Elliptic integrals and elliptic functions

Steven Wepster
Departement Wiskunde
Universiteit Utrecht

28 april 2019

About assignments

from the website:
Students work in pairs on three assignments.
Two assignments each lecture; select three
We encourage you to explore the historical and social aspects of mathematics as well as to understand the mathematics at a more intuitive level than you have become accustomed to in regular mathematics courses.
Results are to be handed in in the form of one article-style paper

Clarification

Submit your article for publication in: the Journal of Elliptic Adventures in History (JEAH)

JEAH

- edited by dr. V. Blåsjø and dr. S. Wepster.
- The journal is aimed at advanced undergraduates.
- The editors accept nontrivial, original papers that present interesting viewpoints and are well written.
- You want to have your paper accepted for publication but of course you are time constrained.

Leibniz: paracentric isochrone

reduces to integrating $1 / \sqrt{1-x^{4}}$
Find the curve under which a point moves under gravity (no friction) in such a way that the distance from the initial point increases uniformly with time.

differential eqn or integral

differential eqn:

$$
\frac{d r}{\sqrt{a r}}=\frac{a d z}{\sqrt{a x\left(a^{2}-x z^{2}\right)}}
$$

this is the 18th century way of saying:

$$
\int_{0}^{r} \frac{d t}{\sqrt{a t}}=\int_{0}^{z} \frac{a d t}{\sqrt{t\left(a^{2}-t^{2}\right)}}
$$

How study such problems?

Today, we associate an integral like $\int_{0}^{x} f(t) d t$ with area (quadrature, \square)
But length is a simpler notion, geometrically. So when geometrical construction is of concern then you prefer to express your integral as an arc length of some curve.

OK then which curve?

Jakob Bernouli takes $x=\sqrt{a z+z^{2}}$ and $y=\sqrt{a z-z^{2}}$. Then he gets for the arclength element

$$
d s=\sqrt{d x^{2}+d y^{2}}=\frac{a d z}{\sqrt{z\left(a^{2}-z^{2}\right)}}
$$

while x and y satisfy:

$$
\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)
$$

OK then which curve?

Jakob Bernouli takes $x=\sqrt{a z+z^{2}}$ and $y=\sqrt{a z-z^{2}}$. Then he gets for the arclength element

$$
d s=\sqrt{d x^{2}+d y^{2}}=\frac{a d z}{\sqrt{z\left(a^{2}-z^{2}\right)}}
$$

while x and y satisfy:

$$
\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(x^{2}-y^{2}\right)
$$

Johann: much nicer with $t^{2}=a z$ because the arc length turns into

$$
d s=2 \frac{d t}{\sqrt{a^{4}-t^{4}}}
$$

Construction by rectification

Lemniscate

$$
u(x)=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{4}}}
$$

More lemniscates

Jakob and Johann

Paracentric isochrone by rectification

Elliptic integrals

$\int \frac{d t}{\sqrt{1-t^{4}}}$ is a very nice example of what we now call an elliptic integral.

Elliptic integrals

$\int \frac{d t}{\sqrt{1-t^{4}}}$ is a very nice example of what we now call an elliptic integral.
Terminology: any integral of the form

$$
\int R(x, \sqrt{P(x)}) d x
$$

where $R(x, y)$ is a rational function and $P(x)$ a polynomial of degree 3 or 4 .

Elliptic integrals

$\int \frac{d t}{\sqrt{1-t^{4}}}$ is a very nice example of what we now call an elliptic integral.
Terminology: any integral of the form

$$
\int R(x, \sqrt{P(x)}) d x
$$

where $R(x, y)$ is a rational function and $P(x)$ a polynomial of degree 3 or 4 .
In general these cannot be expressed in the elementary functions.
Arguably, they are the most obvious candidates for the label "next-level elementary".

Elliptic integrals

$\int \frac{d t}{\sqrt{1-t^{4}}}$ is a very nice example of what we now call an elliptic integral.
Terminology: any integral of the form

$$
\int R(x, \sqrt{P(x)}) d x
$$

where $R(x, y)$ is a rational function and $P(x)$ a polynomial of degree 3 or 4 .
In general these cannot be expressed in the elementary functions.
Arguably, they are the most obvious candidates for the label "next-level elementary".
Other example: ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ has arc length

$$
\int_{0}^{x} \frac{\sqrt{a^{4}-\left(a^{2}-b^{2}\right) x^{2}}}{a \sqrt{a^{2}-x^{2}}} d x
$$

Fagnano

ARTICOLO VI. 267° Iodico in primo luogo, che fe nell' equazione (I) t'efponente s fignifica l'unità pofitiva, I'Integrale dell' ag. gregato de' due Polinomj $\mathrm{X}+\mathrm{Z} \mathrm{C}$
ruguale $2=\frac{b x x}{\sqrt{-f l}}$
Io dico in Iecondo luogo, che fe nella medefima equazione (i) Jefponente 3 efprime l'unita pegativa, 2llora I'Integrale dell'aggregato di:

(X) $\frac{d x \sqrt{h x+t}}{\sqrt{\sqrt{x-4}}}$
(Z) $\frac{d x \sqrt{h x x+1}}{\sqrt{5+1}}$
(1) $\overline{f h x x+x}+\overline{f(x x+}+\overline{f=x}+\overline{g h}=0$

M \quad Di.

Doubling the arc of the lemniscate:

$$
\begin{aligned}
& \qquad 2 \int_{0}^{x} \frac{d t}{\sqrt{1-t^{4}}}=\int_{0}^{y} \frac{d t}{\sqrt{1-t^{4}}} \\
& \text { when } y=\frac{2 x \sqrt{1-x^{4}}}{1+x^{4}} .
\end{aligned}
$$

Fagnano

ARTICOLO VI. ${ }^{267^{\circ}}$ Iodico in primo luogo, che fe nell' equazione (I) I'efponente s fignifica l'unità pofitiva, I'Integrale dell' aggregato de' due Polinomj $X+\mathrm{Zc}$
ugule $\frac{-\mathrm{bzz}}{\overline{-1}}$
Io dico in Iecondo Juogo, che fe nella medefima equazione (I) I'efponente 3 efprime lunita pegativa, allora I'Integrale dell' aggregato ọi',

(X) $\frac{d x \sqrt{h x x+l}}{\sqrt{f x x+1}}$
(Z) $\frac{d y \sqrt{h x+y}}{\sqrt{\sqrt{x x+y}}}$
(1) $\overline{f h} x \times x+\overline{f u x x}+\overline{f=\pi}+\overline{g h}=0$

Doubling the arc of the lemniscate:

$$
\begin{aligned}
& \qquad 2 \int_{0}^{x} \frac{d t}{\sqrt{1-t^{4}}}=\int_{0}^{y} \frac{d t}{\sqrt{1-t^{4}}} \\
& \text { when } y=\frac{2 x \sqrt{1-x^{4}}}{1+x^{4}}
\end{aligned}
$$

In other words:

if $u(x)$ is the arclength of radius x, then $2 u(x)=u(y)$.

Fagnano's works of 1750

```
PRODUZIONI
    MATEMATICHE
    del conte giulio carlo
        DI FAGNANO,
    MARCHESE DE' TOSCHI,
        E DI SANT' ONORIO
    NOBILE ROMANO, E PATRIZIO SENOGAGLIESE
    ALLA SANTITA: DIN.S.
BENEDETTO XIV.
    PONTEFICE MASSIMO.
        TOMO PRIMO.
```



```
IN PESARO
L' ANNO DEL GIUBBILEO M. DCC. L nella stamperia gavelliana CON LICENZ A DE' SUPERIORI.
```


Published in 1718, went unnoticed.

Fagnano's works of 1750

PRODUZIONI
MATEMATICHE
del conte giulio carlo
di fagnano,
MARCHESE DE TOSCHI,
E DI SANT' ONORIO
NOBILE ROMANO, E PATRIZIO SENOGAGLIESE ALLA SANTITA: DIN.S.
BENEDETTO XIV. PONTEFICE MASSIMO. TOMO PRIMO.

Published in 1718, went unnoticed.
Published again in 1750 and given to Euler: beginning of a new era.

Euler

Generalises the results of Fagnano, he finds

$$
\int_{0}^{x_{1}} \frac{d t}{\sqrt{1-t^{4}}}+\int_{0}^{x_{2}} \frac{d t}{\sqrt{1-t^{4}}}=\int_{0}^{y} \frac{d t}{\sqrt{1-t^{4}}}
$$

when $y=\frac{x_{1} \sqrt{1-x_{2}^{4}}+x_{2} \sqrt{1-x_{1}^{4}}}{1+x_{1}^{2} x_{2}^{2}}$
etc etc... Euler produces over 400 pages of this kind of stuff.

Euler

Generalises the results of Fagnano, he finds

$$
\int_{0}^{x_{1}} \frac{d t}{\sqrt{1-t^{4}}}+\int_{0}^{x_{2}} \frac{d t}{\sqrt{1-t^{4}}}=\int_{0}^{y} \frac{d t}{\sqrt{1-t^{4}}}
$$

when $y=\frac{x_{1} \sqrt{1-x_{2}^{4}}+x_{2} \sqrt{1-x_{1}^{4}}}{1+x_{1}^{2} x_{2}^{2}}$
etc etc... Euler produces over 400 pages of this kind of stuff. Why?

Looks weird, but...

Let's take this simpler case: define $u(x):=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$.

Looks weird, but...

Let's take this simpler case: define $u(x):=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$.
Remembering that $u(x)=\arcsin x$, we see that $u=u(x)$ has a very nice inverse $x(u)=\sin u$.

Looks weird, but. . .

Let's take this simpler case: define $u(x):=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$.
Remembering that $u(x)=\arcsin x$, we see that $u=u(x)$ has a very nice inverse $x(u)=\sin u$.

Now, let's call $u_{1}+u_{2}=u_{3}$. Addition formula:

$$
\sin \left(u_{3}\right) \sin \left(u_{1}+u_{2}\right)=\sin u_{1} \cos u_{2}+\sin u_{2} \cos u_{1}
$$

Looks weird, but...

Let's take this simpler case: define $u(x):=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$.
Remembering that $u(x)=\arcsin x$, we see that $u=u(x)$ has a very nice inverse $x(u)=\sin u$.

Now, let's call $u_{1}+u_{2}=u_{3}$. Addition formula:

$$
\sin \left(u_{3}\right) \sin \left(u_{1}+u_{2}\right)=\sin u_{1} \cos u_{2}+\sin u_{2} \cos u_{1}
$$

or with $x_{i}=\sin u_{i}$:

$$
x_{3}=x_{1} \sqrt{1-x_{2}^{2}}+x_{2} \sqrt{1-x_{1}^{2}}
$$

Looks weird, but. . .

Let's take this simpler case: define $u(x):=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$.
Remembering that $u(x)=\arcsin x$, we see that $u=u(x)$ has a very nice inverse $x(u)=\sin u$.

Now, let's call $u_{1}+u_{2}=u_{3}$. Addition formula:

$$
\sin \left(u_{3}\right) \sin \left(u_{1}+u_{2}\right)=\sin u_{1} \cos u_{2}+\sin u_{2} \cos u_{1}
$$

or with $x_{i}=\sin u_{i}$:

$$
x_{3}=x_{1} \sqrt{1-x_{2}^{2}}+x_{2} \sqrt{1-x_{1}^{2}}
$$

Hence the sine addition formula induces an integal addition formula

$$
\int_{0}^{x_{3}} \frac{d t}{\sqrt{1-t^{2}}}=\int_{0}^{x_{1}} \frac{d t}{\sqrt{1-t^{2}}}+\int_{0}^{x_{2}} \frac{d t}{\sqrt{1-t^{2}}}
$$

Looks weird, but. . .

Let's take this simpler case: define $u(x):=\int_{0}^{x} \frac{d t}{\sqrt{1-t^{2}}}$.
Remembering that $u(x)=\arcsin x$, we see that $u=u(x)$ has a very nice inverse $x(u)=\sin u$.

Now, let's call $u_{1}+u_{2}=u_{3}$. Addition formula:

$$
\sin \left(u_{3}\right) \sin \left(u_{1}+u_{2}\right)=\sin u_{1} \cos u_{2}+\sin u_{2} \cos u_{1}
$$

or with $x_{i}=\sin u_{i}$:

$$
x_{3}=x_{1} \sqrt{1-x_{2}^{2}}+x_{2} \sqrt{1-x_{1}^{2}}
$$

Hence the sine addition formula induces an integal addition formula

$$
\int_{0}^{x_{3}} \frac{d t}{\sqrt{1-t^{2}}}=\int_{0}^{x_{1}} \frac{d t}{\sqrt{1-t^{2}}}+\int_{0}^{x_{2}} \frac{d t}{\sqrt{1-t^{2}}}
$$

Elliptic additon formulas are just the next level of this.

Euler on Elliptic integrals

The Euler Archive

A digital library dedicated to the work and life of Leonhard Euler

Search archive by:
Subject
Date
Publication
Index Number
Historical Information:
18th Century Europe
The Life of Euler
Contemporaries
Important Locations
Archive Features:
Translations
Correspondence
How Euler Did It
Further Reading

Elliptic Integrals

Elliptic Integrals	
	Original Titles English Titles
28	Specimen de constructione aequationum differentialium sine indeterminatarum separatione
52	Solutio problematum rectificationem ellipsis requirentium
154	Animadversiones in recinicationem ellipsis
211	Problema, ad cuius solutionem geomerrae invitantur; theorema, ad cuius demonstrationem geometrae invitantur
251	De integratione aequationis aliferentalls (m dx) $/ v\left(1-x^{4}\right)=\left(n a y / v v\left(1-y^{4}\right)\right.$
252	Observationes de comparatione arcuum curvarum irrectificibilium
261	Specimen alierum methodi novae quantilates transcendentes inter se comparandi; de comparatione arcuum ellipsis
263	Specimen novae methodi curvarum quadraturas et rectificationes aliasque quantitates transcendentes inter se comparandi
264	Demonstratio theorematis et solutio problematis in actis erud. Lipsiensibus propositorum
273	Consideratio tormularum, quarum integratio per arcus sectonum conicarum absolvi potest
295	De reductione formularum integralium ad recificationem ellipsis ac hyperbolae
345	Integratio aequatonis $d x / 1\left(\begin{array}{l}\left(A+B x+C x^{2}+D x^{3}+E x^{4}\right)=d y / v\left(A+B y+C y^{2}+D y^{3}+E y^{4}\right)\end{array}\right.$
347	Evolutio generalior formularum comparationi curvarum inservientium
448	Nova series infinita maxime convergens perimetrum ellipsis exprimens
506	Dilucidationes super methodo elegantissima, qua ilustris de la Grange usus estin integranda aequatione diferentiali $d x / \sim X=d y / V Y$
581	Plenior explicatio circa comparationem quantitatum in formula integrali $\int(Z \mathrm{dz}) \stackrel{1}{ }\left(1+m z z+n z^{4}\right)$ contentarum denotante Z functionem quamcunque rationalem ipsius $z z$
582	Uberior evolutio comparationis, quam inter arcus sectionum conicarum instituere licet
590	Theoremata quaedam analytica, quorum demonsiratio adhuc desideratur
605	De miris proprietatibus curvae elasticae sub aequatione $y=\int(x x d x) / v\left(1-x^{4}\right)$
624	De superficie coni scaleni, ubi imprimis intentes difficultates, quae in hac investigatione occurunt, perpenduntur
633	De binis curvis algebraicis inveniendis, quarum arcus indefinite inter se sintaequales
8	lice

Euler on Elliptic integrals

The Euler Archive

A digital library dedicated to the work and life of Leonhard Euler.

Legendre

Comprehensive theory of elliptic integrals, reduced to three basic types, 600 pages obsolete within few years...

TRAITE

DES

FONCTIONS ELLIPTIQUES

ET DES INTEGRALES EULERIENNES,
Avec des Tables pour en faciliter le calcul numérique;

 ithliexne, etc.

TOME PREMIER,

Contenant la théorie des Fonctions olliptiques et son application $\&$ differens problèmes
de Gémétrie ct de Mécanique.

IMPRIMERIE DE HUZARD-COURCIER,
dee do tandinet, a $^{\circ} 12$.
4825
933
A- $-1 \geqslant \cdot 17 \cdot 1$.

Looking at the wrong functions

Instead of $u=\int^{x} \frac{d t}{\sqrt{1-t^{2}}}$, we should be looking at $x=\sin u$;
Instead of $u=\int^{x} \frac{d t}{\sqrt{1-t^{4}}}$, we should be looking at its inverse: that is what Abel called an elliptic function

- Gauss: sinus lemniscatus $x=s l(u)$
- Abel: $x=\phi(u)$
- Jacobi: sn, cn, dn

Gauss: an interesting string of connections

- division of an arc into n equal pieces

PAUCA SED
MATURA

Gauss: an interesting string of connections

- division of an arc into n equal pieces
- discovers constructability of 17-gon

PAUCA SED
MATURA

Gauss: an interesting string of connections

- division of an arc into n equal pieces
- discovers constructability of 17-gon
- next level: division of lemniscate

Gauss: an interesting string of connections

- division of an arc into n equal pieces
- discovers constructability of 17-gon
- next level: division of lemniscate
- seemingly unrelated: agM = arithmetic-geometric mean: start with numbers a_{0}, b_{0} put $a_{1}=\frac{a_{0}+b_{0}}{2}, b_{1}=\sqrt{a_{0} b_{0}}$, repeat for a_{1}, b_{1} etc. Converges!

PAUCA SED
MATURA

Gauss: an interesting string of connections

- division of an arc into n equal pieces
- discovers constructability of 17-gon
- next level: division of lemniscate
- seemingly unrelated: agM = arithmetic-geometric mean: start with numbers a_{0}, b_{0} put $a_{1}=\frac{a_{0}+b_{0}}{2}, b_{1}=\sqrt{a_{0} b_{0}}$, repeat for a_{1}, b_{1} etc. Converges!
- The $\operatorname{ag} M(1, \sqrt{2})$ equals $\frac{\pi}{\omega}$ where $\omega=$ length of lemniscate

Gauss: an interesting string of connections

- division of an arc into n equal pieces
- discovers constructability of 17-gon
- next level: division of lemniscate
- seemingly unrelated: agM = arithmetic-geometric mean: start with numbers a_{0}, b_{0} put $a_{1}=\frac{a_{0}+b_{0}}{2}, b_{1}=\sqrt{a_{0} b_{0}}$, repeat for a_{1}, b_{1} etc. Converges!
- The $\operatorname{ag} M(1, \sqrt{2})$ equals $\frac{\pi}{\omega}$ where $\omega=$ length of lemniscate
- ?!?! ...this cannot be a coincidence, thinks Gauss

Gauss: an interesting string of connections

- division of an arc into n equal pieces
- discovers constructability of 17-gon
- next level: division of lemniscate
- seemingly unrelated: agM = arithmetic-geometric mean: start with numbers a_{0}, b_{0} put $a_{1}=\frac{a_{0}+b_{0}}{2}, b_{1}=\sqrt{a_{0} b_{0}}$, repeat for a_{1}, b_{1} etc. Converges!
- The $\operatorname{ag} M(1, \sqrt{2})$ equals $\frac{\pi}{\omega}$ where $\omega=$ length of lemniscate
- ?!?! ...this cannot be a coincidence, thinks Gauss
- elliptic functions are double periodic

Double periodicity

The arc length of the leminscate equals 2ω, hence

$$
s l(u+2 \omega)=s l(u)
$$

i.e., 2ω is a period of $s l$.

Double periodicity

The arc length of the leminscate equals 2ω, hence

$$
s l(u+2 \omega)=s l(u)
$$

i.e., 2ω is a period of $s l$.

Now if

$$
u=\int^{x} \frac{d t}{\sqrt{1-t^{4}}}
$$

then

$$
i u=\int^{x} \frac{d(i t)}{\sqrt{1-(i t)^{4}}}=\int^{i x} \frac{d t}{\sqrt{1-t^{4}}}
$$

hence $s l(i u)=i s l(u)$, i.e., $2 i \omega$ is also a period of $s l$.

Double periodicity

The arc length of the leminscate equals 2ω, hence

$$
s l(u+2 \omega)=s l(u)
$$

i.e., 2ω is a period of $s l$.

Now if

$$
u=\int^{x} \frac{d t}{\sqrt{1-t^{4}}}
$$

then

$$
i u=\int^{x} \frac{d(i t)}{\sqrt{1-(i t)^{4}}}=\int^{i x} \frac{d t}{\sqrt{1-t^{4}}}
$$

hence $s l(i u)=i s l(u)$, i.e., $2 i \omega$ is also a period of $s l$.
Double periodicity is a genuine feature of elliptic functions, first recognised by Gauss in his sinus lemniscatus.

Abel

next week...

Ecole Polytechnique

- Founded by Monge and Carnot, 1794
- produced enigeers for the French army
- model for similar schools across Europe (TH Delft)
- Many (most?) famous French mathematicians worked here
- Before this time, Universities were not the place to be for advanced research!

Reform of German universities after 1815

- Inspired by Wilhelm von Humboldt
- Education based on neo-humanistic ideals: academic freedom, pure research, Bildung, etc. Anti-French.
- professors combine research and teaching. Research often shared in lectures to advanced students ("Seminarium")
- Students who finished at universities could get jobs at Gymnasia and continue with scientific research
- This system made Germany the center of the mathematical world until 1933.
π －

Who pays these men, for what?

Here is a possible assignment for you: give examples for each of the following forms of financing of mathematical research.

- own/family fortune
- specific budget to solve a specific problem
- general budget to do just any math
- talent unrestrained by lack of budget

How do mathematical inventions happen?

Here is another possible assignment:

- by real coincidence: probably we wouldn't know this result potherwise
- by necessary coincidence: this result might have turned up in a different form, but something like this was bound to happen
- by necessity: this is the obvious and exact next step to take

This requires that you delve deeper in the mathematical and circumstantial context of the time.

