Lemma 2.5 shows that yx gFx for some yg T(2). Since

u=lo i) maps the left vertical line in dF i t0 the riêht one and

=( i) maPs tne left semicircle in dF 1 to the right one, we may

assume that yxGjp;. If we also had aief; for ag T(2), then /c'(ax) 2

= k\x) 2 = /c r(yT)2
, so that ax = yx by Lemma 2.4. This shows that F\ is a

fundamental domain for T(2).
Since T(2)o - r(2)/{±l}, F'x is also a fundamental domain for r(2)0 .

Since T2(4)T

2 (4) has index 2in T(2)o with 1 and Vas coset représentatives,
it follows that



is a fondamental domain for T2(4).T

2(4). Since ( je T2(4)T

2(4) takes the far

left semicircle in dF to the far right one, it follows that F' is a fondamental

domain for rr 2(4).

It now follows easily from Lemma 2.4 that k'2 induces a bijection

P": §/r(2) -* C - {0, I}. Since r(2)/{±l} acts freely on § by Lemma 2.5,

S/F(2) is a complex manifold and k' 2 is holomorphic. A straightforward

argument then shows that k!2 is biholomorphic.
Next note that k! is invariant under F2(4)F

2(4) by (2.12), and thus induces a

map /c
7

: §/F 2(4) -? C- {0, ±I}. Since §/F(2) = §/r(2)0 , we obtain a com
mutativediagram :

where /is induced by F2(4)F

2 (4) ç F(2) o and gis just g(z) = z2
. Note that gisa

covering space of degree 2, and the same holds for / since [F(2)o : F2(4)] = 2

and F(2)o acts freely on §. We know that k' 1 is a biholomorphism, and

it now follows easily that k' is also. QED

We should point out that r(x)2 has properties similar to p(x)2 and g(x)2
.

Specifically, r(x)2 is a modular form of weight one for the group

which is a conjugate of T2(4).T

2(4). Furthermore, if we set /c(x) = r(x)2/p(x)2
,

then k is invariant undér rr 2(4)' and induces a biholomorphism /c : S/r 2(4y2(4y



-> C ? {0, ±I}. We leave the proofs to the reader. Note also that k(x)

+ /c'(x) 2 = Iby (2.9).

Our final lemma will be useful in studying the agM. Let F2F
2 be th

région (1/2)F 1 , pictured below. Note that F2F
2 £F.

F2F
2 shaded

F, F, indicated bv dashed line

Lemma 2.8.

Proof. We will only treat k'(F,l the proof for k'(F.) beine auite similai
We first claim that {/c'(t) : Rex =± 1/2} =S1 -{ + I}. To see this, note

that Rex = ±1/2 and the product expansions (2.6) easily imply that ~k^z)

= /c'(t)" 1

, i.e., | fc'(x) \=l. How much of the circle is covered? It is eas>
to see that k'{± 1/2 + if) -? 1 as t-++ 00. To study the limit as t-+O.
note that by (2.10) we hâve

As t -+ 0, the right-hand side clearly approaches -1. Then connectivity
arguments easily show that ail of S1S

1 - (+1) is covered
Since k! is injective on F by Lemma 2.7, it follows that k'{F2) -S1

is connected. Since I Mit) I < 1 for t > 0 bv (2.61 we conclnHe that

Similar arguments show that



Since k\F) = C ? {0, ± 1} by Lemma 2.7, both inclusions must be equalities.

QED

Gauss' collected works show that he was familiar with most of this

material, though ifs hard to tell precisely what he knew. For example, he

basically has two things to say about k'(x) :

(i) k\x) has positive real part for x e F x ,

(ii) the équation k'(x) = A has one and only one solution x g F2F
2

(See [12, 111, pp. 477-478].) Neither statement is correct as written. Modifica
tionshâve to be made regarding boundary behavior, and Lemma 2.8 shows

that we must require |A| lin (ii). Nevertheless, thèse statements show that
Gauss essentially knew Lemma 2.8, and it becomes clear that he would not
hâve been greatly surprised by Lemmas 2.4 and 2.7.

Let us see what Gauss had to say about other matters we've discussed. He

was quite aware of linear fractional transformations. Since he used the right
half plane, he wrote

(see [12, 111, p. 386]). To prevent confusion, we will always translate formulas
into ones involving xe§.

Gauss decomposed an élément y g SL(2, Z) into simpler ones by means of
continued fractions. For example, Gauss considers those transformations
x* = yx which can be written as

(2.14)

/l 2\ (\ 0\
(see [12, X.l, p. 223]). If U=l J and V=l j, then x" = Ua2 V~ a %

so that for n even we see a similarity to the proof of Lemma 2.5 (ii).

The similarity becomes deeper once we realize that the algorithm used in

the proof gives a continued fraction expansion for a/c, where y = ( J
.

\c à)



However, since n can be odd in (2.14), we are dealing with more than just
éléments of F(2).

Gauss' real concern becomes apparent when we see him using (2.14)

together with the transformation properties of p(x). From (2.7) he obtains

(see [12, X.l, p. 223]). The crucial thing to note is that if x* = yx,

y=( \ then ( ? re)---(-iT (II ~1))~ 1)) is just ex +àuptoa power of i.
\c à)

This tells us how p(x) transforms under those y's described by (2.14). In
gênerai, Gauss used similar methods to détermine how p(x), q(x) and r(x)

transform under arbitrary éléments y of SL(2, Z). The answer dépends in part
(a b\

on how y = reduces modulo 2. Gauss labeled the possible réductions
\c à)

as follows :

(see [12, X.l, p. 224]). We recognize this as the isomorphism SL(2, Z)/T(2)
SL(2, F2), and note that (2.14) corresponds to cases 1 and 6. Then the

transformations of p(x), q(ï) and r(x) under y=y Je SL(2, Z) are given by

(2.15)

where h= (^(cx + d)) 1/2 and Xisan integer depending on both y and which
one of p(x). q(x) or r(x) is being transformed (see [12, X.l, p. 224]). Note that
Lemma 2.6 can be regarded as giving a careful analysis of X in case 1.

An analysis of the other cases may be found in [13, pp. 117-123]. One
conséquence of this table is that the functions (2.13) are holomorphic functions



of ql/2,q
1/2

, which proves that p(x) 2
, q(x)2 and r(x)2 are modular forms, as

claimed earlier.
Gauss did not make explicit use of congruence subgroups, although they

appear implicitly in several places. For example, the table (2.15) shows Gauss

using F(2). As for F(2)o , we find Gauss writing

where y = ( ) and, as he carefully stipulâtes, "ad ? bc = 1,

\-c d)
a = d = 1 mod 4, fc, c even" (see [12, 111, p. 478]). Also, if we ask which
of thèse y's leave k' unchanged, then the above équation immediately gives

us F2(4),F

2 (4), though we should be careful not to read too much into what
Gauss wrote.

More interesting is Gauss' use of the réduction theory of positive definite

quadratic forms as developed in Disquisitiones Arithmeticae (see [11, § 171]).
This can be used to détermine fundamental domains as follows. A positive
definite quadratic form ax2 + 2bxy + cy

2
may be written a\x ? xy \2 where

tg§. An easy computation shows that this form is équivalent via an
élément y of 5L(2, Z) to another form a' \ x ? l'y \

2 if and only if x' = y~
Ix.1

x.

Then, given xe§, Gauss applies the réduction theory mentioned above to

|x?xy|2 and obtains a SL{2, Z)? équivalent form A\x ? x'y\ 2 = Ax 2

+ 2Bxy + Cy2 which is reduced, i.e.

(see [11, § 171] and [12, X.l, p. 225]). Thèse inequalities easily imply that
| Rex' | 1/2, |Re 1/x' | 1/2, so that x' lies in the shaded région



which is well known to be the fundamental domain of SL(2, Z) acting on §
(sec T29. Ch. VII, Thm. 11).

This seems quite compelling, but Gauss never gave a direct connection

between réduction theory and fundamental domains. Instead, he used réduc

tionas follows : given xe§, the réduction algorithm gives x' = yx as

above and at the same time décomposes y into a continued fraction similar

to (2.14). Gauss then applies this to relate p(x') and p(x), etc., bringing us

back to (2.15) (see [12, X.l, p. 225]). But in another place we find such

continued fraction décompositions in close conjunction with géométrie

pictures similar to F t and the above (see [12, VIII, pp. 103-105]). Based

on this kind of évidence, Gauss' editors decided that he did see the connection

(see [12, X.2, pp. 105-106]). Much of this is still a matter of conjecture,

but the fact remains that réduction theory is a powerful tool for finding

fundamental domains (see [6, Ch. 12]) and that Gauss was aware of some

of this nower.

Having led the reader on a rather long digression, it is time for us te

return to the arithmetic-seometric mean.

Stev 3. The Simplest Value

Let FAF A = {x eF:|x- 1/4 |> 1/4, |x+ 3/4 |> 1/4}. We may pictun
P1 A qc fr»llr»\x/c

Let a,beC* be as usual, and let x g § satisfy k'(x) = b/a. From Lemma 2.,

we know that u = a/p(x) 2 is a value of M(a, b). The goal of Step 3 is t<

orove the followine lemma.

Lemma 2.9. // xcF A
, then fi is the simplest value of M(a,b

Proof. From Lemma 2.3 we know tha

HM

gives us good séquences converging to u. We need to show that b
n + 1 is th

right choice for (aJbJ\ 112 for ail n>o.



The following équivalences are very easy to prove :

Recalling the définition of the right choice, we see that we hâve to prove,

for ail n 0, that Re (?j 0, and if Re (?J=O, then Im f? ) >0.

From (2.16) we see that

so that we are reduced to proving that if xe F A
, then for ail n 0,

Re(/c'(2" + 1
x)) 0, and iî RQ(k'(2 n + Ixj) =0, then lm(k f(2n+l x)) >0.

Let F 1 dénote the région obtained by translating F x by + .2, ±4, etc.

The drawing below pictures both F 1 and F.

F l shaded
F indicated by dashed lines

Since k'(x) has period 2 and its real part is nonnegative on F 1 by Lemma 2.8,

it follows that the real part of k'(x) is nonnegative on ail of F x . Further
more,it is clear that on F l9 Re(/c'(x)) =0 can occur only on dF^ . The

product expansions (2.6) show that k'(x) is real when Rex = + 1, so that

on Fi, Re(k'(x)) = 0 can occur only on the boundary semicircles. From the

periodicity of k'(i) we conclude that k'(x) has positive real part on the

interior F? of Fl.F
1 .

If xgF a
, then the above drawing makes it clear that 2n2n + Ixe1 xeF 1 for

n 0 and that 2" + I xeF? for n 1. We thus see that Re(/c / (2M+l x)) >0
for n 0 unless n=o and 2x e dF 1 . Thus the lemma will be proved once

we show that Im(/ >0 when xeFA and 2x e dPx .

Thèse last two conditions imply that 2x lies on one of the semicircles A

and B pictured below.



By periodicity, k' takes the same values on A and B. Thus it suffices to

show that Im(/ > 0 for 2x g A. Since S = l \ maps the Une

Rea = 1 to A, we can write 2x = -1/a, where Rea = 1. Then, using (2.7),

we ohtain

Since Rea = 1, the product expansions (2.6) easily show that

which complètes the proof of Lemma 2.9, QED

Stev 4. Conclusion of the Proof
We can now prove Theorem 2.2. Recall that at the end of Step 1 we

were left with three tasks: to find ail solutions x of /c'(x) = b/a, to relate

the values of a/p(x) 2 thus obtained, and to show that ail values of M(a, b)

arise in this way.
We are given a,beC* with a#±b and a\ |b|.We will first find

i 0 eF2nFA such that k'(x0 ) = b/a. Since | b/a \ 1, Lemma 2.8 gives us

xoex

0 eF 2 with k'(x 0) = b/a. Could x0 fail to lie in FAF A ? From the définition
of F A

, this only happens when x0 lies in the semicircle B pictured below



However, y=l )g F2(4)F

2 (4) takes Bto the semicircle A. Since k! is
\-4 1/

invariant under F2(4),F

2 (4), we hâve k\yz0 ) = /c'(x0) = fc/a. Thus, replacing x0 by

yx0 , we may assume that x0 gF2 n F A
.

It is now easy to solve the first two of our tasks. Since k' induces a

bijection §/F 2(4) =C- {0, ± l},it foliows that ail solutions offc'(i) = b/aare
given by x= yx 0 , yg F2(4).F

2(4). This gives us the following set of values of

M(a, b) :

Recalling the statement of Theorem 2.2, it makes sensé to look at the

reciprocals of thèse values :

By (2.12), p(yx0 )
2 = (cx0 +d) p(x0 )

2 for y=(j Je F2(4)F

2 (4) c F(2)o . Setting

u= tf//?(x0 )
2

, we hâve

An easy exercise in number theory shows that the bottom rows (c, d) of
éléments of F2(4)F

2(4) are precisely those pairs (c, d) satisfying GCD(c, d) = 1,

c = 0 mod 4 and d = 1 mod 4. We can therefore write

Then setting X = i[i/x0 gives us

(2.17)

Finally, we will show that \i and X are the simplest values of M(a, b)

and M(a + b,a ?b) respectively. This is easy to see for u : since to êF a
,

Lemma 2.9 implies that \i = a/p(x0)2 is the simplest value of M(a, b).

Turning to X, recall from Lemma 2.3 that a= up(x0 )
2 and b= m?(x0)

2
.

Thus by (2.8) and (2.7),



which implies that

Hence X is a value of M(a + b,a-b). To see that it is the simplest value,

we must show that -l/2xo eF A (by Lemma 2.9). Since xoex

0 eF 2 , we hâve

2x o e771.7

1 . But T7!T7
! is stable under S=( 1, so that ?l/2xo eF 1 .

The inclusion F 1 çFA is obvious, and ? l/2x0 eFA follows. This complètes

our first two tasks.

Our third and final task is to show that (2.17) gives the reciprocals of
ail values of M(a, b). This will finish the proof of Theorem 2.2. So let \\! be a

value of M{a, b\ and let {an }?=0 and {bn}?=0 be the good séquences such that
\i' = lim an = lim b

n . Then there is some m such that b
n +1 is the right

«->? oo n-> on

choice for (an
è

n
) 1/2 for ail n > m, and thus |i' is the simplest value of

M(am , b
m). Since k' :F->C? {0, ±I}is surjective by Lemma 2.7, we can find

xc F' such that k'(x) = bjam . Arguing as above, we may assume that
xe F A

. Then Lemma 2.9 shows that u' = ajp{x) 2 and also that for n m,

(2.18)

Let us study am^ 1 and b
m . l . Their sum and product are 2am and b%,

respectively. From the quadratic formula we see that

Using (2.9), we obtain

so that, again using (2.9), we hâve

Thus. either



In the former case, set x x = x/2. Then from (2.18) we easily see that for
n m?l,
(2.19)

If the latter case holds, let x1x

1 = x/2 + 1. From (2.7) we see that aa
m _ 1

=tf Pi^i) 2
, bm-i = M- 3(T i)

2>2

> and it also follows easily that p(2 nn ~ m + ii
x 1 )

= p{2n - mx) and q{2n - m + h1)h
1 ) = g(2"" mT) for ail n m. Thus (2.19) holds for

this choice of t 1 and n m?l.
By induction, this argument shows that there is xm e§ such that for ail

n > 0,

In particular, \i' = a/p(xm)
2 and k'(xm) = fc/û - Thus (\i f

) x= p(xm)
2/a is in the

set i? of (2.17). This shows that R consists of the reciprocals of ail values

of M(a, b\ and the proof of Theorem 2.2 is now complète. QED

We should point, out that the proof just given, though arrived at

independently, is by no means original. The first proofs of Theorem 2.2

appeared in 1928 in [15] and [35]. Geppert's proof [15] is similar to ours
in the way it uses the theory of thêta functions and modular functions.
The other proof [35], due to von David, is much shorter; it is a model of

élégance and conciseness.

Let us discuss some conséquences of the proof of Theorem 2.2. First, the

formula X= zu/t0 obtained above is quite interesting. We say that x 0

"uniformizes" the simplest value u of M(a, b\ where

Writing the above formula as t 0 = ir-» we see now t 0explicitly compute
à

x0 in terms of the simplest values of M(a, b) and M(a +b,a? b). This is

especially useful when a>b>o. Hère, if we set c= <JJa 1 ? b 2
, then,

using the notation of § 1, the simplest values are M(a, b) and M{a, c), so that

(2.20)

A nice example is when a= 2 and b=l. Then c=l, which implies

x0 = ï! Thus M(y/Ï9 1) = j2/p{ï)2 = 1M0 2
. From §Iwe know M{y/X 1)

= tu/Ô, which gives us the formulas



(2.21)

We will discuss the importance of this in § 3.

Turning to another topic, note that M(a, b) is clearly homogeneous of

degree 1, i.e., if ja is a value of M(a, b), then c\x is a value of M(ca, cb)

for c e C*. Thus, it suffices to study M(l, b) for b e C - {0, ± I}. Its values

are given by u = l/p(x) 2 where fc'(x) = b. Since fc': §->C ? {0, ±1} is a

local biholomorphism, it foliows that M(1, b) is a multiple valued holomorphic
function. To make it single valued, we pull back to the universal cover
via k', giving us M(l, fc'(x)). We thus obtain

This shows that the agM may be regarded as a meromorphic modular form

ofweight ? 1.

Another interesting multiple valued holomorphic function is the elliptic
Çn/2

intégral (1 ? /c 2sin2 cj>)~ 1/2 iicj). This is a function of keC- {0, ±I}. If
J o

we pull back to the universal cover via /e:§ -» C ? {0, ±1} (recall from
Step 2 that fc(x) = r{x)2/p(x) 2), then it is well known that

(see [36, p. 500]). Combining the above two équations, we obtain

which may be viewed as a rather amazing generalization of (1.9).

Finally, let us make some remarks about the set M of values of M(a, b),

where a and b are fixed. If \i dénotes the simplest value of M(a, b), then
it can be shown that |u| | \\! \ for \ï eM, and |u|isa strict maximum
if ang(a, b) n. This may be proved directly from the définitions (see [35]).
Another proof proceeds as follows. We know that any \x

f eJt can be

written

(2.22)



where x0 gF2 and ( \e F2(4).F

2 (4). Thus it suffices to prove that | cx0 +à| 1

\c à)

whenever t0 gF2 and ( )g F2(4).F

2 (4). This is left as an exercise for the
\c à)

reader.

We can also study the accumulation points of M. Since \cx0 + d\
is a positive definite quadratic form in c and d, it follows from (2.22) that
0 g C is the only accumulation point of M. This is very satisfying once we

recall from Proposition 2.1 that 0 g C is the common limit of ail non-good
séquences {an }?=0 and {b n }?=0 coming from (2.1).

The proof of Theorem 2.2 makes one thing very clear : we hâve now seen

"an entirely new field of analysis." However, before we can say that Gauss'

prédiction of May 30, 1799 has been fulfilled, we need to show that the

proof given above reflects what Gauss actually did. Since we know from
Step 2 about his work with the thêta functions p(x), q(x) and r(x) and the

modular function k'(x\ it remains to see how he applied ail of this to the

arithmetic-geometric mean.
The connections we seek are found in several places in Gauss' notes.

For example, he states very clearly that if

(2.23)

then the séquences an = u p(2nx) 2
,

b
n = u q(2"x)2 satisfy the agM algorithm

(2.1) with jj, as their common limit (see [12, 111, p. 385 and pp. 467-468]).
This is precisely our Lemma 2.3. In another passage, Gauss defines the

"einfachste Mittel" (simplest mean) to be the limit of those séquences where

Re(bn + 1 /an) >0 for ail n 0 (see [12, 111, p. 477]). This is easily seen to
be équivalent to our définition of simplest value when ang(a, b) # te. On the

same page, Gauss then asserts that for xg F 2 , uis the simplest value of
M(a, b) for a, b as in (2.23). This is a weak form of Lemma 2.9. Finally,
consider the following quote from [12, VIII, p. 101] : "In order to solve the

équation = A, one sets A2A
2 = n/m and takes the agM of m and n;

let this be ja. One further takes the agM of m and «Jm 2 ? n2
, or, what

is the same, of m + n and m ? n; let this be X. One then has t = \i/X.

This gives only one value of t; ail others are contained in the formula



where a, p, y, S signify ail integers which satisfy the équation ocô - 4py = 1."

Recall that Ret > 0, so that our x is just ti. Note also that the last

assertion is not quite correct.

Unfortunately, in spite of thèse compelling fragments, Gauss never actually

stated Theorem 2.2. The closest he ever came is the following quote from

[12, X.l, p. 219] : "The agM changes, when one chooses the négative value for

one of ri, n", ri" etc.: however ail resulting values are of the following

form:

(2.24)

Hère, Gauss is clearly dealing with M(m, n) where m > n > 0. The fraction

1/u in (2.24) is correct : in fact, it can be shown that if the négative value

of n{r) is chosen, and ail other choices are the right choice, then the cor
respondingvalue \i

f of M(m, ri) satisfies

(see [13, p. 140]). So (2.24) is only a very spécial case of Theorem 2.2.

There is one final pièce of évidence to consider: the 109th entry in

Gauss' mathematical diary. It reads as follows :

Between two given numbers there are always infinitely many means
both arithmetic-geometric and harmonic-geometric, the observation of
whose mutual connection has been a source of happiness for us.

(See [12, X.l, p. 550]. The harmonic-geometric mean of a and h is

M(a~\ fe" 1)" 1
.) What is amazing is the date of this entry: June 3, 1800,

a little more than a year after May 30, 1799. We know from § 1 that
Gauss' first proofs of Theorem 1.1 date from December 1799. So less than
six months later Gauss was aware of the multiple valued nature of M(a, b)
and of the relations among thèse values ! One tantalizing question remains :

does the phrase "mutual connection" refer only to (2.24), or did Gauss hâve

something more like Theorem 2.2 in mind? Just how much did he know
about modular functions as of June 3, 1800? In order to answer thèse

questions, we need to examine the histôry of the whole situation more
closely.



3. HISTORICAL REMARKS

The main difficulty in writing about the history of mathematics is that
so much has to be left out. The mathematics we are studying has a richness

which can never be conveyed in one article. For instance, our discussion

of Gauss' proofs of Theorem 1.1 in no way does justice to the complexity
of his mathematical thought; several important ideas were simplified or
omitted altogether. This is not entirely satisfactory, yet to rectify such gaps
is beyond the scope of this paper. As a compromise, we will explore the

three following topics in more détail :

A. The history of the lemniscate,

B. Gauss' work on inverting lemniscatic intégrais, and

C. The chronology of Gauss' work on the agM and thêta functions.

A. The lemniscate was discovered by Jacob Bernoulli in 1694. He gives

the équation in the form

(in § 1 we assumed that a = 1), and he explains that the curve has "the

form of a figure 8 on its side, as of a band folded into a knot, or of a

lemniscus, or of a knot of a French ribbon" (see [2, p. 609]). "Lemniscus"
is a Latin word (taken from the Greek) meaning a pendant ribbon fastened

to a victor's garland.
P

More interesting is that the intégral (1? z4) 1/2dz, which gives one-
J o

quarter of the arc length of the lemniscate, had been discovered three years
earlier in 1691 ! This was when Bernoulli worked out the équation of the

so-called elastic curve. The situation is as follows: a thin elastic rod is bent

until the two ends are perpendicular to a given Une L.



After introducing cartesian coordinates as indicated and letting a dénote OA,

Bernoulli was able to show that the upper half of the curve is given by the

équation

(3.1)

where 0 x a (see [2, pp. 567-600]).

It is convenient to assume that a = 1. But as soon as this is done,

we no longer know how long the rod is. In fact, (3.1) implies that the

arc length from the origin to a point {x, y) on the rescaled elastic curve is

C x f 1

(l-z 44y ll2 dz. Thus the length of the whole rod is 2 (l-zT 1/2dz,JOJOwhich is precisely Gauss' & !

How did Bernoulli get from hère to the lemniscate? He was well aware

of the transcendental nature of the elastic curve, and so he used a standard

seventeenth century trick to make things more manageable: he sought
"an algebraic curve... whose rectification should agrée with the rectification
of the elastic curve" (this quote is from Euler [9, XXI, p. 276]).

Jacob actually had a very concrète reason to be interested in arc length:
in 1694, just after his long paper on the elastic curve was published, he

solved a problem of Leibniz concerning the "isochrona paracentrica" (see

[2, pp. 601-607]). This called for a curve along which a falling weight recèdes

from or approaches a given point equally in equal times. Since Bernoulli's
solution involved the arc length of the elastic curve, it was natural for him
to seek an algebraic curve with the same arc length. Very shortly thereafter,
he found the équation of the lemniscate (see [2, pp. 608-612]). So we really
can say that the arc length of the lemniscate was known well before the

curve itself.

But this is not the full story. In 1694 Jacob's younger brother Johann
independently discovered the lemniscate! Jacob's paper on the isochrona
paracentrica starts with the differential équation

which had been derived earlier by Johann, who, as Jacob rather bluntly
points out, hadn't been able to solve it. Johann saw this comment for the
first time when it appeared in June 1694 in Acta Eruditorum. He took up
the challenge and quickly produced a paper on the isochrona paracentrica
which gave the équation of the lemniscate and its relation to the elastic
curve. This appeared in Acta Eruditorum in October 1694 (see [3, pp. 119



122]),butunfortunately for Johann, Jacob's article on the lemniscate appeared
in the September issue of the same journal. There followed a bitter priority
dispute. Up to now relations between the brothers had been variable,
sometimes good, sometimes bad, with always a strong undercurrent of com
pétitionbetweenthem. After this incident, amicable relations were never
restored. (For détails of this controversy, as well as a fuller discussion of
Jacob's mathematical work, see [18].)

We need to mention one more thing before going on. Near the
end of Jacob's paper on the lemniscate, he points out that the y-valve

z
2 (a4 ? z4) 1/2dz of the elastic curve can be expressed as the différence

J o

of an arc of the ellipse with semiaxes a^Jl and a, and an arc of the

lemniscate (see [2, pp. 611-612]). This observation is an easy conséquence
of the équation

(3.2)

What is especially intriguing is that the ratio 1, so important in Gauss'

observation of May 30, 1799, was présent at the very birth of the lemniscate.

Throughout the eighteenth century the elastic curve and the lemniscate

appeared in many papers. A
,
lot of work was done on the intégrais

f 1 f 1

(\-zA)~ mdz and z
2(l-z4)~ 1/2dz. For example, Stirling, in a workJoJowritten in 1730, gives the approximations

(see [31, pp. 57-58]). Note that the second number doubled is

1.19814023473559222, which agrées with M(v
//2, 1) to sixteen décimal places.

Stirling also comments that thèse two numbers add up to one half the

circumference of an ellipse with and 1 as axes, a spécial case of
Bernoulli's observation (3.2).

Another notable work on the elastic curve was Euler's paper "De miris

, f xxdx
propnetatibus curvae elasticae sub equatione y = contentae

J -\J J- x



which appeared posthumously in 1786. In this paper Euler gives approxima

tionsto the above intégrais (not as good as Stirling's) and, more importantly,

proves the amazing resuit that

(3.3)

(see [9, XXI, pp. 91-118]). Combining this with Theorem 1.1 we see that

so that the coïncidence noted above has a sound basis in fact.

We hâve quoted thèse two papers on the elastic curve because, as we

will see shortly, Gauss is knpwn to hâve read them. Note that each paper

has something to contribute to the equality M(x/2, 1) = n/ffi : from Stirling,

we get the ratio Jl\ 1, and from Euler we get the idea of using an

équation like (3.3).

Unlike the elastic curve, the story of the lemniscate in the eighteenth

century is well known, primarily because of the key rôle it played in the

development of the theory of elliptic intégrais. Since this material is thoroughly
covered elsewhere (sec, for example, [1, Ch. 1-3], [8, pp. 470-496], [19, § l-§ 4]
and [21, § 19.4]), we will mention only a few highlights. One early worker
was C. G. Fagnano who, following some ideas of Johann Bernoulli, studied
the ways in which arcs of ellipses and hyperbolas can be related. One resuit,
known as Fagnano's Theorem, states that the sum of two appropriately
chosen arcs of an ellipse can be computed algebraically in terms of the
coordinates of the points involved. He also worked on the lemniscate,
starting with the problem of halving that portion of the arc length of the
lemniscate which lies in one quadrant. Subsequently he found methods for
dividing this arc length into n equal pièces, where n= 2 m

, 3?2m or 5? 2m
.

Thèse researches of Fagnano's were published in the period 1714-1720 in an
obscure Venetian journal and were not widely known. In 1750 he had his
work republished, and he sent a copy to the Berlin Academy. It was given
to Euler for review on December 23, 1751. Less than rive weeks later, on
January 27, 1752, Euler read a paper giving new dérivations for Fagnano's
results on elliptic and hyperbolic arcs as well as significantly new results on
lemniscatic arcs. By 1753 he had a gênerai addition theorem for lemniscatic
intégrais, and by 1758 he had the addition theorem for elliptic intégrais
(see [9, XX, pp. VII-VIII]). This material was finally published in 1761,



and for the first time there was a genuine theory of elliptic intégrais. For
the next twenty years Euler and Lagrange made significant contributions,
paving the way for Legendre to cast the field in its classical form which
we glimpsed at the end of § 1. Legendre published his définitive treatise on

elliptic intégrais in two volumes in 1825 and 1826. The irony is that in
1828 he had to publish a third volume describing the groundbreaking papers
of Abel and Jacobi which rendered obsolète much of his own work
(see [23]).

An important problem not mentioned so far is that of Computing tables

of elliptic intégrais. Such tables were needed primarily because of the many
applications of elliptic intégrais to mechanics. Legendre devoted the entire
second volume of his treatise to this problem. Earlier Euler had computed
thèse intégrais using power séries similar to (1.8) (see also [9, XX, pp. 21-55]),
but thèse séries often converged very slowly. The real breakthrough came
in Lagrange's 1785 paper "Sur une nouvelle méthode de calcul intégral"
(see [22, pp. 253-312]). Among other things, Lagrange is concerned with
intégrais of the form

(3.4)

where Misa rational function of y
1 and p q>o.He defines séquences

p, p', p", ..., g, q\ q", ... as follows :

(3.5)

and then, using the substitution

(3.6)

he shows that

(3.7)

Two methods of approximation are now given. The first starts by

observing that the séquence p, p', p", ... approaches +oo while q, q', q", ...

approaches 0. Thus by iterating the substitution (3.6) in the intégral of (3.4),



one can eventually assume that q = 0, which gives an easily computable

intégral. The second method consists of doing the first backwards: from (3.5)

one easily obtains

Lagrange then observes that continuing this process leads to séquences

p', p, 'p9p
9 "p, ..., q

r

, g,
f
q, "g, ... which converge to a common limit (see [22,

p. 271]). Hence iterating (3.6) allows one to eventually assume p = q,

again giving an easily computable intégral.
So hère we are in 1785, staring at the définition of the arithmetic

geometricmean, six years before Gauss' earliest work on the subject. By

setting py = tancj), one obtains

so that (3.6) and (3.7) are precisely (1.5) and (1.6) from the proof of The
orem1.1. Thus Lagrange not only could hâve defined the agM, he could
hâve also proved Theorem 1.1 effortlessly. Unfortunately, none of this

happened; Lagrange never realized the power of what he had discovered.

One question émerges from ail of this: did Gauss ever see Lagrange's
article? The library of the Collegium Carolinum in Brunswick had some of
Lagrange's works (see [4, p. 9]) and the library at Gottingen had an
extensive collection (see [12, X.2, p. 22]). On the other hand, Gauss, in
the research announcement of his 1818 article containing the proof of
Theorem 1.1, claims that his work is independent of that of Lagrange and

Legendre (see [12, 111, p. 360]). A fuller discussion of thèse matters is in
[12, X.2, pp. 12-22]. Assuming that Gauss did discover the agM independently,
we hâve the amusing situation of Gauss, who anticipated so much in Abel,
Jacobi and others, himself anticipated by Lagrange.

The elastic curve and the lemniscate were equally well known in the
eighteenth century. As we will soon see, Gauss at first associated the intégral
r
(1? z4) 1/2dz with the elastic curve, only later to drop it in favor of the

j
lemniscate. Subséquent mathematicians hâve followed his example. Today, the
elastic curve has been largely forgotten, and the lemniscate has suffered the
worse fate of being relegated to the polar coordinates section of calculus
books. There it sits next to the formula for arc length in polar coordinates,
which can never be applied to the lemniscate since such texts know nothing
of elliptic intégrais.



B. Our goal in describing Gauss' work on the lemniscate is to learn

more of the background to his observation of May 30, 1799. We will see

that the lemniscatic functions played a key rôle in Gauss' development of
the arithmetic-geometric mean.

Gauss began innocently enough in September 1796, using methods of
Euler to find the formai power séries expansion of the inverse function of

f f
first (l-x 3r 1/2dx, and then more generally {l-x nny ll2dx (see [12, X.l,

J J

p. 502]). Things became more serious on January 8, 1797. The 51st entry
in his mathematical diary, bearing this date, states that "I hâve begun to

f
investigate the elastic curve depending on (1? x4) 1/2Jx." Notes written

j
at the same time show that Gauss was reading the works of Euler and

Stirling on the elastic curve, as discussed earlier. Significantly, Gauss later
struck out the word "elastic" and replaced it with "lemniscatic" (see [12, X.l,
pp. 147 and 510]).

Gauss was strongly motivated by the analogy to the circular functions.

f 1

For example, notice the similarity between OS/2 = (1? z4) 1/2dz and
J o

P
k/2 = (1? z

2 ) 1/2dz. (This similarity is reinforced by the fact that many
J o

eighteenth century texts used fô to dénote n ? see [12, X.2, p. 33].)
Gauss then defined the lemniscatic functions as follows :

(see [12, 111, p. 404]). Gauss often used the abbreviations si (|) and cl (j)

for sinlemn <$> and coslemn § respectively, a practice we will adopt. From
Euler's addition theorem one easily obtains

(3.8)

(3.9)

(see [12, X.l, p. 147]).



Other formulas can now be derived in analogy with the trigonométrie
functions (see [25, pp. 155-156] for a nice treatment), but Gauss went much,

much farther. A séries of four diary entries made in March 1797 reveal the

amazing discoveries that he made in the first three months of 1797. We will
need to describe thèse results in some détail.

Gauss started with Fagnano's problem of dividing the lemniscate into n

equal parts. Since this involved an équation of degree n
2

, Gauss realized that

most of the roots were complex (see [12, X.l, p. 515]). This led him to

deflne si è and cl è for complex numbers (j). The first step is to show that

f
(the first follows from the change of variable z=iz in (1 ? z4) 1/2dz,

J

and the second follows from (3.8)). Then (3.9) implies that

(see [12, X.l, p. 154])

It follows easily that si cj) is doubly periodic, with periods 2c5 and 2/£>.

The zéros and pôles of si § are also easy to détermine ; they are given by
4) =(m+ m)ffi and (j) = ((2m- l) + i(2n- 1)) (ffi/2), m, neZ, respectively. Then
Gauss shows that si è can be written as

where M{<\>) and N((J>) are entire functions which are doubly indexed
infinité products whose factors correspond to the zéros and pôles respect
ively(see [12, X.l, pp. 153-155]). In expanding thèse products, Gauss
writes down the first examples of Eisenstein séries (see [12, X.l, pp. 515-516]).
He also obtains many identities involving M(§) and N(<\>\ such as

(3.10)

(see [12, X.l, p. 157]). Finally, Gauss notices that the numbers N{G>)

and en/2e
n/2 agrée to four décimal places (see [12, X.l, p. 158]). He comments

that a proof of their equality would be "a most important advancement
of analysis" (see 12, X.l, p. 517]).

Besides being powerful mathematics, what we hâve hère is almost a

rehearsal for what Gauss did with the arithmetic-geometric mean: the



observation that two numbers are equal, the importance to analysis of

proving this, and the passage from real to complex numbers in order to
get at the real depth of the subject. Notice also that identities such as

(3.10) are an important warm-up to the thêta function identities needed

in §2.
Two other discoveries made at this time require comment. First, only

a year after constructing the regular 17-gon by ruler and compass, Gauss

found a ruler and compass construction for dividing the lemniscate into
five equal pièces (see [12, X.l, p. 517]). This is the basis for the remarks

f
concerning (1? x4) 1/2dx made in Disquisitiones Arithmeticae (see [11,

J
§ 335]). Second, Gauss discovered the complex multiplication of elliptic
functions when he gave formulas for sl(l + Q<|>, N(l + ï)<fr

9 etc. (see [12, 111,

pp. 407 and 411]). Thèse discoveries are linked: complex multiplication on
the elliptic curve associated to the lemniscate enabled Abel to détermine
ail n for which the lemniscate can be divided into n pièces by ruler and

compass. (The answer is the same as for the circle! See [28] for an

excellent modem account of Abel's theorem.)
After this burst of progress, Gauss left the lemniscatic functions to work

on other things. He returned to the subject over a year later, in July 1798,

and soon discovered that there was a better way to write si (j) as a quotient

of entire functions. The key was to introduce the new variable 5 = sin ( ? <j) 1

.

Since si <() has period 2®, it can certainly be written as a function of s.

By expressing the zéros and pôles of si <\> in terms of 5, Gauss was able

to prove that

where

(see [12, 111, pp. 415-416]). Relating thèse to the earlier functions M{<\>)

and iV(c|>), Gauss obtains (letting <j) = \|/&)



(see [12, 111, p. 416]). Notice that N{G>) = en/2e
n/2 is an immédiate conséquence

of the second formula.

Many other things were going on at this time. The appearance of n/(b

sparked Gauss' interest in this ratio. He found several ways of expressing

(b/n, for example

(3.11)

and he computed GS/n to fifteen décimal places (see [12, X.l, p. 169]).

He also returned to some of his earlier notes and, where the approximation
f 1

2 z
2(l-z4)~ 1/2dz « 1.198 appears, he added that this is rc/ffi (see [12, X.l,

J o

pp. 146 and 150]). Thus in July 1798 Gauss was intimately familiar with

the right-hand side of the équation M(^/l, 1) = n/GS. Another problem he

studied was the Fourier expansion of si <j>. Hère, he first found the numerical
value of the coefficients, i.e.

and then he found a formula for the coefficients, obtaining

see [12, X.l, p. 168 and 111, p. 417]).
The next breakthrough came in October 1798 when Gauss computed the

Fourier expansions of P(<j)) and g(<t>). As above, he first computed the
coefficients numerically and then tried to find a gênerai formula for them.
Since he suspected that numbers like e~ n

, e~ n/2
, etc., would be involved,

he computed several of thèse numbers (see [12, 111, pp. 426-432]). The final
formulas he found were

(3.12)



(see [12, X.l, pp. 536-537]). A very brief sketch of how Gauss proved
thèse formulas may be found in [12, X.2, pp. 38-39].

Thèse formulas are remarkable for several reasons. First, recall the thêta
functions 0 X and 03:0

3 :

(3.13)

(see [36, p. 464]). Up to the constant factor 2 1/4(n/(b) 112
, we see that

P(\|/&) and Q(\|/S>) are precisely S^n, e~ n) and © 3 (\|/7C, e~ n) respectively.
Even though this is just a spécial case, one can easily discern the gênerai
form of the thêta functions from (3.12). (For more on the relation between

thêta functions and si <j), see [36, pp. 524-525]).
Several interesting formulas can be derived from (3.12) by making spécifie

choice for \|/. For example, if we. set \|/ = 1, we obtain

Also, if we set \|/ = 1/2 and use the nontrivial fact that P(G>/2) = Q(G>/2)

_ 2~ 1/4 (this is a conséquence of the formula Q{2<\>) = P((j))4 + Q(4>)4 ? see

(3.10)), we obtain

(3.14)

Gauss wrote down thèse last two formulas in October 1798 (see [12, 111,

p. 418]). We, on the other hand, derived the first and third formulas as

(2.21) in § 2, only after a very long development. Thus Gauss had some

strong signposts to guide his development of modular functions.

Thèse results, ail dating from 1798, were recorded in Gauss' mathematical

diary as the 91st and 92nd entries (in July) and the 95th entry (in

October). The statement of the 92nd entry is especially relevant: "I hâve

obtained most élégant results concerning the lemniscate, which surpasses
ail expectation?indeed, by methods which open an entirely new field to us"

(see [12, X.l, p. 535]). There is a real sensé of excitement hère; instead

of the earlier "advancement of analysis" of the 63rd entry, we hâve the much

stronger phrase "entirely new field." Gauss knew that he had found

something of importance. This feeling of excitement is confirmed by the



95th entry : "A new field of analysis is open before us, that is, the investigation

of functions, etc." (see [12, X.l, p. 536]). It's as if Gauss were so enraptured

he didn't even bother to finish the sentence.

More importantly, this "new field of analysis" is clearly the same

"entirely new field of analysis" which we first saw in § 1 in the 98th entry.

Rather than being an isolated phenomenon, it was the culmination of years

of work. Imagine Gauss' excitement on May 30, 1799: this new field which

he had seen grow up around the lemniscate and reveal such riches, ail of a

sudden expands yet again to encompass the arithmetic-geometric mean, a

subject he had known since âge 14. Ail of the powerful analytic tools he had

developed for the lemniscatic functions were now ready to be applied to
the agM.

C. In studying Gauss' work on the agM, it makes sensé to start by

asking where the observation M(y/Î, 1) = n/(b came from. Using what we

hâve learned so far, part of this question can now be answered : Gauss was

very familiar with 7i/fô, and from reading Stirling he had probably seen the

ratio y/l : 1 associated with the lemniscate. (In fact, this ratio appears in most
known methods for constructing the lemniscate?see [24, pp. 111-117].) We
hâve also seen, in the équation N((b) = en/2

, that Gauss often used numerical
calculations to help him discover theorems. But while thèse facts are

enlightening, they still leave out one key ingrédient, the idea of taking the

agM of y/2 and 1. Where did this corne from? The answer is that every
great mathematical discovery is kindled by some intuitive spark, and in our
case, the spark came on May 30, 1799 when Gauss decided to compute
M(J2, 1).

We are still missing one pièce of our picture of Gauss at this time:
how much did he know about the agM? Unfortunately, this is a very
difficult question to answer. Only a few scattered fragments dealing with the
agM can be dated before May 30, 1799 (see [12, X.l, pp. 172-173 and 260]).
As for the date 1791 of his discovery of the agM, it cornes from a letter
he wrote in 1816 (see [12, X.l, p. 247]), and Gauss is known to hâve
been sometimes wrong in his recollections of dates. The only other knowledge
we hâve about the agM in this period is an oral tradition which holds
that Gauss knew the relation between thêta functions and the agM in 1794
(see [12, 111, 493]). We will soon see that this claim is not as outrageous
as one might suspect.

It is not our intention to give a complète account of Gauss' work on
the agM. This material is well covered in other places (see [10], [12, X.2,



pp. 62-114], [13], [14] and [25]?the middle three références are especially
complète), and furthermore it is impossible to give the full story of what
happened. To explain this last statement, consider the following formulas:

(3.15)

where B = (l?(b/a) 2 ) 112
. Thèse corne from the first surviving notes on the

agM that Gauss wrote after May 30, 1799 (see [12, X.l, pp. 177-178]).

If we set a = 1 and b = k' = Jl ? k 2
, then B = k, and we obtain

(3.16)

The first formula is (1.8), and the second, with z= e?12
, follows easily

from what we learned in § 2 about thêta functions and the agM. Yet the

formulas (3.15) appear with neither proofs nor any hint of where they came

from. The discussion at the end of § 1 sheds some light on the bottom
formula of (3.15), but there is nothing to prépare us for the top one.

It is true that Gauss had a long-standing interest in thêta functions,
going back to when he first encountered Euler's wonderful formula

The right-hand side appears in a fragment dating from 1796 (see [12, X.l,
p. 142]), and the 7th entry of his mathematical diary, also dated 1796, gives a

continued fraction expansion for

Then the 58th entry, dated February 1797, generalizes this to give a con
tinued fraction expansion for

(see [12, X.l, pp. 490 and 513]). The connection between thèse séries and

lemniscatic functions came in October 1798 with formulas such as (3.14).



This seems to hâve piqued his interest in the subject, for at this time he

also set himself the problem of expressing

(3.17)

as an infinité product (see [12, X.l, p. 538]). Note also that the first

formula of (3.14) gives r with z = e~ nl2
.

Given thèse examples, we can conjecture where (3.15) came from. Gauss

could easily hâve defined p, q and r in gênerai and then derived identities

(2.8)-(2.9) (recall the many identities obtained in 1798 for P(<|>) and Q(<s>)?see

(3.10) and [12, 111, p. 410]). Then (3.15) would resuit from noticing that

thèse identities formally satisfy the agM algorithm, which is the basic content
of Lemma 2.3. This conjecture is consistent with the way Gauss initially
treated zasa purely formai variable (the interprétation z= e~ nlx/2 was only
to corne later?see [12, X.l, pp. 262-263 and X.2, pp. 65-66]).

The lack of évidence makes it impossible to verify this or any other

reasonable conjecture. But one thing is now clear: in Gauss' observation
of May 30, 1799, we hâve not two but three distinct streams of his thought

coming together. Soon after (or simultaneous with) observing that M(-N/2, 1)

= n/Gb, Gauss knew that there were inimate connections between lemniscatic

functions, the agM, and thêta functions. The richness of the mathematics we

hâve seen is in large part due to the many-sided nature of this confluence.
There remain two items of unfinished business. From § 1, we want to déter

minemore precisely when Gauss first proved Theorem 1.1. And recall from § 2

that on June 3, 1800, Gauss discovered the "mutual connection" among
the infinitely many values of M(a, b). We want to see if he really knew the

bulk of §2 by this date. To answer thèse questions, we will briefly
examine the main notebook Gauss kept between November 1799 and

July 1800 (the notebook is "Scheda Ac" and appears as pp. 184-206 in
[12, X.l]).

The starting date of this notebook coincides with the lOOth entry of
Gauss' mathematical diary, which reads "We hâve uncovered many new
things about arithmetic-geometric means" (see [12, X.l, p. 544]). After several

pages dealing with geometry, one ail of a sudden finds the formula (3.11)
for fô/Tt. Since Gauss knew (3.15) at this time, we get an immédiate proof
of M(N/2, 1) = n/(h. Gauss must hâve had this in mind, for otherwise why
would he so carefully recopy a formula proved in July 1798? Yet one could
also ask why such a step is necessary: isn't Theorem 1.1 an immédiate
conséquence of (3.15)? Amazingly enough, it appears that Gauss wasn't yet



aware of this connection (see [12, X.l, p. 262]). Part of the problem is

that he had been distracted by the power séries, closely related to (3.15),

which gives the arc length of the ellipse (see [12, X.l, p. 177]). This
distraction was actually a bonus, for an asymptotic formula of Euler's for
the arc length of the ellipse led Gauss to write

(3.18)

where x = k \ and z and k are as in (3.16) (see [12, X.l, pp. 186 and

268-270]). He was then able to show that the power séries on top was

(k M(l, k'))' 1

, which implies that

(see [12, X.l, pp. 187 and 190]). Letting z = enix/2
, we obtain formulas

similar to (2.20). More importantly, we see that Gauss is now in a position
to uniformize the agM ; z is no longer a purely formai variable.

In the process of studying (3.18), Gauss also saw the relation between

the agM and complète elliptic intégrais of the flrst kind. The formula

follows easily from [12, X.l, p. 187], and this is trivially équivalent to (1.7).

Furthermore, we know that this page was written on December 14, 1799

since on this date Gauss wrote in his mathematical diary that the agM
was the quotient of two transcendental functions (see (3.18)), one of which

was itself an intégral quantity (see the lOlst entry, [12, X.l, 544]). Thus
Theorem 1.1 was proved on December 14, 1799, nine days earlier than our
previous estimate.

Having proved this theorem, Gauss immediately notes one of its

corollaries, that the "constant term" of the expression (l +p< cos 2 c|))~ 1/2 is

M(y/l + \i, l)" 1
(see [12, X.l, p. 188]). By "constant term" Gauss means

the coefficient A in the Fourier expansion

2 fn/2f n/ 2Since Ais the intégral - (1 +|i cos2
c|)) 1/2d§, the desired resuit follows

71 J o

from Theorem 1.1. This interprétation is important because thèse coefficients



are useful in studying secular perturbations in astronomy (see [12, X.l,

pp. 237-242]). It was in this connection that Gauss published his 1818 paper

[12, 111, pp. 331-355] from which we got our proof of Theorem 1.1.

What Gauss did next is unexpected : he used the agM to generalize the

lemniscate functions to arbitrary elliptic functions, which for him meant inverse

functions of elliptic intégrais of the form

Note that u = 1 corresponds to the lemniscate. To start, he first set

(i = tan v,

and finally

(3.19)

Then he defined the elliptic function 5(4)) by S(s) =?? where
W(à)

(3.20)

(see [12, X.l, pp.- 194-195 and 198]). In the pages that follow, we find
the periods 2© and 2tà>', the addition formula, and the differential équation
Connecting S(§) to the above elliptic intégral. Thus Gauss had a complète
iheory of elliptic functions.

In gênerai, there are two basic approaches to this subject. One involves
direct inversion of the elliptic intégral and requires a detailed knowledge of
ihe associated Riemann surface (see [17, Ch. VII]). The other more common
approach defines elliptic functions as certain séries (^-functions) or quotients
of séries (thêta functions). The difficulty is proving that such functions invert
ail elliptic intégrais. Classically, this uniformization problem is solved by
studying a function such as k(x)2 (see [36, §20.6 and § 21.73])" or j{x) (as in
most modem texts?see [30, § 4.2]). Gauss uses the agM to solve this
problem: (3.19) gives the desired uniformizing parameter! (In this connection,



the reader should reconsider the from [12, VIII, p. 101] given near
the end of § 2.)

For us, the most interesting aspect of what Gauss did concerns the

functions T and W. Notice that (3.20) is a direct generalization of (3.12);
in fact, in terms of (3.13), we hâve

Gauss also introduces T(fô/2 ? <\>) and W((b/2 ? §), which are related to the

thêta functions 020
2 and 040

4 by similar formulas (see [12, X.l, pp. 196 and

275]). He then studies the squares of thèse functions and he obtains
identities such as

(this, of course, is the modem formulation?see [12, X.l, pp. 196 (Eq. 14)

and 275]). When § = 0, this reduces to the first formula

of (2.8). The other formulas of (2.8) appear similarly. Gauss also obtained

product expansions for the thêta functions (see [12, X.l, pp. 201-205]).
In particular, one finds ail the formulas of (2.6). Thèse manipulations yielded
the further resuit that

solving the problem he had posed a year earlier in (3.17).

From Gauss' mathematical diary, we see that the bulk of this work was

done in May 1800 (see entries 105, 106 and 108 in [12, X.l, pp. 546-549]).
The last two weeks were especially intense as Gauss realized the spécial
rôle played by the agM. The 108th entry, dated June 3, 1800, announces

completion of a gênerai theory of elliptic functions ("sinus lemniscatici univer
salissimeaccepti"). On the same day he recorded his discovery of the "mutual
connection" among the values of the agM !

This is rather surprising. We've seen that Gauss knew the basic identities

(2.6), (2.8) and (2.9), but the formulas (2.7), which tell us how thêta functions
behave under linear fractional transformations, are nowhere to be seen, nor
do we find any hint of the fundamental domains used in § 2. Reading this

notebook makes it clear that Gauss now knew the basic observation of



Lemma 2.3 that thêta functions satisfy the agM algorithm, but there is no

way to get from hère to Theorem 2.2 withput knowing (2.7). It is not

until 1805 that this material appears in Gauss' notes (see [12, X.2, pp. 101

103]).Thussome authors, notably Markushevitch [25], hâve concluded that

on June 3, 1800, Gauss had nothing approaching a proof of Theorem 2.2.

Schlesinger, the last editor of Gauss' collected works, feels otherwise.

He thinks that Gauss knew (2.7) at this time, though knowledge of the

fundamental domains may hâve not corne until 1805 (see [12, X.2, p. 106]).

Schlesinger often overestimates what Gauss knew about modular functions,

but in this case I agrée with him. As évidence, consider pp. 287-307 in

[12, X.l]. Thèse reproduce twelve consécutive pages from a notebook written
in 1808 (see [12, X.l, p. 322]), and they contain the formulas (2.7), a clear

statement of the basic observation of Lemma 2.3, the infinité product
manipulations described above, and the équations giving the division of the

agM into 3, 5 and 7 parts (in analogy with the division of the lemniscate).
The last item is especially interesting because it relates to the second half
of the 108th entry: "Moreover, in thèse same days, we hâve discovered the

principles according to which the agM séries should be interpolated, so as

to enable us to exhibit by algebraic équations the terms in a given pro
gressionpertaining to any rational index" (see [12, X.l, p. 548]). There is no
other record of this in 1800, yet hère it is in 1808 resurfacing with other
material (the infinité products) dating from 1800. Thus it is reasonable to
assume that the rest of this material, including (2.7), also dates from 1800.

Of course, to really check this conjecture, one would hâve to study the

original documents in détail.
Given ail of (2.6)-(2.9), it is still not clear where Gauss got the basic

insight that M(a, b) is a multiple valued function. One possible source of
inspiration is the differential équation (1.12) whose solution (1.13) suggests
linear combinations similar to those of Theorem 2.2. We get even closer
to this theorem when we consiser the periods of S(<\>) :

where m, n are even integers. Gauss' struggles during May 1800 to understand
the imaginary nature of thèse periods (see [12, X.2, pp. 70-71]) may hâve
influenced his work on the agM. (We should point out that the above
comments are related: Theorem 2.2 can be proved by analyzing the mono
dromygroup?r 2(4) in this case?of the differential équation (1.12).) On the
other hand, Geppert suggests that Gauss may hâve taken a completely différent



route, involving the asymptotic formula (3.18), of arriving at Theorem 2.2

(see [14, pp. 173-175]). We will of course never really know how Gauss

arrived at this theorem.

For many years, Gauss hoped to write up thèse results for publication.
He mentions this in Disquisitiones Arithmeticae (see [11, § 335]) and in the
research announcement to his 1818 article (see [12, 111, p. 358]). Two
manuscripts written in 1800 (one on the agM, the other on lemniscatic

functions) show that Gauss made a good start on this project (see [12, 111,

pp. 360-371 and 413-415]). He also periodically returned to earlier work and

rewrote it in more complète form (the 1808 notebook is an example of

this). Aside from the many other projects Gauss had to distract him, it is

clear why he never finished this one: it was simply too big. Given his

prédilection for completeness, the resulting work would hâve been enormous.
Gauss finally gave up trying in 1827 when the first works of Abel and

Jacobi appeared. As he wrote in 1828, "I shall most likely not soon prépare

my investigations on transcendental functions which I hâve had for many
years?since 1798?because I hâve many other matters which must be cleared

up. Herr Abel has now, I see, anticipated me and relieved me of the burden
in regard to one third of thèse matters, particularly since he carried out ail

developments with great concision and élégance" (see [12, X.l, p. 248]).
The other two thirds "of thèse matters" encompass Gauss' work on the

agM and modular functions. The latter were studied vigorously in the

nineteenth century and are still an active area of research today. The agM,
on the other hand, has been relegated to the history books. This is not

entirely wrong, for the history of this subject is wonderful. But at the same

time the agM is also wonderful as mathematics, and this mathematics
deserves to be better known.
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