WISM100 Lecture 1

Viktor Blåsjö
Utrecht University

Conic sections

Why conic sections?

Why conic sections?

- Natural generalisations of circles in terms of mode of generation.

Why conic sections?

- Natural generalisations of circles in terms of mode of generation.
- Natural in optics and perspective painting (image of circle).

Why conic sections?

- Natural generalisations of circles in terms of mode of generation.
- Natural in optics and perspective painting (image of circle).
- Natural in optics (focal properties).

Why conic sections?

- Natural generalisations of circles in terms of mode of generation.
- Natural in optics and perspective painting (image of circle).
- Natural in optics (focal properties).
- Natural in astronomy and sundial-construction (path of shadow in the course of a day).

Why conic sections?

- Natural generalisations of circles in terms of mode of generation.
- Natural in optics and perspective painting (image of circle).
- Natural in optics (focal properties).
- Natural in astronomy and sundial-construction (path of shadow in the course of a day).
- Correspond to natural motion (projectiles and planets).

Planetary orbits are ellipses
Kepler, Astronomia Nova, 1609

Why conic sections?

- Natural generalisations of circles in terms of mode of generation.
- Natural in optics and perspective painting (image of circle).
- Natural in optics (focal properties).
- Natural in astronomy and sundial-construction (path of shadow in the course of a day).
- Correspond to natural motion (projectiles and planets).
- Can be used to double the cube.

Volume $=1$
Volume $=2$

Which reasons did the Greeks care about?

- Natural generalisations of circles in terms of mode of generation.
- Natural in optics and perspective painting (image of circle).
- Natural in optics (focal properties).
- Natural in astronomy and sundial-construction (path of shadow in the course of a day).
- Correspond to natural motion (projectiles and planets).
- Can be used to double the cube.

APOLLONII PERGAII C O N I C O R U M LIBRI OCTO,

SERENI ANTISSENSIS
DE SECTIONE
CYLINDRI \& CONI
LIBRI DUO.

$$
O X O N I A
$$

E. Theatro Sheldoniano, An. Dom. mdccx.

Apollonius, K $\omega v \iota x \dot{\alpha}, ~ I . ~ 33$

parabola $p y=x^{2}$

parabola
ellipse

hyperbola

hyperbole

exaggerated statements or claims not meant to be taken literally ("too much")

parable

a simple story used to illustrate a moral or spiritual lesson ("just right")

ellipsis (...)

the omission from speech or writing of words that are superfluous ("too little")

Archimedes, Sphere and Cylinder, II.4: Find H such that $\frac{\text { red volume }}{\text { blue volume }}=k$
$\Leftrightarrow \quad\left(4-3 H^{2}+H^{3}\right) k=(3-H) H^{2}$
$\Leftrightarrow \quad \frac{4 k}{H}=(3+3 k) H-(1+k) H^{2}$
\Leftrightarrow intersection of hyperbola $y=\frac{4 k}{x}$ and parabola $y=(3+3 k) x-(1+k) x^{2}$

$$
x^{2}+x+1=0 \quad \Longrightarrow \quad x=\frac{-1 \pm \sqrt{3} i}{2}
$$

$$
3^{x+2}=7 \quad \Longrightarrow \quad x=\frac{\log 7}{\log 3}-2
$$

al-Qūhī, c. 980

Plate 1. The archimedes automatic wind INSTRUMENTALIST
British Museum MS., Or. Add. 23391

 ?

"Apollonius, the carpenter, the geometer"

Volume $=1$
Volume $=2$

The Paracentric Isochrone $\quad d r / d t=$ constant

Google Books Ngram Viewer

Young Leibniz studies with Huygens in Paris.

The student becomes the master.

Ageing Huygens studies Leibniz's new calculus.

Boibtergolats Wavishbutezien?
Whrygens' Hofvijiclemer bathe
$1110 \mid=1$

UBubteroplats Wavierhuter zion? primygens' Hofvijckmar zakuk
-

UBubteropladts WaVorbnter zien?
 copminuslida

The
 Hague

Utrecht

"I still do not understand anything about ddx, and I

 would like to know if you have encountered any important problems where they should be used, so that this gives me desire to study them.""Je n'entens encore rien aux ddx, et je voudrois bien scavoir si vous avez rencontrè des problemes importants ou il faille les emploier, afin que cela me donne envie de les etudier."
(1693)

"As for the ddx, I have often needed them; they are to the $d x$, as the conatus to heaviness or the centrifugal solicitations are to the speed. Bernoulli, ... employed them for the lines of sails. And I had used them for the movement of the stars."
"Quant aux ddx, j'en ay eu sou vent besoin elles sont aux $d x$, comme les conatus de la pesanteur ou les solicitations centrifugues sont à la vitesse. M. Bernoulli marque dans les Actes de Leipzig de l'année passée p. 202 de les avoir employées pour les lignes des voiles. Et ie les avois deiâ employées pour le mouvement des astres dans les mêmes actes."

personality type	visionary展	$\stackrel{\text { maestro }}{\varnothing}$	technocrat	pragmatist $€$
fundamental desire	beauty 9		power σ^{\top}	
antiquity		Archimedes	Apollonius	Ptolemy
17th century	Descartes, Leibniz	Huygens, late Newton	Bernoulli, early Newton	
a problem is worth studying if it is	illuminating foundationally and methodologically	self-evidently important; anchored in tradition	formulable within existing technical frameworks	externally motivated
style of mathematics	sketchy; specifics included only to illustrate principles	elegant, definitive; self-contained minicosmos	exhaustive, repetitive, adaptable	back-of-an-envelope; the end justifies the means
reader is offered	global view of mathematics \& methodology	aesthetic experience; display of brilliance	toolbox for doing more mathematics	toolbox for applying mathematics
attitude to technicalities	impatience	minimalism	pride	acceptance

Correspondence with other mathematical personality systems:

Freeman Dyson	birds (vision, unification)	frogs (detail, problem solving)
Gian Carlo Rota	Theorizers. Success in mathematics is not solving problems but trivializing them through conceptual insights.	Problem solvers. Care only about being the first to solve puzzles, in whatever way. Look at subsequent theorizing of this field with con- descension and boredom.
Timothy Gowers	The point of solving problems is to under- stand mathematics.	The point of understanding mathematics is to solve problems.
Grothendieck	Place nut in environment that makes it open naturally.	Attack nut with hammer and chisel.

L A

G E O M E T R I E.

LIVRE PREMIER.

Des problefmes quion peut conftruire fans y employer que des cercles \mathcal{O} des lignes droites.

Ous les Problefmes de Geometrie $\mathfrak{C e}$ peuuent facilement reduire a tels termes, qu'il n'eft befoin par aprés que de connoiftre la longeur de quelques lignes droites, pour les conftruire.
fundamental desire

fundamental	Q		σ^{7}	
antiquity		Archimedes	Apollonius	Ptolemy
17th century	Descartes, Leibniz	Huygens, late Newton	Bernoulli, early Newton	

trouner les autres. Eti'efpere que nos neueux me fçauront gre, non feulement des chofes que iay icy expliquées; mais auffy de celles que iay omifes volontairerement, affin de leur laiffer le plaifir de les inuenter.

F I N.

I hope that posterity will judge me kindly, not only as to the things which I have explained, but also as to those which I have intentionally omitted so as to leave to others the pleasure of discovery.

$$
\frac{\pi}{4}=\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots
$$

DE VERA PROPORTIONE CIRCULI AD .2uadratum circumfriptum in Numeris rationalibus

GOTHOFREDO GVILIELMO LEIBNITIO

Johann Bernoulli:

$$
\int_{0}^{1} x^{x} d x=\frac{1}{1^{1}}-\frac{1}{2^{2}}+\frac{1}{3^{3}}-\frac{1}{4^{4}}+\cdots
$$

Not \odot because not classically motivated and self-contained; presupposes "nerd" 闡 interest in evaluating everything that can be symbolically formulated. Same with Euler's so-called beautiful (actually only 關) formula

$$
e^{i \pi}+1=0
$$

 still do not understand anything about $d d x$, and I would like to know if you have encountered any important problems where they should be used, so that this gives me desire to study them." "[Natural] curves merit, in my opinion, that one selects them for study, but not those [curves] newly made up solely for using the geometrical calculus upon them."

Leibniz: Agree, 毘 calculus worth little. "You are right, Sir, to not approve if one amuses oneself researching curves invented for pleasure." But the difference between is more focussed on general methodological insights, which is why Leibniz adds: "I would however add a restriction: Except if it can serve to perfect the art of discovery."

L'Hôpital's Rule: typical 㽧 of the sort condemned here.

A typical \triangle versus 㽧 conflict／misunderstanding：Leibniz ver－ sus the English on power series in the 1670s．

Leibniz typical \odot ，cares about singular，beautiful results：＂I possess certain analytical methods，extremely general and far－ reaching，＂but＂exquisite＂π series＂especially is most wonder－ ful．＂

English typical 䌦，care about plug－and－chug－ready formulas， criticise Leibniz for merely giving special cases．Collins：＂infi－ nite Series to be generally fitted to any equation proposed，so that an Algebraist being furnished with his Stock，will quickly fitt a Series．＂Newton：I gave＂a general Method of doing in all Figures，＂whereas＂Leibnitz never produced any other Series than numerical Series deduced from them in particular Cases．＂

But Leibniz has no interest in 氺 that doesn＇t lead to \triangle ：＂I too used this method［of series inversion］at one time，but after nothing elegant had resulted in the example which I had by chance taken up，I neglected it forthwith with my usual impa－ tience．＂

Later Newton turns from 餛 to \odot, because more classical and elegant (and perhaps associated with a certain snobbery and sense of superiority): "He thought Huygens's stile and manner the most elegant of any mathematical writer of modern times, and the most just imitator of the antients. Of their taste, and form of demonstration, Sir Isaac always professed himself a great admirer: I have heard him even censure himself for not following them yet more closely than he did; and speak with regret of his mistake at the beginning of his mathematical studies, in applying himself to the work of Des Cartes and other algebraic writers."

Euler disapproves, goes back to 圌, values toolbox adaptability more than beauty: "I always have the same trouble, when I might chance to glance through Newton's Principia: Whenever the solutions of problems seem to be sufficiently well understood by me, yet by making only a small change, I might not be able to solve the new problem using this method."

Leibniz is by nature a episode are coloured by the influence of Huygens, who, in typical \odot manner, praised the π series as "a discovery always to be remembered among mathematicians."

Later Leibniz resisted \odot and saw it as a distraction from his main task of . This is why, for example, he fights not to get drawn into the brachistochrone problem (a true \odot problem): "The problem draws me reluctantly and resistingly to it by its beauty, like the apple did Eve. For it is a grave and harmful temptation to me."

need 㽧 to spell out the details of their systems. E.g. Descartes: Van Schooten; Leibniz: l'Hôpital, Johann Bernoulli.

Leibniz: "I wish there were young people who would apply themselves to these calculations. With me it's like the tiger who lets run whatever he does not catch in one or two or three attempts."
 good friends, I would put one of them toward working out the theory of conics."

Systematic theory of integration by partial fractions: a 㽧 topic needed for whether all rational quadratures can be reduced to the quadrature of the hyperbola and the circle" (Leibniz). This forces Leibniz, reluctantly and contrary to his nature, to do some㽧 work, with poor results (Leibniz erroneously believes that " $\int d x:\left(x^{4}+a^{4}\right)$ can be reduced to neither the circle nor the hyperbola by [partial fractions], but establishes a new kind of its own"). A typical , Leibniz clearly has very little interest in actually evaluating integrals, and only cares about giving a bigpicture methodological-foundational account of integration in general.

Myth: Early Leibnizian calculus driven by applications; lacks attention to rigour. Typical $€$.

Reality: The exact opposite: Early Leibnizian calculus primarily concerned with

Israel Kleiner

Excursions in the History of Mathematics

It was not uncommon for mathematicians of the seventeenth and eighteenth centuries to resort to mathematical techniques which were at best questionable, often inconsistent. They usually also recognized that their methods were unsatisfactory, but were willing to tolerate them because they yielded correct results. Justification of otherwise inexplicable notions on the grounds that they yield useful results has occurred frequently in the evolution of mathematics Of course, out of confusion

Great Scientists of Old as Heretics in
"The Scientific Method"
C. TRUESDELL

University Press of Virginia - Charlottesville

I have written the story in articles and books published from the 1950 s onward. In brief, the infinitesimal calculus and rational mechanics together, the former largely responding to conceptual problems set by the latter, were developed, organized into particular structures, and broadly expanded.
visionary
maestro
technocrat
pragmatist

DES

ceux qui admirent avec raison l'évidence et la

Les PRINCIPES DU CALCUL DIFFÉRENTIEL,
dégagés de toute considébation d'infiniment petits, d'évanouissants, de limites et de fluxions, et réduits a l'analyse algébrique des quantités finies;

Par J.-L. Lagrange.

TROISIĖME ÉDITION, REVUE ET SUIVIE DUNE NOTE

PARIS,
BACHELIER, IMPRIMEUR-LIBRAIRE
De L'ÉCOLE ROVALE POLYTECHNIQEE Ex DE HEREAU DEM LONGITEDEM,
 ces avantages dans les principes de ces nouvelles méthodes.

Given: tractrix

$$
\text { Sought: } \log (1 / Y)
$$

Given: tractrix

Sought: $\log (1 / Y)$

$$
(a+Y)^{2}=a^{2}+1^{2} \quad \text { so that } \quad a=\frac{1-Y^{2}}{2 Y}
$$

Given: tractrix

Sought: $\log (1 / Y)$

"One charette, ou un batteau servira a quarrel l'hyperbole" "a little cart or boat will serve to square the hyperbola"
 "syrup instead of water"

enveloped curve

Leibniz's envelope rule

$$
\left.\begin{array}{r}
f(x, y, a)=0 \\
\frac{\partial}{\partial a} f(x, y, a)=0
\end{array}\right\} \quad \text { eliminate } a
$$

bffs infunitorum ufu.

Autore O. V. E.

ORdinatim applicatas vocare folent Goometre redas quotcunque inter fe parallelas, que a curva ad rectam quandam
 quam $A x e m$) funt normales, folent vocari Ordinate xat E ξ_{0} oxinv. Defarguffius rem prolatavit,\& \& fub Ordinatim applicatis eciann com-
prechendit rectas convergentes ad unum pundum commune, autab prechendir rectas compergentes ad unum punturn commune, ader
co dipergentes. Et fane parallex fub convergentibus aut diverco dipergentes. Et fane parailex fue convergentibus aut diser--
gentibus comprehendi poffunt, fingendo punctum concorfus infigentibus comprehendi poliunt, fingendo punctum concorius infi-
nite abhinc diftare. Verum quia multis alis modis fieri poref,ut nite abhinc diftare. Verum quia multis aliis modis fieri poteft,ut
infinita duci inteligantur linex fecundum legem quandam com: infinitz duci inrelligantur linex fecundum legem quandam com-
munem, qux tamen non fint parallelix vel convergentes ad punmunem, qux tamen non fint parallelx vel convergentes ad pun-
Aum omnibus commune, aut a puncto omnibus communi divereum omnibus commune, aut a punto omnibus communi diver-
gentes, ideo nos tales lineacs generaliter yocabimus Ordinatim ducias, yel ordinatim (pofitione) datas. Exempli eaufa,fif peculurn aliquod, vel potius fectio ejus aplano per axem, cujuscunque figurx pofitione datx, radios Solares five immediate, five pof aliam quandam reflexionem aut refractionem advenientes reffectar; inti radii refexi erunt infinitre linex rectx ordinatim duftx, $\&$ daro quovis puncto Ppeculi (cxateris manentibus) dabitur radius refloxus ci refpondens. Verum ego fub ordinatim ductis non tantum rectass,fed \& curvas lineas qualescunque accipio, modo lex habeatur, fecundum quam dato linex cujusdam date (tanquam ordinatricí) punAo,refpondens ei puncto linea duci pofit, qua una erit ex ordinatim ducendis, feu ordinatim pofitione datis.' Ordine enim percurrendo puncta ordinatricis(verbi gratia linex́, cujus rotatione fir Ppeculum paulo ante diftum, feu fectionis ejus per axem) ordirte prodibunt linex illx ordinatim data. Porro effi ex non concurrant omnes ad unum punftum commune, tamen regulariter dux quxvis tales lince proxime, (id eff inffinitefime differentes, feu infinite paryam habentes diftantiam) concurrunt inter $\mathfrak{f e}$, punctumque con-
prodit oft afingnabile, \& concur his concum, qux eft omnius ordinatim fumtis nova ximas locus communis, habetque hoc egregium, quod omnes ordinatim ductas, quarum concurfu formatur, tangit, quam proprietatem,cum meditantibus fatis appareat, demonftrare hic non eff opus. Talis eft linea evolutione generans, ea enim omnes rectas ad
curvam cvolutione generatam perpendiculares tangit ex Hugenicurvam evolutione generatam perpendiculares tangit, ex Hugeniano invento. Tales funt linex plures coépolutione generantes, quas Dn. D. T. excogitavit, \& quaf Foci ab eodem introducti, cum concurfus radiorum non fiunt in puncto, fed in ejus locum Focus eft limearis, soncurfu faltem duarum proximarum quarumcunque formatus. Sed cum hac non nif ad rectas percineant, fciendum eft diquid analogum \& in curvis locum habere:' Ita linea reflectens; que radios fecundum quamcunque prafcriptam legem a lucido, vel peculo aut lente (una pluribusve) datarum figurarum, venientes reddit iterum convergentes (divergentes aut parallslas) cujus confructionem in his Actis dedimus, formasur ex concurfu infinitarum ellipfium (hyperbọarum aut parabolarum.) Et hinc quoqne Mechodus haberi poterat, problema illud prima fronte tam difficile folvendi: nam infinitx ille ellipfes funt ordinatim pofitione datx,adeoque \&linea concurfuum data eft,feu haberi poteft, Et hec Methodus ad multa alia praftanda aditum prabet, qux alias vix videbantur effe in poreftate. Qux etiam caufa eft, cur viam hanc novam Geometris aperire voluerim. Res autem pendet a noftra A palyf indivififolium , \& calculus hujus Methodi tantum applicatio of tioftri calculi differentialis. Nempe conftituta femel aquatione locali(feu ad curvam lincam, unam ex ordinatim datis,) fed generali, (legem omnibus communem exhibente) hujus xquationis jam quaratur aquatio differentialis, modo mox dicendo, \& opt harum xquationum habetur quafitum. - Et quidemrcum linea alicujus curva ad punctum quodcunque in ea datum quaritur can gens, tunc ctiam tantum opus eft equationem ejms curva differenti ore, feu quxrere xquationem,qua firdifferentialis ad $x q u a t i o n e m$ curve localem, fed tunc parametri feu rectax magnitadise confan res, linex confructionom; vel mquationis pro ipfa calculum ingre-

frentiabiles, quemadmodum \& ipfa recta tangens,vel alix nomnulIx functiones ab ea pendentes,verb.gr. perpendiculares ad tangenters ab axe ad curvam dufto. Verum tam ordmata quam abffiffa, quas per $x \& y$ defignari mos eff (quas $\&$ coordimatisu appellare foleo,cum una fic ordinata ad unum, altera ad alterum latus anguli, a duabus condirectricibus comprchenfi) eff gemina feu differentiabilic. Hic yero in noftro calculo prafenti cum non quaritur iangens quecunque unius curve in quocunque ejus puncto, fed tangens unica infinitarum curvarum ordinatim ductarum,unicuique in fuo pundore fpondentio occurrens, adeoque cum quarritur uni ex his curvis affumpte refpondens puncum contactus,tunc contrarium evenit, \& cam x quam y (vel alia functio ad punctum illud determinandum aqui-valens) eft unica; fed aliqua minimom parameter a vel 6 debet effe gemina feu differentiabilis, ea nimirum, qua variata etiam variantur curvx ordinatim datz. EEt quidem, iicet unius curvx plures polfmt effe redax contantes ieu parametri), exempli caufa elliplis omnis, \& hyperbolx plerzque habent duas , cum parabola \& circuus habeant vantum unicam, tamen hic femper oportate ex datis eo em tandem pofie deduci, ut anica tantum luperfit comptans (in ea. dem curva) variabilí (pro diverfis) alioqui modus ordinatim cas ducendi non fatis eft determinatus. Interim nihil impedit cum plures dantur zquationes determinantes, confiderari plures parametros ut differentiabiles, cum etiam plares zquationes differen. tiales pre ipfis determinandis haberi poffint. Es plerumque datur sonffantigima (una vel plures) feu parameter communis omnibus ordinatim ducendis; adeoque litera eam defignans in calculo diffe. rentiali etiam manet indifferentiabilis. Hinc patet, eandem xqua. cionem poffe habere diverfas aquationes differentiales, feu rariis nodis effe differentiabilem, prout poftulax fcopus inquiftionis Imo fieri poffe expertusfum, ut plures modi differentiondi cant. Imo fieri polfe expertussum, ut plures modi diferentiendi ceni. diftinetius, atque exemplis illuftranda, finflitutiones quasdam nodiftinctius, atque exemplis illuftranda, in infitutiones quascam no-
∇x nofre Analyfees infuitorum tradere vellemus; fed ea res nee $v x$ notrx Amalyfeos infinitorum fradere veliemus; fed ea res nee
hujus eft loci, \& nectemporis noftri. Et qui priora noftra intellexerint ac porro meditari volent, ad hac quoque non difficulter pecsxerint ac porro meditari volent, adhze quoque non difficulter per-

Leibniz's 1692 paper on envelope rule: - Rule vaguely alluded to.

- No formulas, no examples, no figures.

MENSIS APRILIS A. M DC XCI ITI

 Gibi videbuntur, Vocabulis utor fubinde modis, red qux ip fe contextus explicat, neque ego in verbis facile novare foleo, nific cum evidens eft explicat, neque ego in verbisacile niam, (alioqui enim vix licuiffet hace fine multiplici calculo tradere) fed \& ad quandam, utita dicam, admonitionem atque excitationem mentis, atque univerfalia animo concipienda.natim ductas, quarum concurfu formatur, tangit, quam proprietatem,cum meditantibus fatis appareat, demonftrare hic non eff opus. Talis eft linea evolutione generanns,ea enim omness rectas ad
curram evolutione generatam perpendiculares tangit, ex Hugenicurvam evolutione generatam perpendiculares tangit, ex Hugeniano invento. Tales fune linex plures coípolutione generantes, quas Dn. D. T. excogitavit, \& quaffociab eodem introducti, cum concurfus radiorum non funt in puncto, fed in ejus locum Focme eft limearis, concurfu faltem duarum proximarum quarumcunque formatus. Sed cum hac non nif ad rectas pertineant, fciendum eft aliquid analogum \&in curvis locum habere.' Ita linea reflectens qux radios fecundum quamcunque prafcriptam legem a lucido, vel (peculo aut lente (una pluribusve) datarum figurarum, venientes reddit iterum convergentes (divergentes aut parallslas) cujus conAructionem in his Actis dedimus, formaxur ex concurfu infinitarum eflipfrum (hyperbolatum ant paraboharum.) Et hinc quoqne Mechodus haberi poterat, problema illud prima fronte tam difficile folvendi: nam infinitz illx ellipfes funt ordinatim pofitione datex,adeoque es linea concurfuum data eft,feu haberi poteft. Et hac Methodus ad multa alia praftanda adirum prabet, qux alias vix videbantur effe in poteftate. Qux ettiam caura eft, cur viam hanc novam Geometris apecire voluerim. Res autem pendet a noftra A malyf indivififotixm, \&o calculus hujus Methodi tantum applicatio oft tioftri calculi differentialis. Nempe conflituta femel xquatione locali (feu ad curvam lineam, unam ex ordinatim datis,) fed generali, (legem omnibus communcm exhibente) hujus xquationis jam quaratur xquatio differentialis, modo mox dicendo, \& ope harum xquationum habetur quaxitum. - Et quidemroum linea alicujus curve ad punctum quodcunque in ea datum quaritur ran gens, tunc ctiam tantum opus eft equationem ejus curva different ore, feu quarrere zquationem,quax fiddifferentialis ad x quationem ere, feu quarere xquationem,quef itdiffrentials ad xquationem pes, linex conatrutionom; vel aquationis proipfa calculum ingrei

rentiabiles, quemadmodum \& ipfa recta tangens,vel alix nomnul$1 x$ functiones ab ea pendentes,verb.gr. perpendiculares ad tangenters ab axe ad curvam dufto. Verum tam ordmata quam abffiffa, quas per $x \& y$ defignari mos eft (quass \& coordimatns appell lare foleo,cum una fit ordinata ad unum, altera ad alterum latus anguli,ad duabus condirectriciobus comprchenfi) eft gemina feu differencriabilis. Hic yero in noftro calculo prafenti cum non quaritur iangens quecunque unius curva in quocunque ejus puncto, fed tangens unica infinitarum curvarum ordinatim duclarum,unicuique in fuo pundore fpondenti occurrens, adeoque cum quaritur uni ex his curvis affumpte refpondens puncum contactus,tunc contrarium evenit, \& cam I quam y (vel alia functio ad punctum illud determinandum xquivalens) eft wnica; fed aliqua minimom parameter a vel 6 debet effe gemina feu differentiabilis, ea nimirum, qua variata etiam variantur curvx ordinatim datz. EE quidem, iceet unius curva plures polfint efle reetx contantes feu parametri, (exempli caufa ellipfis omnis, \& hyperbolx plerzque habent duas , cum parabola d circulus habcant rantum unicam, tamen hic eemper oportut exdatis eo em tandem poffe deduci, ut anica tantum luperfit comptans (in ea. dem curva) viariabilíc (pro diverfis) atioqui modus ordinatim cas ducendi non fatis eft determinatus. Interim nihil impedit cum plures dantur zquationes determinantes, confiderari plures parametros nt differentiabiles, cum etiam plares zquationes differen. tiales pre ipfis determinandis haberi poffint. Et plerumque datur confantilizma (una vel plures) feu parameter communis omnibus ordinatim ducendis; adeoque litera eam defignans in calculo diffe. rentiali etiam manet indifferentiabilis. Hinc patet,eandem xqua. tionem poffe habere diverfas aquationes differentiales, feu variis modis effe differentiabilem, prout poftulax fcopus incuiftionis Imodis crie differentiabilem, prout poitulax deopus inquintionis Imo fieri polfe expertusfum, ut plures modi differentiondi candiftinqtius, atque exemplis illuffranda, fi infitutiones quadero y nofre Analyfeas infinitorum tradere vellemues ; fed ea ees nee Vx noirra Aunlyffos infmitorxm tradere veliemus; fed ea ros nee zerint ac porro meditari volent, ad hae quoque non difficulter perzerint ac porro meditari volent, ad hze quoque non difficulter per-

MENSIS APRIIIS A. M DC XCII r7I

 Gibi videbuntur, Vocabulis utor fubinde modis, red qux ip fe contextus explicat, neque ego in verbis facile novare foleo, nificum evidens eft expuctas, noque tantum ad brachylogiam, (alioqui enim vix licuiffee hace fine multiphici calculo tradere) Ied \& ad quandam, utita dicam, admonitionem atque excitationem mentis, atque univeraflia aniadmonitionemmo concipienda.

- No formulas, no examples, no figures.
- Optics mentioned as application:

Exempli eaufa,fifpeculunn ... radios Solares ... reflectar

yffs infinitorum ufu.

Autore O. V. E.

ORdinatim applitatas vocare folent Goometre rectas quotcunque inter fe parallelas,qux a curva ad rectam quandam (directricem) usque dacuntur, qua cumad directricem (ranquam $A x e m$) funt normales, folent vocari Ordinate xat' ' $\dot{\xi}$ ox'yn. Defargutfius rem prolatavit,\&\& fub Ordinatim applicatis eciann compoo dipergesces Er fane prallely fub convergentibus aut dier co dipergentes. Et fane parallelx fub convergentibus aut divetgentibus comprehendi poffunt, fingendo punctum concorfus infinite abhinc dirtare. Verum quia multis atiis modis fieri poteff,ut infinitx duci intelligantur linex fecundum legem quandam com: munem, qux tamen non fint parallelex vel convergentes ad punAum omnibus commune, aut a puncto omnibus communi divergentes, ideo nos taless lineas generaliter vocabimus Ordinatim duo
Iass , yel ordinatim (pofitione) datas. Exemplic eaura, if peculum ctas, yel ordinatim (poititone) datass Exemplic eaula, ii peculum
aliquod, vel potius rx pofitione data, radios Solares five immediate, five poft alizm quandam reflexionem aut refractionem advenientes reffectar; ifti radii reflexi erunt infinitre linex rectx ordinatim dufx,, \mathbb{E} daro quovis puncto Ppeculi (caxteris manentibus) dabitur radius refloxus ei refpondens. Verum ego fub ordinatim ductis non tantum rectass,fed \& curvas lineas qualescunque accipio, modo $l e x$ habeatur, fecundum quam dato linex cujusdam datx (tanquam ordinatricí) punAto,refpondens ei puncto linea duci poffit, qux una erit ex ordinatim ducendis, feu ordinatim pofitione datis.' Ordine enim percurrendo puncta ordinatricis (verbi gratia lineẍ, cujus rotatione fir fpeculum paulo ante dittum, feu fectionis ejus per axem) ordire prodibunt linex illx ordinatim data, Porro effi ex non concurrant omnes ad unum pundum commine, tamen regulariter dux quxvis tales linex proxime, (id eft inffinitefime differentes, feu infinite paryam habentes diftantiam) concurrunt inter fe, punctumque con-
prodit linea concurraumm, qux eft omnium concurfuum inter proximas locus communis, habetque hoc egregium, quod omnes ordinatim ductas, quarum concurfu formatur, tangit, quam proprietatem,cum meditantibus fatis appareat, demonftrare hic non eff opus. Talis eft lines evolutione generans, ea enim omnes rectas ad curvam evolutione generatam perpendiculares tangit, ex Hugeniano invento. Tales funt linex plures coêpolutione generantes, quas Dn. D. T. excogitavit, \& quaf Foci ab eodem introducti, cum concurfus radiorum non fuant in puncto, fed in cius locum Focus eft linearis, concurfu faltem duarum proximarum quarumcunque for matus. Sed cum hac non nif ad rectas pertineant, fciendum eft diquid analogum $\&$ in curvis locum habere: Ita linea reflectens; que radios fecundum quamcunque prafcriptam legem a lucido, vel peculo aut lente (una pluribusve) datarum figurarum, venientes feddit iterum convergentes (divergentes aut parallslas) cujus conAructionem in his Actis dedimus, formaxur ex concurfu infinitarum cllipfium (hyperbolarum ant parabolarum.) Et hinc quoqne Mechodus haberi poterat, problema illud prima fronte tam difficile folvendi: nam infinitx ille ellipfes funt ordinatim pofitione datz,adeoque $\&$ linea concurfuum data eft,feu haberi poteft. Et hac Methodus ad multa alia praftanda aditum prabet, qux alias vix videbantur effe in poteflate. Qux ectiam caufa eft, cur viam hanc nopam Geometris aperire voluerim. Res autem pendet a noftra A malyf indivififblium, \& calculus hujus Methodi tantum applicatio of tioftri calculi differentialis. Nempe conflituta femel x quatione locali (feu ad curvam lineam, unam ex ordinatim datis,) fed generali, (legem omnibus communem exhibente) hujus xquationis jam quaratur xquatio differentialis, modo mox dicendo, \& ope harum xquationum habetur quafitum. - Et quidemreum linea alicujus curva ad punctum quodcunque in ea datum quaritur tan gens, tunc ctiam tantum opus eff equationem ejems curva differenti curve localem, x quationem,quaf titdifrers tes, linex conAtruationom; vel aquationis pro ipfa calculumingre

rentiaties, quemadmodum \& ipfa recta tangens,vel alix nomnul$1 x$ functiones ab ea pendentes, verb.gr. perpendiculares ad tangentern ab axe ad curvam ductx. Verum tam ordinata quam abfiffa, quas per $x \& y$ defignari mos eft (quas \& coordimatnsa appellare foleo,cum una fic ordinata ad unum , altera ad alterum latus anguli, a duabus condirectriciobus comprchenfi) eft gemina feu differencriabilis. Hic yero in noftro calculo prafenti cum non quaritur iangens quecunque unius curvx in quaccunque ejus puncto, fed tangens unica infinitarum curvarum ordinatim ductarum,unicuique in fuo puncto re Spondentio occurrens, adeoque cum quaritur uni ex his curvis affumpta refpondens punctum contactus,tunc contrarium evenit, \& cam x quam y (vel alia functio ad punctum illud determinandum xquivalens) eft vnica; fed aliqua minimum parameter a vel 6 debet effe gemine feu differentiabilis, ea nimirum, qua variata etiam variantur curvx ordinatim datz. EEt quidem, iceet unius curvx plures polfmt effe recta contantes ieu parametri), exempli caufa elliplis omnis, \& hyperbolx plerzque habent duas , cum parabola d circulus habeant rantum unicam, tamen hic femper oportat exdatis eo em tandem poife deduci, ut anica tantum fuperfit confans(in eadem curva) varriabili (pro diverfis) alioqui modus ordinatim cas ducendi non fatis eft determinatus. Interim nihil impedit cuma plures dantur zquationes determinantes, confiderari plures parametros at differentiabiles, cum etiam plares zquationes differen. tiales pre ipfis determinandis haberi poffint. Es plerumque datur sonffantilizana (una vel plures) feu parameter communis omnibus ordinatim ducendis; adooque litera cam defignans in calculo diffo. rentiali etiam manet indiferentiabilis. Hinc patet,eandem xquationem poffe habere diverfas aquationes differentiales, feu prriis oodis effe differentiabilem, prout poftulax fcopus inquiftionis Imo fieri poffe expertusfum, ut plures modi differentiondi cant Imo fieri poffe expertussium, ut plures modis differentiandi candiftinctius, atque exemplis illuffrandarfi inftitutiones quasdam no diltinctius, atque exemplis illurtranda, in infitutiones quadcam no-
 serint ac porro meditari volent, ad hac quoque non difficulter perzerint ac porro meditari volent, ad hzequoque non difficulter per-

MENSIS APRIIIS A. M DC XCI riz

 Gibi videbuntur, Vocebulis utor fubinde nopis, ,led qux iple contextus explicat, neque ego in verbis facile novare foleo, nificum evidens eft explicar, neque ego in ad brachylogiam, (alioqui enim vix licuiffe frec fine multiplici calculo tradere) fed \& ad quandam, urita dicam haz roitionem atque excitationem mentis, atque univeralia animo concipienda.ORdinatim applitatas vocare folent Goometre rectas quotcunque inter fe parallelas,qux a curva ad rectam quandam (directricem) usque ducuntur, qux cumad directricem (ranquam $A x e m$) funt normales, folent vocari Ordinate xat' ' ξ ' ox'yn. Defargutfius rem prolatavit,\&\& fub Ordinatim applicatis eciann comprehendit rectas conpergentes ad unum punctum commune, aut ab co dipergentes. Et fane parallexx fub convergentibus aut divetentibus comprehendi polfunt, fingendo pascum concorus iniinite abhinc diftare. Verum quia multis aliis modis fieri poreft,ut infinita duci intelligantur linex fecundum legem quandam communem, qux tamen non fint parallelx vel convergentes ad punAum omnibus commune, aut a puncto omnibus communi divergentes, ideo nos tales lineas generaliter vocabimus Ordinatim duo-
Ias , yel ordinatim (pofitione) datas. Exemplic eaura, fif peculum cias yed ordinatim (poitione) datas. Exempliceuya, if peculurn
aliquod, vel potius fectio cjus a plano per axem, cujuscunque figurx pofitione datx, radios Solares five immediate, five poft alizm quandam reflexionem aut refractionem advenientes reffectar; inti radii refexi erunt infinitre linex reetx ordinatim duftx, $\&$ daro quovis puncto fpeculi (cexteris manentibus) dabitur radius refoxus ei refpondens. Verum ego fub ordinatim ductis non tantum rectass,fed \& curvas lineas qualescunque accipio, modo lex habeatur, fecundum quam dato linex cujusdam date (tanquam ordinatricí) punto,refpondens ei puncto linea duci poffit, qux una erit ex ordinatim ducendis, feu ordinatim pofitione datis.' Ordine enim percurrendo puncta ordinatricis (verbi gratia lineẍ, cujus rotatione fir fpeculum paulo ante difum,feu fectionis ejus per axem) ordire prodibunt linex illx ordinatim data. Porro effi ex non concurrant omnes ad unum punftum commune, tamen regulariter dux quxvis tales linex proxime, (id eff inffiteffime differentes, feu infinite paryam habentes diftantiam) concurrunt inter fe, punctumque con-
ourfus oft affignabile, \& his concurfibus ordinatim fumtis nora
prodit linea concur/unm, qux eft omnium concurfuum infer proximas locus communis, habetque hoc egregium, quod omnes ordinatim ductas, quarum concurfu formatur, tangit, quam proprietatem,cum meditantibus fatis appareat, demonftrare hic non eft opus. Talis eft linea evolutione generans, ea enim omnes reetas ad
curvam cvolutione generatam perpendiculares tangit ex Hugenicurvam evolutione generatam perpendiculares tangit, ex Hugeniano invento. Tales funt linex plures coếpolutione generantes, quas Dn. D. T. excogitavit, \& quaf Foci ab eodem introducti, cum concurfus radiorum non fuant in puncto, fed in cius locum Focus eft limearis, soncurfu faltem duarum proximarum quarumcunque formatus. Sed cum hac non nif ad rectas pertineant, fciendum eft diquid analogum \& in curvis locum habere:' Ita linea reflectens; que radios fecundum quamcunque prafcriptam legem a lucido, vel peculo aut lente (una pluribusve) datarum figurarum, venientes feddit iterum convergentes (divergentes aut parallslas) cujus conAructionem in his Actis dedimus, formaxur ex concurfu infinitarum ellipfium (hyperbolarum ant parabolarum.) Et hinc quoqne Mechodus haberi poterat, problema illud prima fronte tam difficile folvendi: nam infinitx ille ellipfes funt ordinatim pofitione datz,adeoque $\&$ linea concurfuum data eft,feu haberi poteft. Et hac Methodus ad multa alia praftanda aditum prabet, qux alias vix videbantur effe in poreflate. Qux etiam caufa eft, cur viam hanc noyam Geometris aperire voluecrim. Res autem pendet a noftra A malyf indivififblium, \& calculus hujus Methodi tantum applicatio of tioftri calculi differentialis. Nempe conflituta femel xquatione locali(feu ad curvam lincam, unam ex ordinatim datis,) fed generali, (legem omnibus communem exhibente) hujus xquationis jam quaratur æquatio differentialis, modo mox dicendo, \& opt harum xquationum habetur quxfitum. - Et quidemrum linea 2 licujus curva ad punctum quodcunque in ea datum quaritur tan gens, tuinc ctiam tantum opus eft equationem ejims curva differenti ere, feu quarere xquationem,quef fitdifferentialis ad xquationem pes, linex conafructionom; vel aquationis proi iffa calculum ingre-

rentiabiles, quemadmodum \& ipfa recta tangens,velalix nomnulx functiones ab ea pendentes, verb.gr. perpendiculares ad tangentem ab axe ad curvam dufto. Verum tam ordmata quam abffiffa, quas per $x \& y$ defignari mos eff (quas $\&$ coordimatisu appellare foleo,cum una fic ordinata ad unum, altera ad alterum latus anguli,a duabus condirectricibus comprchenfi) eff gemina feu diff frencriatilic. Hic yero in noftro calculo prafenti cum non quaritur iangens quecunque unius curva in quocunque ejus puncto, fed tangens unica infinitarum curvarum ordinatim duclarum,unicuique in fuo pundore fpondentio occurrens, adeoque cum quarritur uni ex his curvis affumpta refpondens puncumm contactus,tunc contrarium evenit, \& cam z quam y (vel alia functio ad punctum illud determinandum xquivalens) eft unica; fed aliqua minimom parameter a vel 6 debet effe gemina feu differentiabilis, ea nimirum, qua variata etiam variantur curvx ordinatim data. Et quidem, lieet unius curvx plures polfint effe reetx contantes feu parametri), exempli caufa elliplis omanis, \& hyperbolx plerxque habent duas , cum parabola d circuus habeant rantum unicam, tamen hic femper oportatexdatis eo em tandem poife deduci, ut anica tantum fuperfit confans(in eadem curva) variabilí (pro diverfis) alioqui modus ordinatim cas ducendi non fatis eft determinatus. Interim nihil impedit cuma plures dantur zquationes determinantes, confiderari plures parametros ut differentiabiles, cum etiam plares zquationes differen. tiales pre ipfis determinandis haberi poffint. Et plerumque datur conffantilima (una vel plures) feu parameter communis omnibus ordinatim ducendis ; adeoque litera cam defignans in calculo diffe. rentiali etiam manet indifferentiabilis. Hinc patet, eandem xqua. cionem poffe habere diverfas aquationes differentiales, feu variis nodis effe differentiabilem, prout poftulax fcopus incuiftionis Imo fieri poffe expertusfum, ut plures modi differentiondi cant Imo fieri poffe expertussium, ut plures modis differentiandi candiftintius, atque exemplis illuffrandari inftirutiones quasdam no $\checkmark x$ noftre Analyfeas inpmitorum tradere vellemus ; fed ea res nee va noirra Aualyfeas infinitorxm tradere velikmus; fed ca ros nee xerint ac porro meditari volent, ad hacequoque non difficulter perxerint ac porro meditari volent, ad hac quoque non difficulter per-

MENSIS APRILIS A. M DC XCI riz

 fibi videbuntur, Vocabulis utor fubinde novis, fed qux ipfe contextus explicat, neque ego in verbis facile novare foleo, nific cum evidens eft explicat, neque ego in verbiscaleciavare (alioqui enim vix licuiffee hruce fine multiplici calculo tradere) fed \& ad quandam, utita dicam, haxefine Malupicicalculo mo concipionda.LEIBNIZ AN RUDOLF CHRISTIAN VON BODENHAUSEN
Hannover, 25. September (5. Oktober) 1692.
O. V. E. sind die literae secundae mei nominis post primas G. G. L.

byfs infunitorum ufu.

Autore O. V. E.

ORdinatim applitatas vocare folent Goometre rectas quotcunque inter fe parallelas,qux a curva ad rectam quandam (directricem) usque ducuntur, qux cum ad directricem (ran. quam $A x e m$) funt normales, folent vocari Ordinate xat ${ }^{\circ}$ ¿ ξ ox Defarguffius rem prolatavit,\& fub Ordinatim applicatis eciam comprechendit dipergences. Et fane parallela fub convergentibus aut dize co dipergentes. Et fane parallelx fub convergentibus aut divergentibus comprehendi poffunt, fingendo punctum concorfus infinite abhinc diftare. Verum quia multis aliis modis fieri poteft,ut
infinita duci inteligantur linex fecundum legem quandam com: infinitx duci incelligantur linex fecundum legem quandam com: munem, qux tamen non fint parallele vel convergentes ad punAum omnibus commune, aut a punto omnibus communi diver-
gentes, ideo nos tales linceas generalier yocabimus Ordinatim dwgentes, ideo nos tales 1 inceas generaliter vocabimus Ordinatim du-
Ias, vel ordinatim (pofitione) datas. Exempliceuvafaf peculuri aliquod, vel potius fectio ejus aplano per axem, cujuscunque figurx pofitione datx, radios Solares five immediate, five poft alizm quandam reflexionem aut refractionem advenientes reffectat; inti radii refexi erunt infinitre linex rectx ordinatim ducta, \&ddro quovis puncto fpeculi (caxteris manentibus) dabitur radius reflexus ei refpondens. Verum ego fub ordinatim ductis non tantum rectass,fed \& curvas lineas qualescunque accipio, modo $l e x$ habeatur, fecundum quam dato linex cujusdam date (tanquam ordinatricí) punto,refpondens ei puncto linea duci poffit, qux una erit ex ordinatim ducendis, feu ordinatim pofitione datis.' Ordine enim percurrendo puncta ordinatricis(verbi gratia linex́, cujus rotatione fir Ppeculum paulo ante diftum,feu fectionis jjus per axem) ordire pro dibunt linex illx ordinatim data. Porro effi ex non concurrant omnes ad unum punctum commune, tamen regulariter dux quxvis tales linex proxime, (id eff inffinitefime differentes, feu infinite
paryam habentes diftantiam) concurrunt inter
curfus oft aflignabile, \& his concurfibus ordinatim fumtis nova prodit linea concurr/uum, qua eft omnium concurfuum inter pro-
ximas locus communis, habetque hoc egregium,quod omnes ordinatim ductas, quarum concurfu formatur, tangit, quam proprietatem,cum meditantibus fatis appareat, demonftrare hic non ef opus. Talis eft linea evolutione generans,ea enim omnes reftas ad opurvam evolutione generatam perpendiculares tangit, ex Hugeniano invento. Tales funt linex plures coépolutione generantes, quas Dn. D. T. excogitavit, \& quaf Fociab eodem introducti, cum concurfus radiorum non fiunt in puncto, fed in ejus locum Focus eft limearis, soncurfu faltem duarum proximarum quarumcunque formatus. Sed cum hac non nif ad rectas pertineant, fciendum eft diquid analogum $\&$ in curvis locum habere: Ita linea reflectens, que radios fecundum quamcunque prafcriptam legem a lucido, vel peculo aut lente (una pluribusve) datarum figurarum, venientes reddit iterum convergentes (divergentes aut parallslas) cujus confructionem in his Actis dedimus, formaxur ex concurfu infinitarum ellipfium (hyperbọarum ant parabolarum.) Et hinc quoqne Mechodus haberi poterat, problema illud prima fronte tam difficile folvendi: nam infinitx ille ellipfes funt ordinatim pofitione datz,adeoque $\&$ linea concurfuum data eft,feu haberi poteft. Et hac Methodus ad multa alia praftanda aditum prabet, qux alias vix videbantur effe in poteflate. Qux striam caufa eft, cur viam hanc noyam Geometris aperire voluerim. Res autem pendet a noftra 1 malyf indivififoblumm, Q calculus hujus Methodi tantum applicatio of tioftri calculi differentialis. Nempe conftituta femel aquatione locali (fuy ad curvam lineam, unam ex ordinatim datis,) fed generali, (legem omnibus communem exhibente) hujus xquationis jam quaracur xquatio differentialis, modo mox dicendo, \& ope harum xquationum habetur quefitum. - Et quidemroum linea alicujus curva ad punctum quodcunque in ea datum quaritur tan gens, tunc ctiam tantum opus eft equationem eims curva differcenti cre, reu quarere xquationem, que itdifferontails ad xquationem pes, linex contrutionom; vel aquationis pro ipfa calculum ingrè

errntiabiles, quemadmodum \& ipfa recta tangens,vel alix nomnul$1 x$ functiones ab ea pendentes. verb.gr. perpendiculares ad tangentem per x as curvam dutta. Crum tam ordinata quam abfci/fa,quas per $x \& y$ defignari mos eft (quas \& coordimatnsa appellare foleo,cum una fic ordinata ad unum, altera ad alterum latus anguli, a duabus condirectricibus comprchenfi) eff gemina feu diff frencriatilic. Hic yero in noftro calculo prafenti cum non quaritur iangens queccunque unius curva in quocunque ejus puncto, fed tangens unica infinitarum curvarum ordinatim ductarum,unicuique in fuo pundore fpondentio occurrens, adeoque cum quaritur uni ex his curvis affumpta refpondens punctum contactus, tunc contrarium evenit, \&ctam x quam y (vel alia functio ad punctum illud determinandum aquivalens) eft unica; fed aliqua minimom parameter a vel 6 debet effe gemina feu differentiabilis, ea nimirum, qua variata etiam variantur curvx ordinatim datz. Et quidem, liect unius curvx plures pollint effe rectax contantes ieu paramerti, (exempli caufa elliplis omanis, \& hyperbolx plerxque habent duas , cum parabola dc circuus habcant rantum unicam, tamen hic femper oportate ex datis eo em tandem poffe deduci, ut anica tantum luperfit comptans (in ea. dem curva) varriabilíc (pro diverfis) alioqui modus ordinatim cas ducendi non fatis eft determinatus. Interim nihil impedit cum plures dantur zquationes determinantes, confiderari plures parametros ut differentiabiles, cum etiam plares zquationes differen. tiales pre ipfis determinandis haberi poffint. Et plerumque datur sonffantilizana (una vel plures) feu parameter communis omnibus ordinatim ducendis; adeoque litera eam defignans in calculo diffe. rentiali etiam manet indifferentiabilis. Hinc patet,eandem xqua. cionem poffe habere diverfas aquationes differentiales, feu rariis nodis effe differentiabilem, prout poftulax fcopus inquiftionis Imo fieri poffe expertusfum, ut plures modi differenciendi cano. dem xquationem jungantur inter fe. Hreomia explicanda effent diftinctius, atque exemplis illuffranda,fi infitutiones quasdam no-

 xerint ac porro meditari volent, ad hac quoque non difficulter perxerint ac porro meditari volent, ad hze quoque non difficulter per-

MENSIS APRILIS A. M DC XCI

171
First use of term "function" in print:
functiones ab ea pendentes
fibi videbuntur, explicat, neque ego in verbis facile novare foleo, nific cum evidens eft fructus, non tantum ad brachiylogiam , (alioqui enim vix licuiftee hace fine multiplici calculo tradere) fed \& ad quandam, utita dicam, admonitionem atque excitationem mentis, atque univerfalia animo concipionda.

ACTA
 ERUDITORUM

publicata. Lipfia
Calendis Septembris, Anno M DC XCIII.
G. G. L. SUPPLEMENTUM GEOMEtria Dimenforia, fou generalisfima omnium Tetragonifnorum effectio per motum: Similiterque multiplex

. bus tora ejus vis fuit perfpecta. In genere igitur hoc problema ad
 propos ordinatim poffitone datas tangit. Cuin
wuius unus cuma laififime pateat, calculum in cam rem peculiarem jamdudut excogitavi, vel poo
tius huc peculiari ratione applicui noftrum Differentialem compentius huc peculuariratione applicui notrrum Diffrentiaiem sompen-
dio non conternnendo. Scilicet quemadmodum Cartefiuw loca ve
 ress, qua cuilbect punco cujusibet currx in frrie ordinatim fimta-
rum
 curvis, fed feciatim tamen accipiuntur de curva ex ip farum concur$\left.\begin{array}{l}\text { rifitice gencre. Cofeficientes } a, b, c, \text { in } x q u a t i o n e ~ c u m ~ i p f i s ~ \\ x\end{array}\right]$

 ficientes funt conf β antiffime fea permanertes, (qux manent non tan-
tum in una, fed δ in omnibus fericic curvis,) alix funt variabtics. Et quidem utferiei currarum lex data fit, neceffe eff unicam tantum in
coefficientibus fupereffe variabilitatem, adeoque fi in p rimaria pro omnibus carvis aquarione naturam earum communem explicante
plures extent variabiles, neceffe eft dari alias qequationes accelorias,
 ${ }^{314}$ fed ipfuis per ACTA ERUDITORUM ur,) determinanatium , manifeffum eft, concurrentes quinelliguntur) $)$ dererminantium, manifetum en, concurrentes quidem, adeo
quel ineam ex concurfu formatam tangentes,
offe gemnas interfethonis autem fee concurfuspuncume
natam ei refpondentem unicam effe; cum alioquai in inveftigatione hatiat incerum propofitam tangentium, reftarum vel curvarum (vel-
folita
ut circulorum, parabolarum \&c.) ex dare curvx ordinatis quaren ut circulorum parabolarum \&c.) ex datax curvx ordinatis quurren.
darum, ordinata
 fitifne datisinveftigancur ordinatx (contra quam in communi) ma
nent coordinate $x \& \&$ in hoc tranfitu (a proximo ad proximum
 communic acclulu in in fferentiabilies cenfentur, quia conftantes,) qua

 per qua volvitur generatrix trochoëdis, generatricem durante mota
tangic. fixus, cujus crura atcunque producta conftituere intelligannur duos axises relationis curvarum, fu axem cum axe conjugato; in quos de-
miffe normales ex punco curve quocunque crunt ordinata, $x, \&$ ormiff n normales ex punte curvx quocunque erunt ordinata, $x, \&$ or-
dinata conjugata feuab rum rclationemex ex datis quarrendd habebitur qquataio, (t) quam pau-

 dentia per fectundariam xquationem, (2) unam vel plures; atque ita
ex xq. 1 tollendo coefficientes variabiles, prater unam b prodibit
 MENS. JUL. A. M DC XCIV. \qquad $\frac{3}{2 n g} 316$ lus in caflu unius differentiabilis in effectu coincidited methodovetce
re de maximis $\&$ minimis a Frrmatio propofita,
Hy ddeniopromo-

 eft xquatio ad curvam cc quxafitam. Ddque indicio eft eam effe prata continnata enim $C C$ verricefiuo V incidet in axem $A P$, fed fipra dx.
$t x A E$ verticem A, itaut diftantia verticum $A V$ fit communis late-
 $6 d b \stackrel{(3)}{=} \Psi d b \Psi c d c$, fed ex 2 fict $\& d b \stackrel{(4)}{=} 2 c d c$, guarum (3 \&4) opetollendo $d c$, evaneficet fimul $\delta d b, \&$ fiet $b\left(\frac{(5)}{x} \times\right.$ \& at
 riabiles;

 catax linex terminantis praffans shliquid defideratum, prfape confe-
quimur quafitam formando ipfam concurfulinearum, guarum que-

 feri. Convergentes; eademque mechodusvalet,firsddendxe fint paral.
 adeoque habemus xq, 4 ordinariam, cujus ope ex $x q .3$ tollendo va
riabilem refduam h, habbbiturxquatio, (s) in qua prater $x \& \&$ tan
tum fupererunt coefficientes invariabiles (ute) tum fupererunt coefficicentes invariabiles (ut 4) qux erit aquatio ad
curvam quafitam concurfu ferici incarum formatam

 vando. Nempe datis xq.(1) primaria) \& $x q$ (() fecundaria, una vel
pluribus pro explicanda dependentia coefficientium variabilium in-

 fufficientes ad eas tollendas;\&\& quidem modo tolli poffinn differentia-
 conjungendo cum xq. 1 \& 82 ollli poterunt variabiles omnes, α p pro-
dibit $x q$. ($)$ naturamexprimens

rmata, qux eriteadem cum xq.5. calculi prioris.
Hac jom methodo folvi poffunt inpumera problemata fublimioris Geometrix, hatetenus non habititinumporeftatere permitinentiaque
ad tangentium converfam ; ex quibus nonnulla ad tangentium converfam; ex quibus nonnulla in fecimén indica
bo, magnx utiquegeneralitatis. Veluti: data relatione inter AT $\& 8$
 vamc ${ }^{\circ}$; nam reetx curvam tangentes ordination pofficione dantur,
adeoque $\&$ curva quafra, quipes qux carum concurfu formatur. Vel
 TE, fiopus producta, quafiram curvam CC tangat, paret ex dictis
curvam CC praccripta hic mechodo haberi. Similiter data relatione

 poffione datas, etiam datur linea FF formata per carum concur-
fum ; hujus vero evolutione deffribetur curva CC quafita. Unde
Unde Cum ; hujus veroe volotuione defcribetur curva CC quxafita. Unde
hic quidem infnita curve faisfaciented dari poffunt, omnes scilicet

CTA ERUDITORUM

16
Solutionem fuamproblematisBernoulliani meanfe nuperoM Mio una

 ionis datx fuccefflum fuiffe deprehenfursum. - Cxterum Anonymuer

 eff admonitum, innumera aimilia

 BC vel $\mathrm{BC} ;$ tangens $C \mathrm{~T}$ vel $\mathrm{C} \theta ;$ perpendicularis $\mathrm{C} P \mathrm{vel} C \pi ;$ fiub tingentiadis $B T$ vel $\beta \theta$ '; fubperpendicularis $B P$ vel $B \approx ;$ per tangen
tem reféta $A T$ vel $A \theta$; per perpendicularem rececta A vel $A \pi$;cor reffegie PT vel $\pi \theta ;$ radiuls, ofculi fun curvedinis $C F ; \&$ aliz in tumera:

TAB.VII. ad A. 16 g4. pag. 511

Leibniz's 1694 paper on envelope rule: - Rule thoroughly explained with formulas, figures and examples.

ACTA ERUDITORUM

 curvis) propofitam tangentibus, poftione ordinatim dati, invenire
propofitam, vel quod eodem redit: ${ }^{\text {invenire }}$ lineam,
 teat, calculumin cam rem peccliarem jamdudite excogitavi, vel poo
tius huc peculiari ratione applicui noffrum Differentialem compeno tius huc peculuariratione applicuin notruum Diffrentialem sompen-
dio non conternnendo. Scilicet quemadmodum Cartefiuw loca ve

 rwm curvarrum comprchenfar, accommodannur. Itaque x \& y abfififa
 curvis, fed peciatim tamen accipiunnur de curva ex iptarum concur-
 ulem infitus (nempeparemetros) alias vero extrrances, quax fitum currvx (adeoque verticisaxisique) deffiniunt. Sed comparando curvas feriei inter ff, feu tranfitum dec curva in curram confiderando,plix coef
ficientes
 quidem utferieic cxryorum lex data fit, neceffic eff unicam tantum in mnibus crrvis aquatione naturamem earum communem explicante
 314 ACTA ERUDITORUM
fed iffius per evolutionem generatrix rectarum pofitione dataram turdeterminiata, nec in arbitrio eft
difintio utilis ef in hac doatrina

Sed exemplum calculi dabimus in problemate itidem generali, ad aliguan tamen fpecialem lineam applicato: datat relatione pers ${ }_{m m} \mathrm{C}$. . Patete enim datis pofitione ponntis C , nempe centris cir culorum, \& radiis P Cdatis magnitudine (ob datam rclationem ad
$A \mathrm{P}$) dariordinatim circulos lineam CC tangentes, adooque lineam
 fmatisfinem. Iraq; centro P, radio PC mggnitudine dato,defecribatur circulus C F.Uut ergo mechodum paulo anteporitam huc appicemus: ex puncto circuli quocunque F aganur normales ad crura anguin
reti $P A H$, cu coordinata $F G, y, \alpha F H, x$ (qux in cafu concur-

 ordinata PE xquecturipfi PC; hxc curva ponatur ((xempli graia)

 loinitata, cum e ejus radium defignet: b eftextranea, quippe fitum cen-
tri defignans; ambx variatis circulis funt variabile, fed tiffma fife permanens, cum non unius santum cirrculio omnibuis purn-
Ais, Etis, fed $\&$ pro omnibus circulis nofftis in zquatione maneate cadem.
Redu Reduetaijem xquatio 3 a unam eoefficientem variabilem b, differen
tiefur, fecundum b (folam in ea differentiabilsm) $\& \&$ fiet $2 b d b=$

MENS. JUL. A. M DC XCIV.

aind
tibi

format
moris

 A A relegmenta axium per currx rangentem CT fataza invenire cur-

 curra CC non femperceffordinaria, quoniam (cilicer noin ipfames, 316 ACTA ERUDITORUM P. S.

Solutionem fuamproblematisesernoulliani mond nuperomyio un: cum oberefione Anonymi Adis Eruditionuminfertam, DnMarchio A oonymum, frockulumffumad fhem priduxiffet, ip fummer folu

 dionis acDominorum Bemoulliorum Methodas non hoc c cantum,
 per quadraturas. Et generale Problema fic concicip poteff: Ditara-

 tumera.
TAB.VII. ad A.16g4. pag. 311 .

Leibniz's 1694 paper on envelope rule: - Rule thoroughly explained with
formulas, figures and examples.
"New", "of no little importance":

NOVA Applicatio

non parvi àd Geometriam augendam momenti

MENSIS JULII A. MDCXCIV. $3 n$ ni
ACTAERUDITORUM
\qquad fumptarum concurfu haternus noto, ita \& \& concurfu curvarum bus tora ejus vis fuit perfecta. In genere igitur hoc problema ad
 propos ordinatim poffitone datas tangit. Cuius ufus cuma ladifinime pateat, calculumin cam rem peccliarem jamdudite excogitavi, vel poo
tius huc peculiari ratione applicui noffrum Differentialem compene tuus huc peculiari ratione applicui notruum Divfrerntialem compen-
dio non contemnendo. Scilicet quemadmodum Cartefiuw loca veterum calculoexprimens xquationes adhibuit, qux cuivis currve puth-
Ao conveniunt ita nos x puations 5 .
 quidem \& ordinata, feu coordinateceffe intelliguntur cujusvis ex ditis
curvis, fed fpeciatim tamen accipiunur de curva exipfarum concurcurvis, fed fpeciatim tamenaccipiuntur de curva ex ip ipramm concurs$\left.\begin{array}{l}\text { rifitice gencre. Cofficiontes } s, b, c, \text { in } x q u a t i o n e ~ c u m ~ i p ~ i s ~ \\ x\end{array} \&\right]$ dem infitus (nempe parremetros) alias vero extrences, quue fitum curs. vxं (adeoqueverticis axisque) definiunt. Sed comp parando curvas feriei inter fe, feu tranfitum dec curva in curram confiderando,plix coff-
ficientes funt confantiflime feu permanenee, (qux manent ficientes funt conf β antifime quidem ut ferriei currarrum lex data fit, neceffe eff unicam tantum in coefficientibus fupereffevarialiilitem, adeoque fi in primaria pro
omnibus curvis equatione naturam earum communem explicante omnibus carvis aquurione naturam earum communem explicante
plures axetent variabiles neceffe eff dari alias cquationes acelforias, 314 ACTA ERUDITORUM unam. Cxiterum pro concurfu duarum linearum proximarum, fua tur,) determinantium, manifeftum eft, concurrentes quidem, ade quel lineam ex concurfu formatam tangentes, effe geminas; interfnatam eit reffondentem unice unican effe; cum alioqui in inveftigatione hatita incerum propofitam tangentium, reftarum vel curvarum (vel.
fol
ut circulorum, parabolarum \&c.) ex dare curvx ordinatis quaren ut circulorum parabolarum \&c.) ex datax curvx ordinatis quurren-
darum, ordinata
 fitifne datisinveftigancur ordinatx (contra quam in communi) ma
nent coordinate $x \& \&$ in hoc tranfitu (a proximo ad proximum

 tur cona volvitur generatrix trochoëdis, generatricem durante motu
pangic. fixus, cujus crura utcunque producta conffituere intelligannur duos axises relationis curvarum, fu axem cum axe conjugato; in quos de-
miffe normales ex punco curve quocunque crunt ordinata, $x, \&$ or-

 dentia per fectundariam x quationem, (2) unam wel plures; a a que it ia
ex $x q$. 1 tollendo coefficientes variabiles, prater unam b prodibit
 MENS. JUL. A. M DC XCFV. \qquad

\qquad
 ta, fed que cannum eff corollarium noftra.) Jam ope $x q$.4. tollende

 continuata anim $C C$ verricefun V incidet in axem $A P$, fed fupra dy
$t \in A E$ verticem A, itaut diftantia verticum $A V$ Gitcommunis lateris rectipars quarta. Si iatceram calculandir ationem malis, per plures
differeniales refumta $6 d b \stackrel{(3)}{=} \Psi d b \Psi c d c$, fed ex 2 fict $a d b \stackrel{(4)}{=} 2 c d c$, giarum (3 Q4) opetollendo $d c$, evanef(cet fimul $8 d b, \alpha$ fiet $b\left(\frac{(S)}{2} \times \pm n t\right.$
 riabiles; pro

 TC ad proprium exaxi refégmentuin $A T$ ((feu circuli, normalibus
ad lineam ordinatim datisis) invenire lineam, $C C$; alterius eft metho:

 catz. Cum enininer terminantis prafflans aliguid deffideratum, perfape confe.
quimurn quimur quaxftam formando ipfam concurfu linearum, guarumquxne jam. olim in fchediaffate de Linesis Opricici invenimodum lineas
achibendí, quex radios ordiñatim pofitione datos, fen, data figure exhibendí, quix radios ordinatim pofitione datos, Cey a data figgra)

 316 ACTA ERUDITORUM

NOVA Applicatio

non parvi ad Geometriam augendam momenti

- No pseudonym:

Leibniz's two envelope papers

1692
mensis aprilis A. m dC XCI. DE LINEA EX LINEIS NVMERO INFINITIS ordinatim ducitis inter $\int e$ concurrentibus formataseasǵs omnes tangente, as de nowo in ea re Anas.
lyfor infinitorum ufu.
Autore O. V. E.
Some marginal matter in optics treated disparagingly.

1694

MENSIS JULII A. MDCXCIV.

G. G. L. NOVA CALCULI DIFFERENTIALIS Applicatio © ufus, ad maliplicem linearum confrutionem, ex data tangentium conditione.
"New application" of "no little importance for geometry" praised and trumpeted.

1693:
Realisation that envelopes relevant for the representation of transcendental curves.

The Paracentric Isochrone $\quad d r / d t=$ constant

$$
u\left(x_{1}\right)=\int_{0}^{x_{1}} \frac{d x}{\sqrt{1-x^{4}}}
$$

Wanted:
Simple geometrical characterisation of u.

is proportional to the force (by Hooke's Law)
which is the product of the (fixed) weight and the length of the lever arm x (by the law of the lever).

But the extension dds is also inversely proportional to the radius of curvature r.

So x is proportional to r,

$$
a x=-\frac{d^{2} y}{d x d s}
$$

To construct the Paracentric Isochrone,

rectify the Elastica:

Jacob Bernoulli:

1691:

Announces that he has solution to elastica.

SPECIMEN ALTEKUM CAL CULI DIF

FAC. B. CURVATURA LAMINAELA ;fica. Ejus Identitas cum Curvatura Littcia apondere incimfif.fuidi. expanf/. Radiii Circulorwn of culentiwn in terminisis fimplifisifimes sxbibitit, napecum nopis quibusdam . Tberevematic huc perstineptitiow,y

7AC.B. SOLUTIO PROBLEMATIS LEIB. nitianideCurva Acceffus $छ$ Receffus aquabilis a pwncto dato, mediante rectificatione Curbé Eldfitca.

To construct

paracentric isoschrone $d r / d t=$ constant shape of elastic beam
or rectify

"The best method is that which uses a curve that Nature herself produces."

Johann Bernoulli: "If the curve can be algebraic, he sins against the laws of geometry who has recourse to a

$$
4\left(p^{2}-q^{2}\right)=\left(p^{2}+q^{2}\right)^{2}
$$ mechanical one."

$$
u\left(x_{1}\right)=\int_{0}^{x_{1}} \frac{d x}{\sqrt{1-x^{4}}}
$$

Lemniscate finds u in simple terms:
u can also be expressed
 in terms of arc length of ellipse, but messier.
$\int_{0}^{x_{1}} \sqrt{\frac{a^{4}+\left(b^{2}-a^{2}\right) x^{2}}{a^{4}-a^{2} x^{2}}} d x$

$$
x^{2} / a^{2}+y^{2} / b^{2}=1
$$

RECTIFICATION OF QUADRATURES

Better than leaving unknown quadratures such as

$$
\int \sqrt{a^{4}+x^{4}} d x
$$

is to find an a such that

$$
\int y d x=\int \sqrt{1+\left(\alpha^{\prime}\right)^{2}} d x
$$

$\int \frac{1}{1+x^{2}} d x=\arctan x$

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x
$$

