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2.4 Conic Sections 29

More generally, any second-degree equation represents a conic section or
a pair of straight lines, a result that was proved by Descartes (1637).

Figure 2.7: The conic sections

The invention of conic sections is attributed to Menaechmus (fourth
century bce), a contemporary of Alexander the Great. Alexander is said
to have asked Menaechmus for a crash course in geometry, but Menaech-
mus refused, saying, “There is no royal road to geometry.” Menaechmus
used conic sections to give a very simple solution to the problem of dupli-
cating the cube. In analytic notation, this can be described as finding the
intersection of the parabola y = 1

2 x2 with the hyperbola xy = 1. This yields

x
1
2

x2 = 1 or x3 = 2.

Although the Greeks accepted this as a “construction” for duplicating
the cube, they apparently never discussed instruments for actually drawing
conic sections. This is very puzzling since a natural generalization of the
compass immediately suggests itself (Figure 2.8). The arm A is set at a
fixed position relative to a plane P, while the other arm rotates about it at a
fixed angle θ, generating a cone with A as its axis of symmetry. The pencil,
which is free to slide in a sleeve on this second arm, traces the section of
the cone lying in the plane P. According to Coolidge (1945), p. 149, this
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Why conic sections?

•Natural generalisations of circles in terms of mode of generation. 

•Natural in optics and perspective painting (image of circle).
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•Natural in optics (focal properties). 
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the course of a day). 

•Correspond to natural motion (projectiles and planets).













Planetary orbits are ellipses  
Kepler, Astronomia Nova, 1609



Why conic sections?
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the course of a day). 
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•Can be used to double the cube.



Chapter 3

Operationalism and the classical

construction problems

3.1 Why trisect an angle? Double a cube? Square a circle?
Higher Greek geometry is as obsessed with constructions as Euclid was. Greek geometers devoted enormous
efforts, across several centuries, to three fundamental problems in particular:

• Trisecting the angle: given an angle, cut it into three equal parts.1

• Doubling the cube: given a cube, make a cube with twice the volume.2

Volume = 1

1

Volume = 2

3
”
2

• Squaring the circle: given a circle, construct a square with the same area.3

1In modern terms, this is equivalent to solving a particular cubic equation. This can be seen using trigonometric addition
formulas, since constructing the required points on the arc is equivalent to constructing the point perpendicularly below it on
the axis.

2In modern terms, this is equivalent to constructing a line segment of length 3”2.
3In modern terms, this is equivalent to constructing a line segment of length ⇡. This follows from the theorem shown in

Figure 3.9.

40
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Figure 13: From Evans, History and Practice of Ancient Astronomy.

a given circle), and the trisection of an angle (dividing an angle
into three equal pieces). And it is with good reason that these
problems were seen as fundamental. They are very pure, proto-
typical problems—not to say picturesque embodiments—of key
concepts of geometry: proportion, area, angle. The doubling of
a plane figure, the area of a rectilinear figure, and the bisection
of an angle are all fundamental results that the geometer con-
stantly relies upon, and the three classical problems are arguably
nothing but the most natural way of pushing the boundaries of
these core elements of geometrical knowledge. The great ma-
jority of higher curves and constructions studied by the Greeks
were pursued solely or largely because one or more of the clas-
sical construction problems can be solved with their aid.

A strong case can be made that even conic sections were in-
troduced for this reason, even though other motivations may
appear more natural to us, such as astronomical gnomonics or
perspective optics.

8.1. Making a cube twice as voluminous as a unit cube is ob-
viously equivalent to constructing 3

p
2. Show that this can

easily be accomplished assuming that the hyperbola xy = 2
and the parabola y = x2 can be drawn.

For trisecting an angle, one of the Greek methods went as fol-
lows.

= =

=

O A

B

C
D

E

Consider a horizontal line segment OA. Raise the perpendic-
ular above A and let B be any point on this line. We wish to
trisect ‹AOB . Draw the horizontal through B and find (some-
how!) a point E on this line such that when it is connected to O
the part EC of it to the right of AB is twice the length of OB .
I say that ‹AOC = 1

3‹AOB , so we have trisected the angle, as
desired.

8.2. Prove that ‹AOC = 1
3‹AOB . Hint: Consider the mid-

point of D of EC . It may help to draw the horizontal
through D and see what you can infer from this.

But how exactly are we supposed to find the point E? This can

in fact not be done by ruler and compass only.

8.3. Argue, however, that it can be done if we are allowed to
make marks on our ruler, and then fit the marked length
into the figure by a kind of trial-and-error process. (This is
called a neusis construction.)

8.4. Argue that E could also be found if we could construct
curves like this:

This is called a conchoid. It was invented by Nicomedes, who
also showed how it could be constructed by an instrument.

8.5. Explain how to build such an instrument. Hint:

8.6. Build such an instrument for yourself and use it to trisect
an angle.

Hint: Hardware stores sometimes have tools consisting of
linked rulers—sometimes called a “templater”—which are
very suited for this purpose. Also, as a plane of construc-
tion it is useful to use a large sheet of very thick paper. To
mark points one may use flat-headed nails piercing through
the paper from below.

§ 9. Trigonometry

The history of trigonometry is the history of measuring heaven
and earth. Regiomontanus called his book De triangulis omni-
modis (1464) “the foot of the ladder to the stars.”

9.1. Synopsis of Aristarchus’ work On the distances and sizes of
the sun and moon (c. -270).

Notation: E, M, S are the centers of the earth, moon and
sun respectively, and E’, M’, S’ are points on their apparent
perimeters.

(a) The ratio of the distances from the earth to the moon
and from the earth to the sun can be determined by
measuring the angle MES at half moon. For at half
moon the angle EMS=90° and the angle MES is mea-
surable, so we know all angles of this triangle and
thus the ratios of its sides.

(b) The ratio of the sizes of the moon and the sun can
then be inferred at a solar eclipse. For at a solar
eclipse, the moon precisely covers the sun. Thus

11



Which reasons did the Greeks care about?

•Natural generalisations of circles in terms of mode of generation. 

•Natural in optics and perspective painting (image of circle). 

•Natural in optics (focal properties). 

•Natural in astronomy and sundial-construction (path of shadow in 
the course of a day). 

•Correspond to natural motion (projectiles and planets). 

•Can be used to double the cube.
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hyperbole 
exaggerated statements or claims not meant to be taken literally 
(“too much”) 

parable 
a simple story used to illustrate a moral or spiritual lesson  
(“just right”) 

ellipsis (…) 
the omission from speech or writing of words that are superfluous 
(“too little”)
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al-Qūhī, c. 980

30 2 Greek Geometry

instrument for drawing conic sections was first described as late as 1000 ce
by the Arab mathematician al-Kuji. Yet nearly all the theoretical facts one
could wish to know about conic sections had already been worked out by
Apollonius (around 250–200 bce)!

A
θ

P

Figure 2.8: Generalized compass

The theory and practice of conic sections finally met when Kepler
(1609) discovered the orbits of the planets to be ellipses, and Newton
(1687 ) explained this fact by his law of gravitation. This wonderful vin-
dication of the theory of conic sections has often been described in terms
of basic research receiving its long overdue reward, but perhaps one can
also see it as a rebuke to Greek disdain for applications. Kepler would not
have been sure which it was. To the end of his days he was proudest of
his theory explaining the distances of the planets in terms of the five reg-
ular polyhedra (Section 2.2). The fascinating and paradoxical character of
Kepler has been warmly described in two excellent books, Koestler (1959)
and Banville (1981).

Exercises

A key feature of the ellipse for both geometry and astronomy is a point called
the focus. The term is the Latin word for fireplace, and it was introduced by
Kepler. The ellipse actually has two foci, and they have the geometric property
that the sum of the distances from the foci F1, F2 to any point P on the ellipse is
constant.

2.4.1 This property gives a way to draw an ellipse using two pins and piece of
string. Explain how.







“Apollonius, the carpenter, the geometer”
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Operationalism and the classical

construction problems

3.1 Why trisect an angle? Double a cube? Square a circle?
Higher Greek geometry is as obsessed with constructions as Euclid was. Greek geometers devoted enormous
efforts, across several centuries, to three fundamental problems in particular:

• Trisecting the angle: given an angle, cut it into three equal parts.1

• Doubling the cube: given a cube, make a cube with twice the volume.2
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• Squaring the circle: given a circle, construct a square with the same area.3

1In modern terms, this is equivalent to solving a particular cubic equation. This can be seen using trigonometric addition
formulas, since constructing the required points on the arc is equivalent to constructing the point perpendicularly below it on
the axis.

2In modern terms, this is equivalent to constructing a line segment of length 3”2.
3In modern terms, this is equivalent to constructing a line segment of length ⇡. This follows from the theorem shown in

Figure 3.9.
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The Paracentric Isochrone dr/dt = constant

But elsewhere Leibniz (1693i) emphasised instead that a rectification “enlightens the mind” more than a quadrature:

But among the geometrical constructions I prefer not only those which are the simplest but also those
which serve to reduce the problem to another, simpler problem and which contribute to enlighten the
mind; for example, I would wish to reduce quadratures or the dimensions of areas to the dimensions of
curved lines.318

Then again in other cases rectifications seem to be preferred over quadratures for the sake of greater practical feasi-
bility. Thus Huygens (1694b) writes:

It is a strange assumption to take the quadratures of every curve as given, and if the construction of
a problem ends with that, apart from the quadrature of the circle and the hyperbola, I would have
believed that nothing had been accomplished, since even mechanically one does not know how to carry
anything out. It is a bit better to assume that we can measure any curved line, as I see your opinion is
also.319

Altogether the diversity of arguments used to justify the rectification of quadratures at first sight appears quite
confusing.

Extramathematical principles such as these often show their true colour only in moments of conflict, so we
should be grateful that the problem of rectification of quadratures was involved in one major confrontation of
opposing views. This concerned Jacob Bernoulli’s solution (1694b) of the paracentric isochrone problem by rec-
tification of the elastica, i.e., the curve assumed by a bent elastic beam.320 We shall discuss the elastica and the
paracentric isochrone problem in greater detail in chapter 8. Suffice it to say for now that the problem of finding the
curve reduces to integrating 1/

p
1� x4, a complicated and nonstandard integral that required innovative methods

such as the use of the elastica for its solution.
In introducing his solution, Jacob Bernoulli appears quite certain that it will be appreciated. And with good

reason: the rectification of quadratures was universally valued, as we have seen, and the use of one mechanically
defined curve to construct another also had ample precedent, such as Leibniz’s construction of logarithms by the
catenary (section 6.3.2) and Leibniz’s and Huygens’s use of the tractrix to, e.g., square a hyperbola (chapter 5).
Indeed Jacob Bernoulli (1693b) had noted in another context that a certain quantity “depends on the quadrature
of a hyperbola; therefore it is found by means of a logarithm or string.”321 This endorsement of the “string” (i.e.,
catenary) construction of hyperbolic quadratures suggests that his own mechanical construction is sincere, and
not a misguided attempt at promoting his own elastica. Thus, by way of justification of his paracentric isochrone
construction, Bernoulli only passingly alludes to the practical feasibility of his solution:

For although it is possible to carry out the same by means of the squaring of any algebraic area, another
method of construction is to be preferred, I judge, since it is generally easier in practice to rectify a curve
than to square an area, and especially since nature herself seems to have drawn it [i.e., the elastica].322

Perhaps to his surprise, Bernoulli’s construction was universally condemned. Huygens (1694b), writing to Leibniz,
finds it “strange” and would prefer a construction by rectification of an algebraic curve:

It seems that you hold for true his construction of your paracentric [isochrone], after having examined,
as I believe, the demonstration, as I have not yet done. It’s quite a strange encounter to have there been
able to employ his elastic curve; but your construction will assuredly be much better, if you only need
to measure a geometric curve, or at least [a curve] for which you know how to find the points.323

Leibniz (1694e) agrees:

He makes use of the rectification of a curve which is itself already transcendental, namely his elastica,
and thus his construction is transcendental of the second order. In place of which I only make use of
the rectification of an ordinary curve for which I give the construction by common geometry. 324

l’Hôpital (1694b) also agrees:

111
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becomes the 

master.

Ageing Huygens 
studies Leibniz’s 

new calculus.





The 
Hague

Utrecht



“I still do not understand 
anything about ddx, and I 

would like to know if you have 
encountered any important 
problems where they should 

be used, so that this gives me 
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~ philosophy: “Few but ripe.” It is a mark of class to focus
only on elegant, simple, important, emblematic masterpieces.
Write enough to give a definitive, impeccable treatment of the
subject, but not more. It will be evident that this is merely the
tip of an iceberg, resting on a solid body of technical expertise.
But the tedious explication of the latter—the scaffolding, the
tricks of the trade—is left to lesser mathematicians.

E.g. Archimedes:

volume of sphere = 2
3 volume of cylinder

area of spiral = 1
3 area of circle

area of triangle = area of circle

17th century ~ examples:

Huygens:

tautochrone = cycloid = evolute of cycloid

Leibniz:
º

4
= 1

1
° 1

3
+ 1

5
° 1

7
+ 1

9
° · · ·

Non-examples:

Johann Bernoulli:

Z1

0
xx d x = 1

11 ° 1
22 + 1

33 ° 1
44 +·· ·

Not ~ because not classically motivated and self-contained;
presupposes “nerd” interest in evaluating everything that
can be symbolically formulated. Same with Euler’s so-called
beautiful (actually only ) formula

eiº+1 = 0

Huygens: I will learn calculus but only for ~, not for . “I
still do not understand anything about ddx, and I would like to
know if you have encountered any important problems where
they should be used, so that this gives me desire to study them.”
“[Natural] curves merit, in my opinion, that one selects them
for study, but not those [curves] newly made up solely for us-
ing the geometrical calculus upon them.”

Leibniz: Agree, calculus worth little. “You are right, Sir, to
not approve if one amuses oneself researching curves invented
for pleasure.” But the difference between t and ~ is that t
is more focussed on general methodological insights, which is
why Leibniz adds: “I would however add a restriction: Except
if it can serve to perfect the art of discovery.”

L’Hôpital’s Rule: typical of the sort condemned here.

A typical ~ versus conflict/misunderstanding: Leibniz ver-
sus the English on power series in the 1670s.

Leibniz typical ~, cares about singular, beautiful results: “I
possess certain analytical methods, extremely general and far-
reaching,” but “exquisite” º series “especially is most wonder-
ful.”

English typical , care about plug-and-chug-ready formulas,
criticise Leibniz for merely giving special cases. Collins: “infi-
nite Series to be generally fitted to any equation proposed, so
that an Algebraist being furnished with his Stock, will quickly
fitt a Series.” Newton: I gave “a general Method of doing in
all Figures,” whereas “Leibnitz never produced any other Series
than numerical Series deduced from them in particular Cases.”

But Leibniz has no interest in that doesn’t lead to ~ : “I too
used this method [of series inversion] at one time, but after
nothing elegant had resulted in the example which I had by
chance taken up, I neglected it forthwith with my usual impa-
tience.”

Later Newton turns from to ~, because more classical and
elegant (and perhaps associated with a certain snobbery and
sense of superiority): “He thought Huygens’s stile and manner
the most elegant of any mathematical writer of modern times,
and the most just imitator of the antients. Of their taste, and
form of demonstration, Sir Isaac always professed himself a
great admirer: I have heard him even censure himself for not
following them yet more closely than he did; and speak with
regret of his mistake at the beginning of his mathematical stud-
ies, in applying himself to the work of Des Cartes and other al-
gebraic writers.”

Euler disapproves, goes back to , values toolbox adaptabil-
ity more than beauty: “I always have the same trouble, when I
might chance to glance through Newton’s Principia: Whenever
the solutions of problems seem to be sufficiently well under-
stood by me, yet by making only a small change, I might not be
able to solve the new problem using this method.”
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~ philosophy: “Few but ripe.” It is a mark of class to focus
only on elegant, simple, important, emblematic masterpieces.
Write enough to give a definitive, impeccable treatment of the
subject, but not more. It will be evident that this is merely the
tip of an iceberg, resting on a solid body of technical expertise.
But the tedious explication of the latter—the scaffolding, the
tricks of the trade—is left to lesser mathematicians.

E.g. Archimedes:

volume of sphere = 2
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3 area of circle
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17th century ~ examples:
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Not ~ because not classically motivated and self-contained;
presupposes “nerd” interest in evaluating everything that
can be symbolically formulated. Same with Euler’s so-called
beautiful (actually only ) formula

eiº+1 = 0

Huygens: I will learn calculus but only for ~, not for . “I
still do not understand anything about ddx, and I would like to
know if you have encountered any important problems where
they should be used, so that this gives me desire to study them.”
“[Natural] curves merit, in my opinion, that one selects them
for study, but not those [curves] newly made up solely for us-
ing the geometrical calculus upon them.”

Leibniz: Agree, calculus worth little. “You are right, Sir, to
not approve if one amuses oneself researching curves invented
for pleasure.” But the difference between t and ~ is that t
is more focussed on general methodological insights, which is
why Leibniz adds: “I would however add a restriction: Except
if it can serve to perfect the art of discovery.”

L’Hôpital’s Rule: typical of the sort condemned here.

A typical ~ versus conflict/misunderstanding: Leibniz ver-
sus the English on power series in the 1670s.

Leibniz typical ~, cares about singular, beautiful results: “I
possess certain analytical methods, extremely general and far-
reaching,” but “exquisite” º series “especially is most wonder-
ful.”

English typical , care about plug-and-chug-ready formulas,
criticise Leibniz for merely giving special cases. Collins: “infi-
nite Series to be generally fitted to any equation proposed, so
that an Algebraist being furnished with his Stock, will quickly
fitt a Series.” Newton: I gave “a general Method of doing in
all Figures,” whereas “Leibnitz never produced any other Series
than numerical Series deduced from them in particular Cases.”

But Leibniz has no interest in that doesn’t lead to ~ : “I too
used this method [of series inversion] at one time, but after
nothing elegant had resulted in the example which I had by
chance taken up, I neglected it forthwith with my usual impa-
tience.”

Later Newton turns from to ~, because more classical and
elegant (and perhaps associated with a certain snobbery and
sense of superiority): “He thought Huygens’s stile and manner
the most elegant of any mathematical writer of modern times,
and the most just imitator of the antients. Of their taste, and
form of demonstration, Sir Isaac always professed himself a
great admirer: I have heard him even censure himself for not
following them yet more closely than he did; and speak with
regret of his mistake at the beginning of his mathematical stud-
ies, in applying himself to the work of Des Cartes and other al-
gebraic writers.”

Euler disapproves, goes back to , values toolbox adaptabil-
ity more than beauty: “I always have the same trouble, when I
might chance to glance through Newton’s Principia: Whenever
the solutions of problems seem to be sufficiently well under-
stood by me, yet by making only a small change, I might not be
able to solve the new problem using this method.”
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~ philosophy: “Few but ripe.” It is a mark of class to focus
only on elegant, simple, important, emblematic masterpieces.
Write enough to give a definitive, impeccable treatment of the
subject, but not more. It will be evident that this is merely the
tip of an iceberg, resting on a solid body of technical expertise.
But the tedious explication of the latter—the scaffolding, the
tricks of the trade—is left to lesser mathematicians.
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3 volume of cylinder
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Not ~ because not classically motivated and self-contained;
presupposes “nerd” interest in evaluating everything that
can be symbolically formulated. Same with Euler’s so-called
beautiful (actually only ) formula

eiº+1 = 0

Huygens: I will learn calculus but only for ~, not for . “I
still do not understand anything about ddx, and I would like to
know if you have encountered any important problems where
they should be used, so that this gives me desire to study them.”
“[Natural] curves merit, in my opinion, that one selects them
for study, but not those [curves] newly made up solely for us-
ing the geometrical calculus upon them.”

Leibniz: Agree, calculus worth little. “You are right, Sir, to
not approve if one amuses oneself researching curves invented
for pleasure.” But the difference between t and ~ is that t
is more focussed on general methodological insights, which is
why Leibniz adds: “I would however add a restriction: Except
if it can serve to perfect the art of discovery.”

L’Hôpital’s Rule: typical of the sort condemned here.

A typical ~ versus conflict/misunderstanding: Leibniz ver-
sus the English on power series in the 1670s.

Leibniz typical ~, cares about singular, beautiful results: “I
possess certain analytical methods, extremely general and far-
reaching,” but “exquisite” º series “especially is most wonder-
ful.”

English typical , care about plug-and-chug-ready formulas,
criticise Leibniz for merely giving special cases. Collins: “infi-
nite Series to be generally fitted to any equation proposed, so
that an Algebraist being furnished with his Stock, will quickly
fitt a Series.” Newton: I gave “a general Method of doing in
all Figures,” whereas “Leibnitz never produced any other Series
than numerical Series deduced from them in particular Cases.”

But Leibniz has no interest in that doesn’t lead to ~ : “I too
used this method [of series inversion] at one time, but after
nothing elegant had resulted in the example which I had by
chance taken up, I neglected it forthwith with my usual impa-
tience.”

Later Newton turns from to ~, because more classical and
elegant (and perhaps associated with a certain snobbery and
sense of superiority): “He thought Huygens’s stile and manner
the most elegant of any mathematical writer of modern times,
and the most just imitator of the antients. Of their taste, and
form of demonstration, Sir Isaac always professed himself a
great admirer: I have heard him even censure himself for not
following them yet more closely than he did; and speak with
regret of his mistake at the beginning of his mathematical stud-
ies, in applying himself to the work of Des Cartes and other al-
gebraic writers.”

Euler disapproves, goes back to , values toolbox adaptabil-
ity more than beauty: “I always have the same trouble, when I
might chance to glance through Newton’s Principia: Whenever
the solutions of problems seem to be sufficiently well under-
stood by me, yet by making only a small change, I might not be
able to solve the new problem using this method.”
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subject, but not more. It will be evident that this is merely the
tip of an iceberg, resting on a solid body of technical expertise.
But the tedious explication of the latter—the scaffolding, the
tricks of the trade—is left to lesser mathematicians.

E.g. Archimedes:

volume of sphere = 2
3 volume of cylinder

area of spiral = 1
3 area of circle

area of triangle = area of circle

17th century ~ examples:

Huygens:

tautochrone = cycloid = evolute of cycloid

Leibniz:
º

4
= 1

1
° 1

3
+ 1

5
° 1

7
+ 1

9
° · · ·

Non-examples:

Johann Bernoulli:

Z1

0
xx d x = 1

11 ° 1
22 + 1

33 ° 1
44 +·· ·

Not ~ because not classically motivated and self-contained;
presupposes “nerd” interest in evaluating everything that
can be symbolically formulated. Same with Euler’s so-called
beautiful (actually only ) formula

eiº+1 = 0

Huygens: I will learn calculus but only for ~, not for . “I
still do not understand anything about ddx, and I would like to
know if you have encountered any important problems where
they should be used, so that this gives me desire to study them.”
“[Natural] curves merit, in my opinion, that one selects them
for study, but not those [curves] newly made up solely for us-
ing the geometrical calculus upon them.”

Leibniz: Agree, calculus worth little. “You are right, Sir, to
not approve if one amuses oneself researching curves invented
for pleasure.” But the difference between t and ~ is that t
is more focussed on general methodological insights, which is
why Leibniz adds: “I would however add a restriction: Except
if it can serve to perfect the art of discovery.”

L’Hôpital’s Rule: typical of the sort condemned here.

A typical ~ versus conflict/misunderstanding: Leibniz ver-
sus the English on power series in the 1670s.

Leibniz typical ~, cares about singular, beautiful results: “I
possess certain analytical methods, extremely general and far-
reaching,” but “exquisite” º series “especially is most wonder-
ful.”

English typical , care about plug-and-chug-ready formulas,
criticise Leibniz for merely giving special cases. Collins: “infi-
nite Series to be generally fitted to any equation proposed, so
that an Algebraist being furnished with his Stock, will quickly
fitt a Series.” Newton: I gave “a general Method of doing in
all Figures,” whereas “Leibnitz never produced any other Series
than numerical Series deduced from them in particular Cases.”

But Leibniz has no interest in that doesn’t lead to ~ : “I too
used this method [of series inversion] at one time, but after
nothing elegant had resulted in the example which I had by
chance taken up, I neglected it forthwith with my usual impa-
tience.”

Later Newton turns from to ~, because more classical and
elegant (and perhaps associated with a certain snobbery and
sense of superiority): “He thought Huygens’s stile and manner
the most elegant of any mathematical writer of modern times,
and the most just imitator of the antients. Of their taste, and
form of demonstration, Sir Isaac always professed himself a
great admirer: I have heard him even censure himself for not
following them yet more closely than he did; and speak with
regret of his mistake at the beginning of his mathematical stud-
ies, in applying himself to the work of Des Cartes and other al-
gebraic writers.”

Euler disapproves, goes back to , values toolbox adaptabil-
ity more than beauty: “I always have the same trouble, when I
might chance to glance through Newton’s Principia: Whenever
the solutions of problems seem to be sufficiently well under-
stood by me, yet by making only a small change, I might not be
able to solve the new problem using this method.”
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Leibniz is by nature a t . The ~ tendencies in the º series
episode are coloured by the influence of Huygens, who, in typ-
ical ~ manner, praised the º series as “a discovery always to be
remembered among mathematicians.”

Later Leibniz resisted ~ and saw it as a distraction from his
main task of t . This is why, for example, he fights not to get
drawn into the brachistochrone problem (a true ~ problem):
“The problem draws me reluctantly and resistingly to it by its
beauty, like the apple did Eve. For it is a grave and harmful
temptation to me.”

t need to spell out the details of their systems. E.g.
Descartes: Van Schooten; Leibniz: l’Hôpital, Johann Bernoulli.

Leibniz: “I wish there were young people who would apply
themselves to these calculations. With me it’s like the tiger who
lets run whatever he does not catch in one or two or three at-
tempts.”

Leibniz is no more than 5% : “Had I 20 heads, or better yet 20
good friends, I would put one of them toward working out the
theory of conics.”

Systematic theory of integration by partial fractions: a topic
needed for t , namely “a question of the greatest importance:
whether all rational quadratures can be reduced to the quadra-
ture of the hyperbola and the circle” (Leibniz). This forces
Leibniz, reluctantly and contrary to his nature, to do some

work, with poor results (Leibniz erroneously believes that
“
R

d x : (x4 + a4) can be reduced to neither the circle nor the
hyperbola by [partial fractions], but establishes a new kind of
its own”). A typical t , Leibniz clearly has very little interest in
actually evaluating integrals, and only cares about giving a big-
picture methodological-foundational account of integration in
general.

Myth: Early Leibnizian calculus driven by applications; lacks
attention to rigour. Typicale.

Reality: The exact opposite: Early Leibnizian calculus primarily
concerned witht; indifferent to physics; consumed by rigour.

What is rigour? What makes for good foundations? What made
Greek mathematicians successful?

) According to annoying outsiders trying to discredit in-
finitesimals (Nieuwentijt, Rolle, Berkeley): pedantry and
cautiousness.

. According to some superficial generalisations of geomet-
rical method (Pascal, Spinoza, Cartesians): intuition; nat-
ural light.

t According to the best mathematicians (Descartes, Leib-
niz, Huygens): construction; operationalisation.

) often mistaken for “the right answer” since it is the view of
current mathematicians. But this in anachronistic. Only later,

in the 19th century, did ) become the obsession of mathe-
maticians due to developments internal to mathematics.

Catenary, tractrix, envelopes, elastica, paracentric isochrone
studied almost solely for the sake of t. Physics/e/) aspects
deliberately and purposefully ignored to a remarkable degree.

Leibniz publishes four papers on the catenary. None contain
the basic physics of it. All open with t.

Leibniz’s envelope rule: When it’s only e (optics), almost ig-
nores it. When it turns out to be relevant to t, celebrates it
enthusiastically.

Jacob Bernoulli finds the elastica: When it’s only e , almost ig-
nores it. When it turns out to be relevant to t, celebrates it
enthusiastically.

More generally: Root cause of misunderstanding is that inter-
nalistic history of mathematics is very strong on ⇢, but of-
ten misses ⇡. This is because t (and even ~) is context-
dependent, alien to us. ⇢ much more universal, easy to fit into
modern conceptions.
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) According to annoying outsiders trying to discredit in-
finitesimals (Nieuwentijt, Rolle, Berkeley): pedantry and
cautiousness.

. According to some superficial generalisations of geomet-
rical method (Pascal, Spinoza, Cartesians): intuition; nat-
ural light.

t According to the best mathematicians (Descartes, Leib-
niz, Huygens): construction; operationalisation.

) often mistaken for “the right answer” since it is the view of
current mathematicians. But this in anachronistic. Only later,

in the 19th century, did ) become the obsession of mathe-
maticians due to developments internal to mathematics.

Catenary, tractrix, envelopes, elastica, paracentric isochrone
studied almost solely for the sake of t. Physics/e/) aspects
deliberately and purposefully ignored to a remarkable degree.

Leibniz publishes four papers on the catenary. None contain
the basic physics of it. All open with t.

Leibniz’s envelope rule: When it’s only e (optics), almost ig-
nores it. When it turns out to be relevant to t, celebrates it
enthusiastically.

Jacob Bernoulli finds the elastica: When it’s only e , almost ig-
nores it. When it turns out to be relevant to t, celebrates it
enthusiastically.

More generally: Root cause of misunderstanding is that inter-
nalistic history of mathematics is very strong on ⇢, but of-
ten misses ⇡. This is because t (and even ~) is context-
dependent, alien to us. ⇢ much more universal, easy to fit into
modern conceptions.
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Dividing by x, hence eliminating the root x D 0 , implies that the roots of

1 ! x2 =3 Š C x4 =5 Š ! : : : are ˙ "; ˙2"; ˙3"; : : : :

Now, the infinite polynomial obtained by expansion of the infinite product Œ1 !
x2 =" 2 #Œ1 ! x2 =.2"/2 #Œ1 ! x2 =.3"/2 # : : : has precisely the same roots and the same
constant term as 1 ! x2 =3 Š C x4 =5 Š ! : : :, hence the two infinite polynomials are
identical (cf. the case of “ordinary” polynomials):

1 ! x2 =3 Š C x4 =5 Š ! : : : D Œ1 ! x2 =" 2 #Œ1 ! x2 =.2"/2 #Œ1 ! x2 =.3"/2 # : : :

Comparing coefficients of x2 on both sides yields !1=3 Š D !Œ1="2 C 1=.2"/2 C
1=.3"/2 C : : :#. (To see how the coefficient of x2 on the right is obtained, imagine
that you had finitely many terms.) Rearranging terms, we finally get

1 C 1=2 2 C 1=3 2 C : : : D "2 =6:

This formal, algebraic style of analysis, used so brilliantly by Euler and practiced
by most eighteenth-century mathematicians, is breathtaking. It accepted as articles
of faith that what is true for convergent series is true for divergent series, what is
true for finite quantities is true for infinitely large and infinitely small quantities,
and what is true for polynomials is true for power series.

What made mathematicians put their trust in the power of symbols, and in such a
broad “principle of continuity” – the belief that what held in a given context will
continue to hold in what appear to be similar contexts? (see Chap. 9) First and
foremost, the use of such formal methods led to important results. A strong intuition
by the leading mathematicians of the time kept errors to a minimum. Moreover, the
methods were often applied to problems, the reasonableness of whose solutions
“guaranteed” the correctness of the results and, by implication, the correctness of
the methods. There was also a belief, shared by Newton, that mathematicians were
simply uncovering God’s grand mathematical design of nature. (This belief, by
the way, had at least to some extent been abandoned by the end of the eighteenth
century: When Laplace gave Napoleon a copy of his Mécanique Céleste, Napoleon
is said to have remarked: “M. Laplace, they tell me you have written this large
book on the system of the universe and have never even mentioned its Creator,”
whereupon Laplace replied: “Sire, I have no need of this hypothesis” [45, p. 621].

4.4.4 Didactic Observation: Discovery and Proof

It was not uncommon for mathematicians of the seventeenth and eighteenth
centuries to resort to mathematical techniques which were at best questionable, often
inconsistent. They usually also recognized that their methods were unsatisfactory,
but were willing to tolerate them because they yielded correct results. Justification
4.5 Foundational Issues in the Seventeenth and Eighteenth Centuries 81

of otherwise inexplicable notions on the grounds that they yield useful results has
occurred frequently in the evolution of mathematics Of course, out of confusion
emerged in time clarity and understanding (see Chaps. 7–10).

Textbooks usually present the end product of mathematical activity, but of course
before one can prove one has to discover. And the method of discovery of a given
result may differ radically from its method of demonstration. The examples we have
presented from (for example) the works of Fermat, Leibniz, and Euler give us a
glimpse of mathematical discovery by great masters. Is there a moral for pedagogy
in all this? See the remarks in Sect. 4.6.4.

4.5 Foundational Issues in the Seventeenth and Eighteenth
Centuries

4.5.1 Introduction

The issue of rigorous foundations for calculus began with gropings in the early
seventeenth century and concluded with a “final” resolution in the 1870s. This
rather slow evolution toward a logical grounding is not atypical in the history of
mathematics. Rigor, formalism, and the logical development of a concept, result, or
theory usually come at the end of a process of mathematical evolution. In the case
of calculus, mathematicians achieved very impressive results during the seventeenth
and eighteenth centuries by intuitive, heuristic reasoning, and therefore had no
compelling reasons to put their subject on firm foundations. This does not mean that
there was no concern during these two centuries for the logic behind the algorithms
of calculus; and there were attempts, albeit unsuccessful, to supply it.

Mathematicians of the seventeenth and eighteenth centuries realized that the
subject they were creating was not on firm ground. They were well aware, for
example, that infinitesimals do not obey the Archimedean axiom and hence must
be viewed with suspicion – the axiom being basic to the Greek theory of proportion
which, in turn, was fundamental to seventeenth-century algebra and geometry. (The
Archimedean axiom says that given two positive real numbers a and b, there exists
a positive integer n such that na > b. But if a is an infinitesimal and b D 1, then
na < 1 for every positive integer n.) Newton especially was concerned about this
point.

When discussing issues of rigor in their work on calculus, mathematicians would
often claim that it could all be set right, if they wanted to bother, by the rigorous
Greek method of exhaustion; but the method was complex, hence impractical.
Cavalieri (recall) left rigor to the philosophers, but he once (in the manner of a
philosopher) likened line indivisibles of a plane surface to parallel threads of a
woven fabric, and surface indivisibles of a solid to parallel pages of a book. This
of course did not enhance the respectability of his methods. Fermat believed that
he had a simple algebraic process, with a clear geometric interpretation, for finding
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§ 4.6.4. Integral definition of the logarithm
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Figure 13: From Evans, History and Practice of Ancient Astronomy.

a given circle), and the trisection of an angle (dividing an angle
into three equal pieces). And it is with good reason that these
problems were seen as fundamental. They are very pure, proto-
typical problems—not to say picturesque embodiments—of key
concepts of geometry: proportion, area, angle. The doubling of
a plane figure, the area of a rectilinear figure, and the bisection
of an angle are all fundamental results that the geometer con-
stantly relies upon, and the three classical problems are arguably
nothing but the most natural way of pushing the boundaries of
these core elements of geometrical knowledge. The great ma-
jority of higher curves and constructions studied by the Greeks
were pursued solely or largely because one or more of the clas-
sical construction problems can be solved with their aid.

A strong case can be made that even conic sections were in-
troduced for this reason, even though other motivations may
appear more natural to us, such as astronomical gnomonics or
perspective optics.

8.1. Making a cube twice as voluminous as a unit cube is ob-
viously equivalent to constructing 3

p
2. Show that this can

easily be accomplished assuming that the hyperbola xy = 2
and the parabola y = x2 can be drawn.

For trisecting an angle, one of the Greek methods went as fol-
lows.

= =

=

O A

B

C
D

E

Consider a horizontal line segment OA. Raise the perpendic-
ular above A and let B be any point on this line. We wish to
trisect ‹AOB . Draw the horizontal through B and find (some-
how!) a point E on this line such that when it is connected to O
the part EC of it to the right of AB is twice the length of OB .
I say that ‹AOC = 1

3‹AOB , so we have trisected the angle, as
desired.

8.2. Prove that ‹AOC = 1
3‹AOB . Hint: Consider the mid-

point of D of EC . It may help to draw the horizontal
through D and see what you can infer from this.

But how exactly are we supposed to find the point E? This can

in fact not be done by ruler and compass only.

8.3. Argue, however, that it can be done if we are allowed to
make marks on our ruler, and then fit the marked length
into the figure by a kind of trial-and-error process. (This is
called a neusis construction.)

8.4. Argue that E could also be found if we could construct
curves like this:

This is called a conchoid. It was invented by Nicomedes, who
also showed how it could be constructed by an instrument.

8.5. Explain how to build such an instrument. Hint:

8.6. Build such an instrument for yourself and use it to trisect
an angle.

Hint: Hardware stores sometimes have tools consisting of
linked rulers—sometimes called a “templater”—which are
very suited for this purpose. Also, as a plane of construc-
tion it is useful to use a large sheet of very thick paper. To
mark points one may use flat-headed nails piercing through
the paper from below.

§ 9. Trigonometry

The history of trigonometry is the history of measuring heaven
and earth. Regiomontanus called his book De triangulis omni-
modis (1464) “the foot of the ladder to the stars.”

9.1. Synopsis of Aristarchus’ work On the distances and sizes of
the sun and moon (c. -270).

Notation: E, M, S are the centers of the earth, moon and
sun respectively, and E’, M’, S’ are points on their apparent
perimeters.

(a) The ratio of the distances from the earth to the moon
and from the earth to the sun can be determined by
measuring the angle MES at half moon. For at half
moon the angle EMS=90° and the angle MES is mea-
surable, so we know all angles of this triangle and
thus the ratios of its sides.

(b) The ratio of the sizes of the moon and the sun can
then be inferred at a solar eclipse. For at a solar
eclipse, the moon precisely covers the sun. Thus

11

Chapter 3

Operationalism and the classical

construction problems

3.1 Why trisect an angle? Double a cube? Square a circle?
Higher Greek geometry is as obsessed with constructions as Euclid was. Greek geometers devoted enormous
efforts, across several centuries, to three fundamental problems in particular:

• Trisecting the angle: given an angle, cut it into three equal parts.1

• Doubling the cube: given a cube, make a cube with twice the volume.2

Volume = 1

1

Volume = 2

3
”
2

• Squaring the circle: given a circle, construct a square with the same area.3

1In modern terms, this is equivalent to solving a particular cubic equation. This can be seen using trigonometric addition
formulas, since constructing the required points on the arc is equivalent to constructing the point perpendicularly below it on
the axis.

2In modern terms, this is equivalent to constructing a line segment of length 3”2.
3In modern terms, this is equivalent to constructing a line segment of length ⇡. This follows from the theorem shown in

Figure 3.9.
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The Tractrix



Figure 5.1: The tractrix is the curve traced by a weight dragged along a horizontal surface by a
string whose other end moves along a straight line.

5.2 The tractrix
The tractrix (figure 5.1) evidently attracted attention in the physique de salon of 17th

century Paris as it was easy for gentlemen to trace using their pocket watches (figure
5.2); Leibniz (1693f) relates that this is how he encountered the curve. Due to friction,
the weight will only move reluctantly in the direction pulled. Therefore the string
is always tangent to the traced curve. This translates immediately into a differential
equation for the tractrix, as follows. Let’s say that the length of the string is 1. Consider
it as the hypothenuse of a triangle with its other sides parallel to the axes. The height of
this triangle is y, so the remaining leg is

∆
1� y2. The slope of the triangle is therefore

�y/
∆

1� y2. But since the string is tangent to the curve this slope is also the slope of
the curve, dy/dx. Thus we get the differential equation

dx=�
∆

1� y2

y
dy

which has the solution

x = log

0
B@

1+
∆

1� y2

y

1
CA�
∆

1� y2

This shows that the tractrix is related to logarithms, or, if you prefer, to the quadrature
of the hyperbola y = 1/x—one of the most basic transcendental functions. So if one
were to grant the drawing of a tractrix as a legitimate construction then this would serve
a very useful purpose in the theory of transcendentals.205 And why should it not be
granted? This construction is in many ways very similar to the Euclidean constructions:
a circle is obtained by rotating a rod about a fixed end point; the tractrix by moving an
end point along a line. Indeed Huygens reasoned as much:
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Given: tractrix 

Sought: 

Figure 5.3: Detail of a 1692 manuscript by Huygens on the tractrix. The sentence in the top left
corner reads: “Une charette, ou un batteau servira a quarrer l’hyperbole” (“a little cart or boat
will serve to square the hyperbola”). The bottom line reads: “sirop au lieu d’eau” (“syrup instead
of water”). Syrup offers the necessary resistance and a boat leaves a clear trace in it. From Bos
(1988), p. 30.

Huygens (1693a) showed how to find a given quadrature of a hyperbola from a given
tractrix. His method is essentially an operationalisation of the solution formula for the
tractrix given above. Neither Huygens nor anyone else at the time wrote such a for-
mula explicitly, of course, but they understood very well the relation that it expresses.
In typical 17th century fashion, then, Huygens interprets the various terms of the re-
lation in concrete geometrical terms. Thus a term such as

∆
1� y2 suggests a leg of a
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introduces an auxiliary triangle as shown in figure 5.4a. Here the length of the leg a is
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and therefore, filling these results into the tractrix expression above,
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Thus measuring x + b , which is readily done, gives log(1/Y ), so we have succeeded in
finding a way to obtain the desired quadrature or logarithm by performing measure-
ments on the tractrix.

Huygens also knew that the arc length of the tractrix between y = 1 and y = Y
equals log(1/Y ). So if one assumed it possible to measure the arc length of the tractrix,
as opposed to only its coordinates, then one could have the answer immediately in a very
simple form, without the need for all these complicated auxiliary triangles. But, as we
have seen, Huygens considered the measuring of arc lengths a transcendental operation
to be avoided whenever possible.210
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will serve to square the hyperbola”). The bottom line reads: “sirop au lieu d’eau” (“syrup instead
of water”). Syrup offers the necessary resistance and a boat leaves a clear trace in it. From Bos
(1988), p. 30.
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a given circle), and the trisection of an angle (dividing an angle
into three equal pieces). And it is with good reason that these
problems were seen as fundamental. They are very pure, proto-
typical problems—not to say picturesque embodiments—of key
concepts of geometry: proportion, area, angle. The doubling of
a plane figure, the area of a rectilinear figure, and the bisection
of an angle are all fundamental results that the geometer con-
stantly relies upon, and the three classical problems are arguably
nothing but the most natural way of pushing the boundaries of
these core elements of geometrical knowledge. The great ma-
jority of higher curves and constructions studied by the Greeks
were pursued solely or largely because one or more of the clas-
sical construction problems can be solved with their aid.

A strong case can be made that even conic sections were in-
troduced for this reason, even though other motivations may
appear more natural to us, such as astronomical gnomonics or
perspective optics.

8.1. Making a cube twice as voluminous as a unit cube is ob-
viously equivalent to constructing 3

p
2. Show that this can

easily be accomplished assuming that the hyperbola xy = 2
and the parabola y = x2 can be drawn.

For trisecting an angle, one of the Greek methods went as fol-
lows.

= =

=

O A

B

C
D

E

Consider a horizontal line segment OA. Raise the perpendic-
ular above A and let B be any point on this line. We wish to
trisect ‹AOB . Draw the horizontal through B and find (some-
how!) a point E on this line such that when it is connected to O
the part EC of it to the right of AB is twice the length of OB .
I say that ‹AOC = 1

3‹AOB , so we have trisected the angle, as
desired.

8.2. Prove that ‹AOC = 1
3‹AOB . Hint: Consider the mid-

point of D of EC . It may help to draw the horizontal
through D and see what you can infer from this.

But how exactly are we supposed to find the point E? This can

in fact not be done by ruler and compass only.

8.3. Argue, however, that it can be done if we are allowed to
make marks on our ruler, and then fit the marked length
into the figure by a kind of trial-and-error process. (This is
called a neusis construction.)

8.4. Argue that E could also be found if we could construct
curves like this:

This is called a conchoid. It was invented by Nicomedes, who
also showed how it could be constructed by an instrument.

8.5. Explain how to build such an instrument. Hint:

8.6. Build such an instrument for yourself and use it to trisect
an angle.

Hint: Hardware stores sometimes have tools consisting of
linked rulers—sometimes called a “templater”—which are
very suited for this purpose. Also, as a plane of construc-
tion it is useful to use a large sheet of very thick paper. To
mark points one may use flat-headed nails piercing through
the paper from below.

§ 9. Trigonometry

The history of trigonometry is the history of measuring heaven
and earth. Regiomontanus called his book De triangulis omni-
modis (1464) “the foot of the ladder to the stars.”

9.1. Synopsis of Aristarchus’ work On the distances and sizes of
the sun and moon (c. -270).

Notation: E, M, S are the centers of the earth, moon and
sun respectively, and E’, M’, S’ are points on their apparent
perimeters.

(a) The ratio of the distances from the earth to the moon
and from the earth to the sun can be determined by
measuring the angle MES at half moon. For at half
moon the angle EMS=90° and the angle MES is mea-
surable, so we know all angles of this triangle and
thus the ratios of its sides.

(b) The ratio of the sizes of the moon and the sun can
then be inferred at a solar eclipse. For at a solar
eclipse, the moon precisely covers the sun. Thus

11
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C sola tractione Öli moveatur, adeoque ejus directionem in motu

Figur 3

servet. Sit vero & tabula quaedam RLM , eodem sui puncto R nor-
maliter incedens ad regulam HR, caeterum propulsa continue a
cylindro cavo, ita ut ATHR sit rectangulum. Denique in hac tabu-
la sit descripta, (per laminam extantem, si placet,) linea rigida EE,
quam cylinder solidus FE, incisura, quam in extremitate E habere
intelligitur, semper mordeat; ita prout R accedet ad T , cylinder FE
descendet. Cum igitur quantitas ET + TC sit data (nempe com-
posita ex cylindro solido EF , & toto Ölo FTC) sitque data relatio
inter TC & TR vel BC (ex lege declivitatum curvae data) habebi-
tur & relatio inter ET & TR, ordinatam & abscissam curvae EE,
cujus proinde natura & descriptio haberi potest in Tabula LRM
per geometriam ordinariam: habetur ergo etiam descriptio lineae
C(C) per machinationem praesentem. Est autem TC semper tan-
gens curvae C(C) ex natura nostri motus, itaque descripta est linea
C(C) ubi lex declivitatum, seu relatio laterum trianguli Characte-
ristici assignabilis, TRC, vel TBC, est data. Quae linea cum sit
quadratrix Ögurae datae quadrandae, ut paulo ante ostensum est,
habebitur quadratura vel dimensio quaesita. Q.E.F.

Similia variis modis ad conversae tangentium methodi proble-315
mata accommodari possunt, veluti si punctum T fuisset motum in
curva TT (loco rectae AT ) etiam HC coordinata (seu abscissa AB)
calculum fuisset ingressa. Et sane omne problema conversae tan-
gentium reduci potest ad relationem inter tres rectas, nempe duas
coordinatas CB, CH, & tangentem CT ; aut alias functiones harum
loco. Sed saepe res multo simpliciore motu conÖci potest. Veluti si
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Figure 6: Leibniz’s tractional-motion device for constructing the solution curve C(C) of any inverse tangent problem.
From Leibniz (1693a), figure 3 (left), and my reproduction (right).

as above.
In either case, then, since �(x) or f(x) are given, it takes only “ordinary” Cartesian geometry to construct

the required curve E(E) that will enable the curve C(C) with the desired property to be traced. In particular,
Leibniz’s construction gives the solution to dy/dx = f(x), where f(x) is any previously constructed curve,
while assuming nothing more than Cartesian geometry and a single-motion tracing procedure. In this way he
enlarged the domain of constructible curves vastly beyond the algebraic curves admitted by Descartes, while
still adhering very strictly to Descartes’s requirement of single-motion tracing and to the Euclidean–Cartesian
construction framework generally.

Such was the purpose of Leibniz’s paper. The confusion regarding the fundamental theorem arises from
Leibniz’s application to the problem of the construction of quadratures, i.e., the problem of constructing a
line segment whose length equals a given area, or integral. This is quite clearly the guiding idea of the whole

Figure 7: The tractrix is the curve traced by a weight dragged along a horizontal surface by a string whose other end
moves along a straight line.
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Figur 2

& inassignabile GLC, similia inter se. Et quidem inassignabile com-
prehenditur ipsis GL LC, elementis coordinatarum CB, CF , tan-
quam cruribus, & GC, elemento arcus, tanquam basi seu hypotenu-

Assignabile TBC comprehenditur inter axem ordinatam, &
tangentem, exprimitque adeo angulum, quem directio curvae (seu
ejus tangens) ad axem vel basin facit, hoc est curvae declivitatem
in proposito puncto C. Sit jam zona quadranda F (H) comprehensa
inter curvam H(H), duas rectas parallelas FH & (F )(H) & axem

in hoc Axe sumto puncto Öxo A, per A ducatur ad AF norma-
tanquam axis conjugatus, & in quavis HF (producta prout

opus) sumatur punctum C: seu Öat linea nova C(C) cujus haec sit
natura, ut ex puncto C ducta ad axem conjugatum AB (si opus
productum) tam ordinata conjugata CB, (aequali AF ) quam tan-

CT , sit portio hujus axis inter eas comprehensa TB, ad BC,
ad constantem a, seu a in BT aequetur rectangulo AFH

Figure 5.8: Leibniz’s reduction of quadratures to rectifications. From Leibniz (1693f), figure 2, and as reproduced in Leibniz
(1908), p. 31.

construction framework generally.
Solving the di↵erential equation dy/dx = f (x) is equivalent to finding the quadratureR

f (x) dx, which geometrically means constructing a line segment equal in magnitude to
this area, and this seems to be the form of the problem Leibniz had in mind when dis-
covering his construction. This problem of “rectifying quadratures” had long been on his
mind, as seen in Chapter 7, and it seems to be the guiding idea of the whole paper, whose
title promises “a general construction of all quadratures by motion” and then adds, almost
as an afterthought, “and in the same manner a versatile way to construct a curve from a
given tangent condition.” The latter is perhaps just an unexpected bonus, a side-e↵ect of
Leibniz’s real concern, which is the rectification of quadratures.

Leibniz’s rectification of quadratures amounts to clarifying that his construction not
only solves any di↵erential equation dy/dx = f (x) but also any integral

R b
a f (x) dx. This

problem readily reduces to the above as follows (Figure 5.8). Let AF = x and let f (x) =
FH be the function whose integral is to be constructed. As above, construct a curve C(C)
such that its slope dy/dx = T B/BC always equals f (x). Then it follows that FC = y =R

f (x) dx = AFHA, so the quadrature has been constructed as a line segment, as required.

5.4.1. The fundamental theorem of calculus myth
Now that we have understood the purpose of Leibniz’s construction, we are in a position
to refute the persistent myth, discussed in Section 2.3.3, that this paper contains Leibniz’s
proof of the fundamental theorem of calculus. As we argued in Section 4.2.4, Leibniz
considered this theorem to be trivial. His tractional construction and the associated rectifi-
cation of quadratures had, in his mind, nothing to do with this theorem. Leibniz’s sentence
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Figure 1: Left: Newton’s figure from his 1694 letter to Leibniz. Right: the same figure with my notation.

Figure 2: The enveloped curve FG of Newton’s construction in the cases y(x) =
⇥

x (left) and y(x) = x2

(right).

of integration C cannot be immediately read off from the figure. However, the rectification still

applies in the form D
�

y dx = DL � Ds.

HYPOTHETICAL RECONSTRUCTION OF LEIBNIZ’S READING OF NEWTON’S LETTER. Let us now

consider Newton’s construction from Leibniz’s perspective. At this point Leibniz already had his

famous method of envelope determination: to find the envelope of the family of curves f (x, y, a) =

0, combine the two equations f (x, y, a) = 0 and �
�a f (x, y, a) = 0 so as to eliminate a.2

2Leibniz’s justification for this rule is sketchy, but the basic idea is that a point on the envelope is not only on one of

the enveloping curves, so that f (x, y, a) = 0 for some a, but also on the “next” one, i.e., it satisfies f (x, y, a + da) = 0 as

well, whence �
�a f (x, y, a) = 0.
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Leibniz’s envelope rule

Short Math Guide for LATEX, version 1.09 (2002-03-22) 8

3.12. Punctuation

. .
/ /

| |
, ,

; ;
: \colon

: :
! !

? ?

· · · \dotsb

. . . \dotsc

· · · \dotsi

· · · \dotsm

. . . \dotso

. . . \ddots

... \vdots

Note 1. The : by itself produces a colon with class-3 (relation) spacing. The command \colon produces
special spacing for use in constructions such as f\colon A\to B f : A ! B.

Note 2. Although the commands \cdots and \ldots are frequently used, we recommend the more seman-
tically oriented commands \dotsb \dotsc \dotsi \dotsm \dotso for most purposes (see 4.6).

3.13. Pairing delimiters (extensible) See Section 6 for more information.
⇣ ⌘

( )

h i
[ ]

no
\lbrace \rbrace

���
��� \lvert \rvert

���
��� \lVert \rVert

D E
\langle \rangle

l m
\lceil \rceil

j k
\lfloor \rfloor

8
:

9
; \lgroup \rgroup

8
;

9
: \lmoustache \rmoustache

3.14. Nonpairing extensible symbols

��� \vert
��� \Vert

.
/

/
\backslash

??? \arrowvert

www \Arrowvert

>>>>>> \bracevert

Note 1. Using \vert, |, \Vert, or \| for paired delimiters is not recommended (see 6.2).

Synonyms: k \|

3.15. Extensible vertical arrows

x?? \uparrow

~ww \Uparrow

??y \downarrow

ww� \Downarrow

x?y \updownarrow

~w� \Updownarrow

3.16. Accents

x́ \acute{x}

x̀ \grave{x}

ẍ \ddot{x}

x̃ \tilde{x}

x̄ \bar{x}

x̆ \breve{x}

x̌ \check{x}

x̂ \hat{x}

~x \vec{x}

ẋ \dot{x}

ẍ \ddot{x}...
x \dddot{x}

gxxx \widetilde{xxx}

dxxx \widehat{xxx}

3.17. Named operators These operators are represented by a multiletter abbreviation.

arccos \arccos
arcsin \arcsin

arctan \arctan

arg \arg

cos \cos
cosh \cosh

cot \cot
coth \coth

csc \csc

deg \deg

det \det
dim \dim

exp \exp

gcd \gcd

hom \hom

inf \inf

inj lim \injlim

ker \ker
lg \lg

lim \lim

lim inf \liminf
lim sup \limsup

ln \ln

log \log

max \max

min \min

Pr \Pr
proj lim \projlim

sec \sec

sin \sin

sinh \sinh

sup \sup

tan \tan

tanh \tanh

lim�! \varinjlim

lim � \varprojlim

lim \varliminf

lim \varlimsup

To define additional named operators outside the above list, use the \DeclareMathOperator
command; for example, after

enveloped curve
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108. LEIBNIZ AN RUDOLF CHRISTIAN VON BODENHAUSEN

Hannover, 25. September (5. Oktober) 1692. [101. 113.]

Überlieferung:

L
1 Antwortnotizen: LH XXXV 15,5 Bl. 23–24. 1 Bog. 8o. 1

2 S. (Bl. 24 vo). Auf dem Rest des

5 Bogens K von N. 101. (Unsere Druckvorlage)

L
2 Abfertigung: LBr. 79 Bl. 78–81. 2 Bog. 8o. 8 S. (Unsere Druckvorlage)

A Auszüge aus L2: LBr. 79, Beilage 1, Bl. 36 ro–38 ro. 3 1
2 S. 8o von Bodenhausens Hand

mit einer Anmerkung und einer Querverweisung auf einen anderen Auszug des gleichen

Faszikels. — Gedr.: Gerhardt, Math. Schr. 7, 1863, S. 373–375 (teilw.).

10 hL1i
p

xx + yy = l. Ergo fiet xdx + ydy, : l = dl.
p

aa� 2ax + xx + yy = m. Ergo
dm = xdx + ydy � adx, : m.

p
bb� 2bx + xx + yy = n. Ergo dn = xdx + ydy � bdx, : n.

c = l + m + n. Ergo 0 =
xdx + ydy

l
+

xdx + ydy � adx

m
+

xdx + ydy � bdx

n
. Ergo dy :

dx = �x : l + a� x : m + b� x : n, :, y : l + y : m + y : n.

Zu N. 108: Die Abfertigung, die Beilage zu einem Brief an Magliabechi (I,8 N. 274) war, antwortet

auf N. 101 und wird beantwortet durch N. 125.
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gemacht, kan ich mich nicht erinnern, sondern habe vielmehr inter percurrendum loca
gefunden, quibus mihi applaudit, si mihi locus indicetur videbo. Nicht nur Hugenius,
sondern auch Wallisius in einem opere Anglico de Algebra haben meine quadraturam
Arithmeticam approbiret, ander zu geschweigen.

5 O. V. E. sind die literae secundae mei nominis post primas G. G. L.
Die Tangentes curvarum per chordas complicatas descriptarum sind nicht per calcu-

lum gefunden, sondern per naturam motus, wie mich erinnere coram ercläret zu haben,
man wird aber per calculum nostrum Tangentium die wahrheit finden. Wie der Tan-
gens curvae cujus aequatio

p
xx + yy +

p
aa� 2ax + xx + yy +

p
bb� 2bx + xx + yy = c

10 und dergleichen zu finden; habe geglaubt, daß M. h.H. schohn bekand[,] wird es et-
was aus der acht wieder gelaßen haben. Per compendium so seze man

p
xx + yy = lp

aa� 2ax + xx + yy = m[,]
p

bb� 2bx + xx + yy = n, also c = l + m + n, so wird
seyn dn = xdx + ydy � bdx, : n und also dergleichen hat man auch dm und dl. Weil nun
dc = 0, so wird 0 = dl+dm+dn et substituendo valores atque ordinando fiet aequatio dy :

15 dx = �x : l + a� x : m + b� x : n, :, y : l + y : m + y : n unde fit TE = �AE : AF +
BE : BF + CE : CF, : , 1 : AF + 1 : BF + 1 : CF in Numeratore iis quae sunt ab una
parte ipsius E praefigitur –, reliquis plus. Et idem canon valet pro focis quotcunque.
Ich vermuthe daß man aus diesem calculo generali leicht die regulam per centrum gra-
vitatis wurde demonstriren können. Die Kunst ex data quadratura totius quadraturam

20 partium zu finden, kan H. Tschirnhaus nicht, ist auch nicht müglich. Es gehoren bis-
weilen ganz andere dinge dazu quae in casu speciali qualis est casus totius, evanesciren.

1 loca: vgl. etwa J. Ch. Sturm, Mathesis enucleata, 1689, S. 321. 3 opere Anglico: J. Wallis,

A treatise of algebra, 1685. 6 curvarum: vgl. III,4 N. 227; ein Querverweis auf dieses Stück findet sich

auch in A. 15 fit: vgl. den Fehler in L1.
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140 30. SUPPLEMENTUM GEOMETRIAE DIMENSORIAE

C sola tractione Öli moveatur, adeoque ejus directionem in motu

Figur 3

servet. Sit vero & tabula quaedam RLM , eodem sui puncto R nor-
maliter incedens ad regulam HR, caeterum propulsa continue a
cylindro cavo, ita ut ATHR sit rectangulum. Denique in hac tabu-
la sit descripta, (per laminam extantem, si placet,) linea rigida EE,
quam cylinder solidus FE, incisura, quam in extremitate E habere
intelligitur, semper mordeat; ita prout R accedet ad T , cylinder FE
descendet. Cum igitur quantitas ET + TC sit data (nempe com-
posita ex cylindro solido EF , & toto Ölo FTC) sitque data relatio
inter TC & TR vel BC (ex lege declivitatum curvae data) habebi-
tur & relatio inter ET & TR, ordinatam & abscissam curvae EE,
cujus proinde natura & descriptio haberi potest in Tabula LRM
per geometriam ordinariam: habetur ergo etiam descriptio lineae
C(C) per machinationem praesentem. Est autem TC semper tan-
gens curvae C(C) ex natura nostri motus, itaque descripta est linea
C(C) ubi lex declivitatum, seu relatio laterum trianguli Characte-
ristici assignabilis, TRC, vel TBC, est data. Quae linea cum sit
quadratrix Ögurae datae quadrandae, ut paulo ante ostensum est,
habebitur quadratura vel dimensio quaesita. Q.E.F.

Similia variis modis ad conversae tangentium methodi proble-315
mata accommodari possunt, veluti si punctum T fuisset motum in
curva TT (loco rectae AT ) etiam HC coordinata (seu abscissa AB)
calculum fuisset ingressa. Et sane omne problema conversae tan-
gentium reduci potest ad relationem inter tres rectas, nempe duas
coordinatas CB, CH, & tangentem CT ; aut alias functiones harum
loco. Sed saepe res multo simpliciore motu conÖci potest. Veluti si

x

y
C(C)

T

A

B

R

H

(E)

E
L M

G

Π

Θ

Figure 6: Leibniz’s tractional-motion device for constructing the solution curve C(C) of any inverse tangent problem.
From Leibniz (1693a), figure 3 (left), and my reproduction (right).

as above.
In either case, then, since �(x) or f(x) are given, it takes only “ordinary” Cartesian geometry to construct

the required curve E(E) that will enable the curve C(C) with the desired property to be traced. In particular,
Leibniz’s construction gives the solution to dy/dx = f(x), where f(x) is any previously constructed curve,
while assuming nothing more than Cartesian geometry and a single-motion tracing procedure. In this way he
enlarged the domain of constructible curves vastly beyond the algebraic curves admitted by Descartes, while
still adhering very strictly to Descartes’s requirement of single-motion tracing and to the Euclidean–Cartesian
construction framework generally.

Such was the purpose of Leibniz’s paper. The confusion regarding the fundamental theorem arises from
Leibniz’s application to the problem of the construction of quadratures, i.e., the problem of constructing a
line segment whose length equals a given area, or integral. This is quite clearly the guiding idea of the whole

Figure 7: The tractrix is the curve traced by a weight dragged along a horizontal surface by a string whose other end
moves along a straight line.
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The Paracentric Isochrone dr/dt = constant

But elsewhere Leibniz (1693i) emphasised instead that a rectification “enlightens the mind” more than a quadrature:

But among the geometrical constructions I prefer not only those which are the simplest but also those
which serve to reduce the problem to another, simpler problem and which contribute to enlighten the
mind; for example, I would wish to reduce quadratures or the dimensions of areas to the dimensions of
curved lines.318

Then again in other cases rectifications seem to be preferred over quadratures for the sake of greater practical feasi-
bility. Thus Huygens (1694b) writes:

It is a strange assumption to take the quadratures of every curve as given, and if the construction of
a problem ends with that, apart from the quadrature of the circle and the hyperbola, I would have
believed that nothing had been accomplished, since even mechanically one does not know how to carry
anything out. It is a bit better to assume that we can measure any curved line, as I see your opinion is
also.319

Altogether the diversity of arguments used to justify the rectification of quadratures at first sight appears quite
confusing.

Extramathematical principles such as these often show their true colour only in moments of conflict, so we
should be grateful that the problem of rectification of quadratures was involved in one major confrontation of
opposing views. This concerned Jacob Bernoulli’s solution (1694b) of the paracentric isochrone problem by rec-
tification of the elastica, i.e., the curve assumed by a bent elastic beam.320 We shall discuss the elastica and the
paracentric isochrone problem in greater detail in chapter 8. Suffice it to say for now that the problem of finding the
curve reduces to integrating 1/

p
1� x4, a complicated and nonstandard integral that required innovative methods

such as the use of the elastica for its solution.
In introducing his solution, Jacob Bernoulli appears quite certain that it will be appreciated. And with good

reason: the rectification of quadratures was universally valued, as we have seen, and the use of one mechanically
defined curve to construct another also had ample precedent, such as Leibniz’s construction of logarithms by the
catenary (section 6.3.2) and Leibniz’s and Huygens’s use of the tractrix to, e.g., square a hyperbola (chapter 5).
Indeed Jacob Bernoulli (1693b) had noted in another context that a certain quantity “depends on the quadrature
of a hyperbola; therefore it is found by means of a logarithm or string.”321 This endorsement of the “string” (i.e.,
catenary) construction of hyperbolic quadratures suggests that his own mechanical construction is sincere, and
not a misguided attempt at promoting his own elastica. Thus, by way of justification of his paracentric isochrone
construction, Bernoulli only passingly alludes to the practical feasibility of his solution:

For although it is possible to carry out the same by means of the squaring of any algebraic area, another
method of construction is to be preferred, I judge, since it is generally easier in practice to rectify a curve
than to square an area, and especially since nature herself seems to have drawn it [i.e., the elastica].322

Perhaps to his surprise, Bernoulli’s construction was universally condemned. Huygens (1694b), writing to Leibniz,
finds it “strange” and would prefer a construction by rectification of an algebraic curve:

It seems that you hold for true his construction of your paracentric [isochrone], after having examined,
as I believe, the demonstration, as I have not yet done. It’s quite a strange encounter to have there been
able to employ his elastic curve; but your construction will assuredly be much better, if you only need
to measure a geometric curve, or at least [a curve] for which you know how to find the points.323

Leibniz (1694e) agrees:

He makes use of the rectification of a curve which is itself already transcendental, namely his elastica,
and thus his construction is transcendental of the second order. In place of which I only make use of
the rectification of an ordinary curve for which I give the construction by common geometry. 324

l’Hôpital (1694b) also agrees:
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EULER (����-����)
Leonhard Euler, born in Switzerland, was one of
the greatest mathematicians and physicists of
the ��th century. His work spanned the subjects
of geometry, integral calculus and mechanics,
and is still of great importance nowadays. He
worked most of his life for the St. Petersburg
Academy of Sciences. Despite loosing com-
plete sight in the last years of his life, he still
published a large amount of important work,
among which on the basic principles of optics.5

very similar to the doubling formula on a circle, but
then with the lemniscate. He proceeded trying to
obtain, again similar to the sine formulas, an addition
formula, and indeed found one. Euler proved that

Z p

0

dtp
1 � t4

+
Z q

0

dtp
1 � t4

=
Z r

0

dtp
1 � t4

,

with r =
p
p

1 � q4 + q
p

1 � p4

1 + p2q2 .
(13)

We will not prove this result (we refer an interested
reader to Sridharan (2004) for more details on the
proof), but restrict ourselves to remark that the simi-
larities between Eq. 12 and Eq. 13 are indeed striking.

TOWARDS THE ELLIPTIC INTEGRAL AND ELLIPTIC
FUNCTION
While the addition formula is an interesting result,
we still haven’t mentioned any elliptic integral. Ac-
tually, we have, without naming it as such. The
lemniscate integral,

Z x1

0

dxp
1 � x4

,

is an example of an elliptic integral. More generally,
an elliptic integral is defined as:

Z x1

0
R
⇣

x,
p

P(x)
⌘

dx,

where R is a rational function, and P(x) a polyno-
mial of degree 3 or 4. By taking R(a, b) = 1/b and
P(x) = 1 � x4, we obtain the lemniscate integral.

The inverse of an elliptic integral is called an
elliptic function. This can also be visualised: if u(x1)

5Information obtained from Boyer (2017)

in
u(x1) =

Z x1

0

dxp
1 � x4

is the elliptic integral, then x1(u) is the elliptic func-
tion.

The work of Euler about his addition formula
can be applied to find many interesting properties
of these elliptic integrals and elliptic functions, like
their periodicity. This is left outside of the scope of
this paper. However, its importance is best stated by
Abel, in his work Recherches sur les fonctions elliptiques,
in 1902:

Depuis longtems les fonctions logarith-
miques, et les fonctions exponentielles
et circulaires ont été les seules fonctions
transcendantes, qui ont attiré l’attention
des géomètres. Ce n’est que dans les
derniers tems, qu’on a commencé à en
considérer queles autres. Parmi celles-
ci il faut distinguer les fonctions, nom-
mées elliptiques, tant pour leurs belles
propriétés analytiques, que pour leur ap-
plication dans les diverses branches des
mathématiques.

In fact, the evolution of a mathematical description
description of transcendental curves beyond the tradi-
tional logarithmic, exponential and circular functions
has lead to the important development of elliptic
functions.

CONCLUSION
History has seen many great developments: some of
them are related, some of them are world changing,
others are just a very small piece in the big puzzle of
mathematics. All of them, however, have contributed
to a better understanding of the world we live in
and the mathematical laws that govern it. In this
paper, we have followed one of the thin lines through

10

Wanted: 
Simple geometrical 

characterisation of u.



Figure 8.2: Beams in Galileo (1638), day 2.

satisfactory since the areas under a complicated algebraic curve must be assumed given. In his defence Bernoulli
maintains that the construction cannot be simplified by the usual method of reduction to measurements of conic
sections: “I suspect on compelling grounds the construction of our curve to depend on neither the quadrature nor
the rectification of any section of a cone.”358 As discussed in section 7.3.1, Bernoulli tried to turn this adversity into
triumph by arguing for the acceptance of the elastica as a geometrical given in terms of which other curves may
be constructed, such as the paracentric isochrone, though he failed to convince others that this was an appropriate
form of construction.

It seems likely that Bernoulli valued his paper on the elastica (Jacob Bernoulli (1694a)) primarily for showcas-
ing foundational mathematical matters, namely his solution of the paracentric isochrone problem and his “golden
theorem” for the radius of curvature. Indeed, as we noted above, he did not publish his elastica paper until at least
three years after his initial discovery, and then this publication was accompanied in the same volume of the Acta by
a paper (Jacob Bernoulli (1694b)) using the rectification of the elastica to give a “most elegant” solution to the para-
centric isochrone problem. Thus it seems reasonable to speculate that Bernoulli judged his investigations worthy
of publication largely because of this application—that is to say, for its foundational import, in the same manner as
how Leibniz valued his envelope rule so much more when it had foundational implications than when it was merely
useful for optical applications (section 7.3.2). Admittedly, one may on the other hand point to some evidence that
the problem of the elastica had intrinsic interest. In fact, Jacob Bernoulli (1687) asks for advice regarding elastic
beams in his very first letter to Leibniz, before he has even mastered the calculus at all, let alone familiarised himself
with the problem of transcendental curves. Loaded beams had also been discussed by Galileo (figure 8.2), though
with reference to breaking points rather than shape.

8.3 The paracentric isochrone
The paracentric isochrone problem asks for a curve along which a frictionless particle under the influence of gravity
recedes from a given point at uniform speed (figure 8.3). This problem was posed by Leibniz (1689a), at the end of an
article in which he solved the much simpler problem of the vertical isochrone (see section 4.4.5), which has a simple
algebraic solution. Quite clearly Leibniz was interested in the paracentric isochrone problem because it involves a
difficult quadrature which cannot be reduced to standard ones—an elliptic integral, as it would nowadays be called.
Among the many forms of the differential equation for the paracentric isochrone, perhaps the most interesting for
us, therefore, is the one that reveals its dependence on elliptic integrals in the purest way. This is best done using
polar coordinates (r,✓). We shall now derive this differential equation following the method of Johann Bernoulli
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Figure 8.1: Jacob Bernoulli’s derivation of the differential equation for the elastica.

inversely proportional to the radius of curvature r defined by the two normals drawn. The differential equation for
the elastica is obtained by equating these two expressions for the extension. For the radius of curvature Bernoulli
derives the expression

1
r
=� d2y

dx ds
This is an analog for the case where s is taken as the independent variable of the usual curvature formula that we
saw Johann Bernoulli prove in section 4.4.4.2. Like Johann’s, Jacob’s proof is based on straightforward but tedious
manipulations with similar differential triangles, which we shall not go into here.356 In fact, as Johann Bernoulli
noted,357 this special form of the curvature expression is not needed; the differential equation for the elastica can
just as well be derived from the standard formula for curvature of section 4.4.4.2 with only a few extra steps of
algebra. Incidentally, Jacob Bernoulli rather exuberantly calls his curvature results a “golden theorem” (“aureum
Theorema”), apparently unaware that such expressions had been known for years. Leibniz (1694e) and Johann
Bernoulli (1696a) were unimpressed.

In any case, using his curvature expression and equating this with the other expression for the extension, Jacob
obtains the differential equation

ax =� d2y
dx ds

Integrating both sides with respect to x gives
ax2

2
=�dy

ds
We see that there are no complications regarding constants of integration since dy/ds = 0 corresponds to x = 0,
in agreement with the definition of the rectangular elastica. If we substitute ds =

∆
dx2+ dy2 and solve for dy the

differential equation becomes

dy=
x2 dx
q

4
a2 � x4

Since the variables are separated in this differential equation, it gives a construction by quadratures (in the
manner of section 4.4.3). Bernoulli does indeed spell out this construction, but of course it is not completely
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But elsewhere Leibniz (1693i) emphasised instead that a rectification “enlightens the mind” more than a quadrature:

But among the geometrical constructions I prefer not only those which are the simplest but also those
which serve to reduce the problem to another, simpler problem and which contribute to enlighten the
mind; for example, I would wish to reduce quadratures or the dimensions of areas to the dimensions of
curved lines.318

Then again in other cases rectifications seem to be preferred over quadratures for the sake of greater practical feasi-
bility. Thus Huygens (1694b) writes:

It is a strange assumption to take the quadratures of every curve as given, and if the construction of
a problem ends with that, apart from the quadrature of the circle and the hyperbola, I would have
believed that nothing had been accomplished, since even mechanically one does not know how to carry
anything out. It is a bit better to assume that we can measure any curved line, as I see your opinion is
also.319

Altogether the diversity of arguments used to justify the rectification of quadratures at first sight appears quite
confusing.

Extramathematical principles such as these often show their true colour only in moments of conflict, so we
should be grateful that the problem of rectification of quadratures was involved in one major confrontation of
opposing views. This concerned Jacob Bernoulli’s solution (1694b) of the paracentric isochrone problem by rec-
tification of the elastica, i.e., the curve assumed by a bent elastic beam.320 We shall discuss the elastica and the
paracentric isochrone problem in greater detail in chapter 8. Suffice it to say for now that the problem of finding the
curve reduces to integrating 1/

p
1� x4, a complicated and nonstandard integral that required innovative methods

such as the use of the elastica for its solution.
In introducing his solution, Jacob Bernoulli appears quite certain that it will be appreciated. And with good

reason: the rectification of quadratures was universally valued, as we have seen, and the use of one mechanically
defined curve to construct another also had ample precedent, such as Leibniz’s construction of logarithms by the
catenary (section 6.3.2) and Leibniz’s and Huygens’s use of the tractrix to, e.g., square a hyperbola (chapter 5).
Indeed Jacob Bernoulli (1693b) had noted in another context that a certain quantity “depends on the quadrature
of a hyperbola; therefore it is found by means of a logarithm or string.”321 This endorsement of the “string” (i.e.,
catenary) construction of hyperbolic quadratures suggests that his own mechanical construction is sincere, and
not a misguided attempt at promoting his own elastica. Thus, by way of justification of his paracentric isochrone
construction, Bernoulli only passingly alludes to the practical feasibility of his solution:

For although it is possible to carry out the same by means of the squaring of any algebraic area, another
method of construction is to be preferred, I judge, since it is generally easier in practice to rectify a curve
than to square an area, and especially since nature herself seems to have drawn it [i.e., the elastica].322

Perhaps to his surprise, Bernoulli’s construction was universally condemned. Huygens (1694b), writing to Leibniz,
finds it “strange” and would prefer a construction by rectification of an algebraic curve:

It seems that you hold for true his construction of your paracentric [isochrone], after having examined,
as I believe, the demonstration, as I have not yet done. It’s quite a strange encounter to have there been
able to employ his elastic curve; but your construction will assuredly be much better, if you only need
to measure a geometric curve, or at least [a curve] for which you know how to find the points.323

Leibniz (1694e) agrees:

He makes use of the rectification of a curve which is itself already transcendental, namely his elastica,
and thus his construction is transcendental of the second order. In place of which I only make use of
the rectification of an ordinary curve for which I give the construction by common geometry. 324

l’Hôpital (1694b) also agrees:
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inversely proportional to the radius of curvature r defined by the two normals drawn. The differential equation for
the elastica is obtained by equating these two expressions for the extension. For the radius of curvature Bernoulli
derives the expression
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dx ds
This is an analog for the case where s is taken as the independent variable of the usual curvature formula that we
saw Johann Bernoulli prove in section 4.4.4.2. Like Johann’s, Jacob’s proof is based on straightforward but tedious
manipulations with similar differential triangles, which we shall not go into here.356 In fact, as Johann Bernoulli
noted,357 this special form of the curvature expression is not needed; the differential equation for the elastica can
just as well be derived from the standard formula for curvature of section 4.4.4.2 with only a few extra steps of
algebra. Incidentally, Jacob Bernoulli rather exuberantly calls his curvature results a “golden theorem” (“aureum
Theorema”), apparently unaware that such expressions had been known for years. Leibniz (1694e) and Johann
Bernoulli (1696a) were unimpressed.

In any case, using his curvature expression and equating this with the other expression for the extension, Jacob
obtains the differential equation

ax =� d2y
dx ds

Integrating both sides with respect to x gives
ax2

2
=�dy

ds
We see that there are no complications regarding constants of integration since dy/ds = 0 corresponds to x = 0,
in agreement with the definition of the rectangular elastica. If we substitute ds =

∆
dx2+ dy2 and solve for dy the

differential equation becomes

dy=
x2 dx
q

4
a2 � x4

Since the variables are separated in this differential equation, it gives a construction by quadratures (in the
manner of section 4.4.3). Bernoulli does indeed spell out this construction, but of course it is not completely
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The Elastica

The extension dds 

is proportional to the force (by Hooke’s Law) 

which is the product of the (fixed) weight and 
the length of the lever arm x (by the law of 

the lever). 

But the extension dds is also inversely 
proportional to the radius of curvature r. 

So x is proportional to r,

acting on the spring. This force is found by thinking of the remainder of the beam as the
arm of a lever, through which the weight acts. Since the force of the weight is vertical,
the horizontal component of the beam is the e↵ective lever arm. Thus the extension dds is
proportional to the horizontal position x. On the other hand, it is evident that the extension
is inversely proportional to the radius of curvature r defined by the two normals drawn.
The di↵erential equation for the elastica is obtained by equating these two expressions for
the extension. For the radius of curvature Bernoulli derives the expression

1
r
= � d2y

dx ds
.

This is an analogue for the case where s is taken as the independent variable of the usual
curvature formula that we saw Johann Bernoulli prove in Section 4.4.4.2. Like Johann’s,
Jacob’s proof is based on straightforward but tedious manipulations with similar di↵eren-
tial triangles, which we shall not go into here.365 In fact, as Johann Bernoulli noted,366 this
special form of the curvature expression is not needed; the di↵erential equation for the elas-
tica can just as well be derived from the standard formula for curvature of Section 4.4.4.2
with only a few extra steps of algebra. Incidentally, Jacob Bernoulli rather exuberantly
calls his curvature results a “golden theorem” (“aureum Theorema”), apparently unaware
that such expressions had been known for years. Leibniz (1694e) and Johann Bernoulli
(1696a) were unimpressed.

In any case, using his curvature expression and equating this with the other expression
for the extension, Jacob obtains the di↵erential equation

ax = � d2y
dx ds

.

Integrating both sides with respect to x gives

ax2

2
= �dy

ds
.

We see that there are no complications regarding constants of integration since dy/ds = 0
corresponds to x = 0, in agreement with the definition of the rectangular elastica. If we
substitute ds =

p
dx2 + dy2 and solve for dy the di↵erential equation becomes

dy =
x2 dxq

4
a2 � x4

.

Since the variables are separated in this di↵erential equation, it gives a construction by
quadratures (in the manner of Section 4.4.3). Bernoulli does indeed spell out this construc-
tion, but of course it is not completely satisfactory since the areas under a complicated

180 Transcendental Curves in the Leibnizian Calculus



To construct the  
Paracentric Isochrone,

rectify the Elastica:



Jacob Bernoulli:

1691: 
Announces that he has 

solution to elastica.

1694: 
Gives solution, 

followed immediately 
by application to  

paracentric isochrone.



To construct 
paracentric isoschrone 

dr/dt = constant

rectify shape of elastic beam

or rectify
lemniscate 

FIGURE �: The Lemniscate of Bernoulli

same result. This substitution is:

sin(q) = u
cos(q) dq = du

With this, the differential dq/
p

sin(q) becomes:

dqp
sin(q)

=
cos(q)dqp

1 � sin2 q
p

sin(q)

=
dup

u(1 � u2)

The goal when rectifying a curve, in general, is to
rewrite the last differential to an arc length differen-
tial:

p
dp2 + dq2 for a 2 dimensional curve p(u), q(u).

Johann showed that the following functions satis-
fied this relation:

(
p(u) =

p
2(u + u2)

q(u) =
p

2(u � u2).

This can be checked by using the fact that
p

dp2 + dq2 =p
p0(u)2 + q0(u)2du. The interesting question is of

course what the nature is of this curve, and, more
importantly, if it is an algebraic curve.

By squaring p(u) and q(u), we obtain
(

p2 = 2(u + u2)
q2 = 2(u � u2)

(10)

By summing the two equations, we see that p2 + q2 =
4u, and by filling this back in, the equation becomes:

p2 =
1
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(p2 + q2) +
1
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(p2 + q2)2

, 4(p2 � q2) = (p2 + q2)2

This curve is shown in Fig. 4, and is called the Lem-
niscate of Bernoulli. The great thing about this, is that,

since it can be expressed by a polynomial expres-
sion, it is in fact an algebraic curve. Therefore, by
measuring arc lengths of this curve, Johann Bernoulli
managed to reduce the paracentric isochrone to the
rectification of an algebraic curve.

Jakob Bernoulli used a similar method, but using
the same substitution as he used for his work with
the Elastica: sin(q) = u2, and also arrived at the
Lemniscate.

LEMNISCATE
We have already seen that the lemniscate plays a
crucial role in solving the problem posed by Leib-
niz, namely, finding the curve of the paracentric
isochrone. However, this was far from being its only
application.

While often accredited to the Bernoulli brothers,
the Italian astronomer Giovanni Domenico Cassini
came up with the Cassini Ovals, one particular case
being the same as the Lemniscate of Bernoulli (it still
has to be noted that Bernoulli was not familiar with
the work by Cassini). He used this in his attempt to
explain the motion of the Sun around the Earth in
1680. This turned out to be wrong, but still yielded
interesting geometry.

Cassini defined this curve as the set of points
having as common property that the product of the
distances to two fixed points, the foci, is constant. In
this sense, it is an extension of the ellipse, for which
holds that the sum of the distances to two fixed points
is constant.

This product-of-distances property allows us to
create the lemniscate without any formula, by us-
ing purely geometrical constructions. We will skip
this, but more information can be found in Akopyan
(2010).

One last property of the lemniscate we would like
to mention here is that it became an almost mysti-
cal symbol outside mathematics. First of all, it is
now being used as the symbol for infinity: •. This
was first proposed by Wallis (1655), where he lay
the foundations of infinitesimal calculus, which was
later extended by Newton and Leibniz. This infinity
notion is nowadays often combined into the original
uroboros, which means “snake eating its tail”, and is a
symbol for, among others, the cycle of life (Killinger,
2010):
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Leonhard Euler, born in Switzerland, was one of
the greatest mathematicians and physicists of
the ��th century. His work spanned the subjects
of geometry, integral calculus and mechanics,
and is still of great importance nowadays. He
worked most of his life for the St. Petersburg
Academy of Sciences. Despite loosing com-
plete sight in the last years of his life, he still
published a large amount of important work,
among which on the basic principles of optics.5

very similar to the doubling formula on a circle, but
then with the lemniscate. He proceeded trying to
obtain, again similar to the sine formulas, an addition
formula, and indeed found one. Euler proved that

Z p

0

dtp
1 � t4

+
Z q

0

dtp
1 � t4

=
Z r

0

dtp
1 � t4

,

with r =
p
p

1 � q4 + q
p

1 � p4

1 + p2q2 .
(13)

We will not prove this result (we refer an interested
reader to Sridharan (2004) for more details on the
proof), but restrict ourselves to remark that the simi-
larities between Eq. 12 and Eq. 13 are indeed striking.

TOWARDS THE ELLIPTIC INTEGRAL AND ELLIPTIC
FUNCTION
While the addition formula is an interesting result,
we still haven’t mentioned any elliptic integral. Ac-
tually, we have, without naming it as such. The
lemniscate integral,

Z x1

0

dxp
1 � x4

,

is an example of an elliptic integral. More generally,
an elliptic integral is defined as:

Z x1

0
R
⇣

x,
p

P(x)
⌘

dx,

where R is a rational function, and P(x) a polyno-
mial of degree 3 or 4. By taking R(a, b) = 1/b and
P(x) = 1 � x4, we obtain the lemniscate integral.

The inverse of an elliptic integral is called an
elliptic function. This can also be visualised: if u(x1)

5Information obtained from Boyer (2017)

in
u(x1) =

Z x1

0

dxp
1 � x4

is the elliptic integral, then x1(u) is the elliptic func-
tion.

The work of Euler about his addition formula
can be applied to find many interesting properties
of these elliptic integrals and elliptic functions, like
their periodicity. This is left outside of the scope of
this paper. However, its importance is best stated by
Abel, in his work Recherches sur les fonctions elliptiques,
in 1902:

Depuis longtems les fonctions logarith-
miques, et les fonctions exponentielles
et circulaires ont été les seules fonctions
transcendantes, qui ont attiré l’attention
des géomètres. Ce n’est que dans les
derniers tems, qu’on a commencé à en
considérer queles autres. Parmi celles-
ci il faut distinguer les fonctions, nom-
mées elliptiques, tant pour leurs belles
propriétés analytiques, que pour leur ap-
plication dans les diverses branches des
mathématiques.

In fact, the evolution of a mathematical description
description of transcendental curves beyond the tradi-
tional logarithmic, exponential and circular functions
has lead to the important development of elliptic
functions.

CONCLUSION
History has seen many great developments: some of
them are related, some of them are world changing,
others are just a very small piece in the big puzzle of
mathematics. All of them, however, have contributed
to a better understanding of the world we live in
and the mathematical laws that govern it. In this
paper, we have followed one of the thin lines through
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x2/a2 + y2/b2 = 1, an important problem in astronomy since
planets move in elliptical orbits). In such cases the best we can
do is often to expand the function as a power series and inte-
grate term by term, which gives us the desired integral in series
form.

5.1.7. Let us evaluate
R

e°x2
dx in this way.

(a) If I include only the first four non-zero terms, the
integral is

(b) Though not an exact solution in closed form, this
is still very useful. For example, I could use it
to find a good approximation to

R1
0 e°x2

d x. Sup-
pose I use only the first three non-zero terms for
this. This must already be quite good because I see
from the above that the next term would only affect
the decimal and subsequent terms are even
smaller.

5.1.8. Suppose I use the first five terms of the power series for
ex to approximate e0.1, then use this result to find an ap-
proximation for e by [raising the result to the power 10,
taking 1 divided by the result, multiplying the result by
10, taking the ln of the result and multiplying by 10]. Al-
ternatively, I could find an approximation for e directly
from the series by [plugging in x = 0, plugging in x = 1,
using a geometric series, using a binomial series]. Which
of the two methods will be more accurate? [the first, the
second, both equal]

§ 5.1.2. Problems

5.1.9. (a) Estimate the sine of 1± using nothing but a simple
calculator that only has the operations +, °, £, /.

(b) Check your answer using a more advanced calcula-
tor that has a sine button.

(c) Is the “more advanced” calculator really more ad-
vanced, or does it just have the algorithm of (a) on
“speed dial”?

5.1.10. (a) By considering the roots of sin(x)/x, argue that its
power series

sin(x)/x = 1° x2

3!
+ x4

5!
° x6

7!
+·· ·

can be factored as
µ
1° x2

º2

∂µ
1° x2

4º2

∂µ
1° x2

9º2

∂
· · ·

by analogy with the way one factors ordinary poly-
nomials, such as x2 °x °2 = (x +1)(x °2).

(b) What is the coefficient of x2 when the product is ex-
panded?

(c) Equate this with the coefficient of x2 in the ordinary
power series and use the result to find a formula for
the sum of the reciprocals of the squares,

P
1/n2.

§ 5.2. The geometric series

§ 5.2.1. Lecture worksheet

5.2.1. (a) What is the greatest number smaller than 1? One is
inclined to suggest a = 0.99999. . ., but argue against
this by considering 10a °a.

(b) Generalise your argument to find a closed formula
for 1+x +x2 +x3 +·· ·

5.2.2. Explain how power series are related to the paradox of
motion mentioned by Aristotle, Physics, 239b11: “[Zeno]
asserts the non-existence of motion on the ground that
that which is in locomotion must arrive at the half-way
stage before it arrives at the goal,” and then the half-way
stage of what is left, etc., ad infinitum.

5.2.3. Derive the series

ln(1+x) = x ° x2

2
+ x3

3
° x4

4
+·· ·

by first noting that

ln(1+x) =
Zx+1

1

1
t

dt =
Zx

0

1
1+u

du,

then applying the geometric series, then integrating term
by term.

§ 5.2.2. Problems

5.2.4. What is 0.888. . .? Does it “spill over” like we saw 0.999. . .
do in problem 5.2.1a?

5.2.5. By the fundamental theorem of calculus, the arctangent
is the integral of its derivative.

(a) Use this to find a power series for the arctangent.
(To make sure that you take the constant of integra-
tion into account, check that your constant term is
correct using the geometrical definition of the arct-
angent.)

(b) Find the value of arctan(1) in two ways: by the geo-
metrical definition, and from the power series.

(c) Equate these two expressions for arctan(1) to find
an infinite series representation for º.

When Leibniz found this series he concluded that “God
loves the odd integers,” as you can see in the figure below
(taken from his 1682 paper).
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ci il faut distinguer les fonctions, nom-
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In fact, the evolution of a mathematical description
description of transcendental curves beyond the tradi-
tional logarithmic, exponential and circular functions
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functions.
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History has seen many great developments: some of
them are related, some of them are world changing,
others are just a very small piece in the big puzzle of
mathematics. All of them, however, have contributed
to a better understanding of the world we live in
and the mathematical laws that govern it. In this
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5 POWER SERIES

§ 5.1. The idea of power series

§ 5.1.1. Lecture worksheet

Functions can be expressed as power series:

f (x) = A+B x +C x2 +Dx3 +·· ·

We can think of the coefficients as so many “degrees of free-
dom,” i.e., free choices we can make when picking the coeffi-
cients.

5.1.1. These “degrees of freedom” have a direct visual meaning.

(a) Argue visually that by suitable choices of the con-
stants a,b,c, you can make a parabola of the form
y = ax2 +bx + c = A(x °B)2 +C pass through any

predetermined points.

(b) For y = bx + c the number of points I can make it
pass through is

(c) For y = c the number of points I can make it pass
through is

(d) Conclude that it makes sense that any function can
be represented by an “infinite polynomial.”

The power series for a given function f (x) can be found by
plugging zero into f , f 0, f 00, etc., which gives the values of A,
B , C , etc., respectively.

5.1.2. Show that this gives

ex = 1+ x
1!

+ x2

2!
+ x3

3!
+·· ·

sin x = x ° x3

3!
+ x5

5!
° x7

7!
+·· ·

cos x = 1° x2

2!
+ x4

4!
° x6

6!
+·· ·

5.1.3. Suppose you know the power series for sine and cosine
but have no calculator at your disposal. In which of the
following situations could you use the power series to re-
solve your problem?

⇤ I remember the wavy shape of the graph of the sine
function, but I forget how to plot it and tell it apart
from the cosine graph.

⇤ I remember that the sine and cosine functions are
basically each other’s derivative, except there is a
minus sign somewhere, and I forget where it goes.

⇤ I remember that sin(60±) is something quite simple,
but I forget the exact value.

This method of repeated differentiation for finding power se-
ries is in principle always applicable. But in practice we rarely
derive power series by the method of repeated differentiation.

Instead we build them up from standard series such as the
above, by algebraic manipulations like substituting, multiply-
ing, and so on, as we are used to doing for ordinary polyno-
mials. Furthermore we shall see below that many important
series arise more naturally in other ways altogether.

The above series give us a way of estimating these functions
by polynomials. If we cut the series off after for instance the
second-degree term we get the best possible parabolic approx-
imation. Here I have illustrated this for the cosine and expo-
nential functions:

If we include more terms of the series we will see the polyno-
mial “hugging” the function more and more closely, like this:

5.1.4. By picturing the graph of ln(x), I feel that the power series
for ln(1 + x) starts with a [positive/negative/zero] con-
stant term, a [positive/negative/zero] linear term, and a
[positive/negative/zero] quadratic term.

5.1.5. Argue that the power series for the sine implies that
sin x º x when x is small. (This is a useful approximation
in many situations. We mentioned it already in §A.3, and
we also effectively used this approximation in §6.4 when
deriving the differential equation for pendulum motion.)

5.1.6. Show that applied to a general function f (x) the method
gives

f (x) = f (0)+ f 0(0)
1!

x + f 00(0)
2!

x2 + f 000(0)
3!

x3 +·· ·

One use of the idea of polynomial approximation is to tackle
difficult integrals. We quite often face integrals for which
none of our usual integration tricks work, such as the integral
of e°x2

(the normal distribution function at the heart of sta-

tistical theory) or
q

a4+(b2°a2)x2

a4°a2x2 (the arc-length of the ellipse
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CONCLUSION
History has seen many great developments: some of
them are related, some of them are world changing,
others are just a very small piece in the big puzzle of
mathematics. All of them, however, have contributed
to a better understanding of the world we live in
and the mathematical laws that govern it. In this
paper, we have followed one of the thin lines through
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RECTIFICATION OF QUADRATURES

Better than leaving unknown quadratures such as  
 
 
 
is to find an α such that  
 
 

whose arc-length equals it, i.e.,
⇥

y dx =
⇥ ⇤

1 + (��)2 dx.

For when Leibniz next brings up the problem of rectifying quadratures in an article in the Acta the

following month, he claims that
� ⇥

a4 + x4 dx can be rectified by a hyperbola,6 and this is certainly

not the result of using Newton’s construction, which would give a much more complicated curve.

Thus when Leibniz says that he wants to “reduce squarings to the rectifications of curves” he

means that he wants to transform a quadrature problem into a rectification problem. Newton, on

the other hand, takes the problem to be about actually rectifying the quadrature, that is to say, to

find a straight line segment with a length equal to the given area. No wonder, then, that New-

ton’s method gives a more complicated solution than Leibniz desires, since it in effect solves two

problems at once: it both reduces the quadrature to a rectification problem and then solves the

rectification problem at the same time.

Nevertheless, it seems plausible that Leibniz would have considered Newton’s construction as

important, not only because it provides one very general and powerful way of rectifying quadra-

tures (although perhaps too indirectly for Leibniz’s tastes), but also since it in a way solves the

problem of rectifying a curve by evolutes when the involute is unknown, which had been a recog-

nised lacuna in the theory of evolutes since its introduction by Huygens.

CONCLUSION. We have seen that the examples used in Leibniz’s envelope paper are precisely the

problems he would have faced had he tried to untangle the rectification of integrals in Newton’s

letter. My hypothesis that this was indeed the actual background for the paper is strengthened by

the fact that Leibniz elsewhere showed a tendency to rework ideas that he came across and pub-

6It happens that Leibniz was mistaken, as he later admitted. A cubical parabola is needed rather than a hyperbola.

But this does not alter my point.
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A.3.3. What are some other features of the graphs that you can
confirm using the unit circle definition?

In analytical trigonometry we measure angles not in degrees
but in radians. This means that an angle is measured by the
corresponding arc length of a unit circle. In short, when using
radians, angle is the same thing as (unit-circle) arc:

θ radians

1

arc length θ

In calculus we always use radians rather than angles. The pre-
cise reason for this is seen in problem 1.4.1, but we can already
appreciate that radians is the superior angle measure. After
all, the notion that a full revolution corresponds to 360± is an
arbitrary social construction. Basing a theory on such arbi-
trary starting points leads to arbitrary repercussions later, as is
hardly surprising. Radian angle measure, by contrast, doesn’t
introduce any artificial conventions, but rather characterises
angles by means intrinsic to geometry itself.

What are the inverses of the trigonometric functions? In the
manner of §A.2 we can define them abstractly and denote them
sin°1(x) etc., as is sometimes done. However, it is also reward-
ing to think about their meaning more concretely. By defini-
tion sin°1(x) inverts sin(x). What does this mean in terms of
the geometrical definition of sin(x)? The sine takes an angle—
or rather, as we have now learned to say, arc—as its input and
gives a corresponding coordinate as its output. The inverse
sine, sin°1(x), does the opposite: it takes the coordinate as its
input and tells you what the corresponding arc is. For this rea-
son sin°1(x) is also denoted arcsin(x).

Here, then, are the geometrical meanings of the inverse
trigonometric functions:

x

arccos x
y arcsin

 y

tarctan
 t

A.3.4. Find the value of each of the following and illustrate with
a figure.

(a) sin(º/4)

(b) arccos(°1)

(c) arctan(1)

(d) arctan(1)

A.3.5. Argue that degree and radian angle measures can be in-
terpreted as “observers’s viewpoint” and “mover’s view-
point” respectively.

§ A.4. Logarithms

§ A.4.1. Lecture worksheet

Logarithms were first developed in the early 17th century as a
means of simplifying long calculations. Long calculations were
involved for example in navigation at sea, which was of in-
creasing importance in this era. Indeed, the first ship of slaves
from Africa to America set sail only four years after the publi-
cation of the first book on logarithms.

The essence of logarithms is that they turn multiplication into
addition:

log(ab) = log(a)+ log(b) (L1)

This simplifies calculations because if you have to compute by
hand it is much easier to add than to multiply. In this way log-
arithms “doubled the lifetime of the astronomer,” it was said at
the time. Not so long ago, before the advent of pocket calcula-
tors, people still learned logarithms for this purpose in school.
You can still see the traces of this today when you go to a used
bookstore and look at the mathematics section: usually you
will find there tables of logarithms published in the first half
of the 20th century.

We can rediscover logarithms for ourselves in the following
way. Consider a table of powers of some integer, such as 2:

n 1 2 3 4 5 6 · · ·
2n 2 4 8 16 32 64 · · ·

A.4.1. Explain how for example 4£8 can be found using this ta-
ble without actually performing any multiplication.

That’s a neat trick, but it only works for numbers that happen
to occur in the bottom row. We need to be able to multiply any
numbers. Fortunately it is not hard to extend the idea to pro-
duce a table without such big gaps.

A.4.2. Explain how.

Thus, to produce a table of a function that has the property
(L1), all we have to do, it turns out, is to make a table of val-
ues for some exponential function f (x) = ax and then read it
backwards. Logarithms are simply the inverse of exponentia-
tion.

In our table we used the base 2, but any number would have
worked. We get a different logarithm for each base, but all of
them have the crucial property (L1). The logarithm associated
with our table would be denoted log2(x). It shall emerge later
that a certain number e = 2.71828. . . is the mathematician’s
favourite base, and that the associated logarithm is the most
“natural” of all logarithms and therefore denoted ln(x).

A.4.3. (L1) is the defining property of logarithms, and the
mother of all logarithm laws. Show how:

(a) The logarithm of 1 follows from (L1) by restricting
one of its values to an identity element.

(b) The logarithm of an exponential expression follows
from (L1) by regarding multiplication as repeated ad-
dition.
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where x is the concentration of X, a,b are the initial con-
centrations of each reagent, in mols per unit volume, and
k is a constant. Let us assume that a < b.

(a) Rewrite the equation in the form dt
dx = ·· · .

(b) Find t as a function of x. Determine the constant of
integration using the fact that no molecules of the
compound X are present at the beginning of the re-
action.

(c) Plot the solution curve for a = 1, b = 2, k = 1.
(Note that the same graph, when rotated, can be
read as a graph of x as a function of t .)

(d) Usually one can speed up chemical reactions by in-
creasing the temperature. Suppose this increases k
to 2, but reduces each of the concentrations a and b
by 10% due to heat expansion of the solution. Plot
this new situation. Is the reaction faster than be-
fore?

§ 3.7. Reference summary

§ 3.7.1. Meaning and properties of integrals

Zb

a
y dx = (signed) area under y(x) from x = a to x = b

Z
y dx = indefinite integral of y(x)

= the general anti-derivative of y(x)

(always includes constant of integration “+C ”)

(Terminology: F 0 = f () F = anti-derivative of f )

Z
c f (x)dx = c

Z
f (x)dx

Z
f (x)+ g (x)dx =

Z
f (x)dx+

Z
g (x)dx

Zb

a
f (x)dx =°

Za

b
f (x)dx

Z1

a
f (x)dx = lim

b!1

Zb

a
f (x)dx

§ 3.7.2. Applied meaning of integrals

Zb

a
rate of change of something dt = net change in that thing

Zb

a
velocity dt = net distance travelled

Zb

a
acceleration dt = net increase in velocity

§ 3.7.3. Fundamental theorem of calculus

d
dt

Zt

a
y(x)dx = y(t ) (FTC1)

Zb

a
y 0(x)dx = y(b)° y(a) (FTC2)

Zb

a
f (x)dx = F (b)°F (a) (FTC2)

§ 3.7.4. Integrals of elementary functions

function anti-derivative function anti-derivative

xn xn+1

n+1
1
x ln|x|

sin x °cos x cos x sin x

1
1+x2 arctan x 1p

1°x2
arcsin x

ex ex ax ax /ln(a)

§ 3.7.5. Rules of integration

Substitution, simplest case:
Z

g 0(x) f (g (x))dx = F (g (x))

Integration by parts:
Z

f g 0 = f g °
Z

f 0g

Partial fractions, simplest case:
Z

f (x)
(x °a)(x °b)

=
Z

A
x °a

+
Z

B
x °b

§ 3.7.6. Problem guide

• Integrate: a number times a function.

Move the number out in front of the integral and integrate
the function. The number remains a coefficient of the an-
swer.

R
5xdx = 5

R
xdx = 5 x2

2 +C

• Integrate: a power of x.

Integrate with power rule, i.e., increase exponent by 1 and
divide by the new exponent.

R
x3dx = 1

4 x4 +C

R dx
x3 =

R
x°3dx = x°3+1

°3+1 +C =° 1
2 x°2 +C =° 1

2x2 +C
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§ 4.6.2. Center of mass

(x̄, ȳ) = centroid = center of mass (assuming uniform density).

Center of mass of region under graph of y(x) from x = a to
x = b:

x̄ =
Rb

a x y dx
Rb

a y dx
ȳ =

Rb
a

1
2 y2 dx

Rb
a y dx

Center of mass of region between graphs of f (x), g (x) from
x = a to x = b:

x̄ =
Rb

a x( f ° g )dx
Rb

a ( f ° g )dx
ȳ =

Rb
a

1
2 ( f 2 ° g 2)dx

Rb
a ( f ° g )dx

Center of mass of curve y(x) from x = a to x = b:

x̄ =
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a x ds
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a ds
=

Rb
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q
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°
y 0¢2 dx
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q
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§ 4.6.3. Work

work = force £ distance =
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F ds

§ 4.6.4. Integral definition of the logarithm

ln(x) =
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1
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ln(x)
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whose arc-length equals it, i.e.,
⇥

y dx =
⇥ ⇤

1 + (��)2 dx.

For when Leibniz next brings up the problem of rectifying quadratures in an article in the Acta the

following month, he claims that
� ⇥

a4 + x4 dx can be rectified by a hyperbola,6 and this is certainly

not the result of using Newton’s construction, which would give a much more complicated curve.

Thus when Leibniz says that he wants to “reduce squarings to the rectifications of curves” he

means that he wants to transform a quadrature problem into a rectification problem. Newton, on

the other hand, takes the problem to be about actually rectifying the quadrature, that is to say, to

find a straight line segment with a length equal to the given area. No wonder, then, that New-

ton’s method gives a more complicated solution than Leibniz desires, since it in effect solves two

problems at once: it both reduces the quadrature to a rectification problem and then solves the

rectification problem at the same time.

Nevertheless, it seems plausible that Leibniz would have considered Newton’s construction as

important, not only because it provides one very general and powerful way of rectifying quadra-

tures (although perhaps too indirectly for Leibniz’s tastes), but also since it in a way solves the

problem of rectifying a curve by evolutes when the involute is unknown, which had been a recog-

nised lacuna in the theory of evolutes since its introduction by Huygens.

CONCLUSION. We have seen that the examples used in Leibniz’s envelope paper are precisely the

problems he would have faced had he tried to untangle the rectification of integrals in Newton’s

letter. My hypothesis that this was indeed the actual background for the paper is strengthened by

the fact that Leibniz elsewhere showed a tendency to rework ideas that he came across and pub-

6It happens that Leibniz was mistaken, as he later admitted. A cubical parabola is needed rather than a hyperbola.

But this does not alter my point.
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ton’s method gives a more complicated solution than Leibniz desires, since it in effect solves two

problems at once: it both reduces the quadrature to a rectification problem and then solves the

rectification problem at the same time.

Nevertheless, it seems plausible that Leibniz would have considered Newton’s construction as

important, not only because it provides one very general and powerful way of rectifying quadra-

tures (although perhaps too indirectly for Leibniz’s tastes), but also since it in a way solves the

problem of rectifying a curve by evolutes when the involute is unknown, which had been a recog-

nised lacuna in the theory of evolutes since its introduction by Huygens.

CONCLUSION. We have seen that the examples used in Leibniz’s envelope paper are precisely the

problems he would have faced had he tried to untangle the rectification of integrals in Newton’s

letter. My hypothesis that this was indeed the actual background for the paper is strengthened by

the fact that Leibniz elsewhere showed a tendency to rework ideas that he came across and pub-

6It happens that Leibniz was mistaken, as he later admitted. A cubical parabola is needed rather than a hyperbola.

But this does not alter my point.
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⇥
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⇥ ⇤
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