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About assignments

from the website:

Students work in pairs on three assignments.

Two assignments each lecture; select three

We encourage you to explore the historical and social aspects of
mathematics as well as to understand the mathematics at a more
intuitive level than you have become accustomed to in regular
mathematics courses.

Results are to be handed in in the form of one article-style paper



Clarification

Submit your article for publication in:
the Journal of Elliptic Adventures in History (JEAH)

• edited by dr. V. Bl̊asjø and
dr. S. Wepster.

• The journal is aimed at advanced
undergraduates.

• The editors accept nontrivial, original
papers that present interesting
viewpoints and are well written.

• You want to have your paper accepted
for publication but of course you are time
constrained.



Leibniz: paracentric isochrone

The Paracentric Isochrone dr/dt = constant

But elsewhere Leibniz (1693i) emphasised instead that a rectification “enlightens the mind” more than a quadrature:

But among the geometrical constructions I prefer not only those which are the simplest but also those
which serve to reduce the problem to another, simpler problem and which contribute to enlighten the
mind; for example, I would wish to reduce quadratures or the dimensions of areas to the dimensions of
curved lines.318

Then again in other cases rectifications seem to be preferred over quadratures for the sake of greater practical feasi-
bility. Thus Huygens (1694b) writes:

It is a strange assumption to take the quadratures of every curve as given, and if the construction of
a problem ends with that, apart from the quadrature of the circle and the hyperbola, I would have
believed that nothing had been accomplished, since even mechanically one does not know how to carry
anything out. It is a bit better to assume that we can measure any curved line, as I see your opinion is
also.319

Altogether the diversity of arguments used to justify the rectification of quadratures at first sight appears quite
confusing.

Extramathematical principles such as these often show their true colour only in moments of conflict, so we
should be grateful that the problem of rectification of quadratures was involved in one major confrontation of
opposing views. This concerned Jacob Bernoulli’s solution (1694b) of the paracentric isochrone problem by rec-
tification of the elastica, i.e., the curve assumed by a bent elastic beam.320 We shall discuss the elastica and the
paracentric isochrone problem in greater detail in chapter 8. Suffice it to say for now that the problem of finding the
curve reduces to integrating 1/

p
1� x4, a complicated and nonstandard integral that required innovative methods

such as the use of the elastica for its solution.
In introducing his solution, Jacob Bernoulli appears quite certain that it will be appreciated. And with good

reason: the rectification of quadratures was universally valued, as we have seen, and the use of one mechanically
defined curve to construct another also had ample precedent, such as Leibniz’s construction of logarithms by the
catenary (section 6.3.2) and Leibniz’s and Huygens’s use of the tractrix to, e.g., square a hyperbola (chapter 5).
Indeed Jacob Bernoulli (1693b) had noted in another context that a certain quantity “depends on the quadrature
of a hyperbola; therefore it is found by means of a logarithm or string.”321 This endorsement of the “string” (i.e.,
catenary) construction of hyperbolic quadratures suggests that his own mechanical construction is sincere, and
not a misguided attempt at promoting his own elastica. Thus, by way of justification of his paracentric isochrone
construction, Bernoulli only passingly alludes to the practical feasibility of his solution:

For although it is possible to carry out the same by means of the squaring of any algebraic area, another
method of construction is to be preferred, I judge, since it is generally easier in practice to rectify a curve
than to square an area, and especially since nature herself seems to have drawn it [i.e., the elastica].322

Perhaps to his surprise, Bernoulli’s construction was universally condemned. Huygens (1694b), writing to Leibniz,
finds it “strange” and would prefer a construction by rectification of an algebraic curve:

It seems that you hold for true his construction of your paracentric [isochrone], after having examined,
as I believe, the demonstration, as I have not yet done. It’s quite a strange encounter to have there been
able to employ his elastic curve; but your construction will assuredly be much better, if you only need
to measure a geometric curve, or at least [a curve] for which you know how to find the points.323

Leibniz (1694e) agrees:

He makes use of the rectification of a curve which is itself already transcendental, namely his elastica,
and thus his construction is transcendental of the second order. In place of which I only make use of
the rectification of an ordinary curve for which I give the construction by common geometry. 324

l’Hôpital (1694b) also agrees:

111

Find the curve under which a point moves under gravity (no
friction) in such a way that the distance from the initial point
increases uniformly with time.



differential eqn or integral

differential eqn:

dr√
ar

=
a dz√

ax(a2 − xz2)

this is the 18th century way of saying:

∫ r

0

dt√
at

=

∫ z

0

a dt√
t(a2 − t2)



How study such problems?

Today, we associate an integral like
∫ x
0 f (t) dt with area

(quadrature, �)
But length is a simpler notion, geometrically.
So when geometrical construction is of concern then you prefer to
express your integral as an arc length of some curve.



OK then which curve?

Jakob Bernouli takes x =
√
az + z2 and y =

√
az − z2.

Then he gets for the arclength element

ds =
√
dx2 + dy2 =

a dz√
z(a2 − z2)

while x and y satisfy:

(x2 + y2)2 = 2a2(x2 − y2)

Johann: much nicer with t2 = az because the arc length turns into

ds = 2
dt√

a4 − t4
.



OK then which curve?

Jakob Bernouli takes x =
√
az + z2 and y =

√
az − z2.

Then he gets for the arclength element

ds =
√
dx2 + dy2 =

a dz√
z(a2 − z2)

while x and y satisfy:

(x2 + y2)2 = 2a2(x2 − y2)

Johann: much nicer with t2 = az because the arc length turns into

ds = 2
dt√

a4 − t4
.



Construction by rectification

To construct 
paracentric isoschrone 

dr/dt = constant

rectify shape of elastic beam

or rectify
lemniscate 

FIGURE �: The Lemniscate of Bernoulli

same result. This substitution is:

sin(q) = u

cos(q) dq = du

With this, the differential dq/
p

sin(q) becomes:

dqp
sin(q)

=
cos(q)dqp

1 � sin2 q
p

sin(q)

=
dup

u(1 � u2)

The goal when rectifying a curve, in general, is to
rewrite the last differential to an arc length differen-
tial:

p
dp2 + dq2 for a 2 dimensional curve p(u), q(u).

Johann showed that the following functions satis-
fied this relation:

(
p(u) =

p
2(u + u2)

q(u) =
p

2(u � u2).

This can be checked by using the fact that
p

dp2 + dq2 =p
p0(u)2 + q0(u)2du. The interesting question is of

course what the nature is of this curve, and, more
importantly, if it is an algebraic curve.

By squaring p(u) and q(u), we obtain
(

p2 = 2(u + u2)
q2 = 2(u � u2)

(10)

By summing the two equations, we see that p2 + q2 =
4u, and by filling this back in, the equation becomes:

p2 =
1
2

(p2 + q2) +
1
8

(p2 + q2)2

, 4(p2 � q2) = (p2 + q2)2

This curve is shown in Fig. 4, and is called the Lem-
niscate of Bernoulli. The great thing about this, is that,

since it can be expressed by a polynomial expres-
sion, it is in fact an algebraic curve. Therefore, by
measuring arc lengths of this curve, Johann Bernoulli
managed to reduce the paracentric isochrone to the
rectification of an algebraic curve.

Jakob Bernoulli used a similar method, but using
the same substitution as he used for his work with
the Elastica: sin(q) = u2, and also arrived at the
Lemniscate.

LEMNISCATE
We have already seen that the lemniscate plays a
crucial role in solving the problem posed by Leib-
niz, namely, finding the curve of the paracentric
isochrone. However, this was far from being its only
application.

While often accredited to the Bernoulli brothers,
the Italian astronomer Giovanni Domenico Cassini
came up with the Cassini Ovals, one particular case
being the same as the Lemniscate of Bernoulli (it still
has to be noted that Bernoulli was not familiar with
the work by Cassini). He used this in his attempt to
explain the motion of the Sun around the Earth in
1680. This turned out to be wrong, but still yielded
interesting geometry.

Cassini defined this curve as the set of points
having as common property that the product of the
distances to two fixed points, the foci, is constant. In
this sense, it is an extension of the ellipse, for which
holds that the sum of the distances to two fixed points
is constant.

This product-of-distances property allows us to
create the lemniscate without any formula, by us-
ing purely geometrical constructions. We will skip
this, but more information can be found in Akopyan
(2010).

One last property of the lemniscate we would like
to mention here is that it became an almost mysti-
cal symbol outside mathematics. First of all, it is
now being used as the symbol for infinity: •. This
was first proposed by Wallis (1655), where he lay
the foundations of infinitesimal calculus, which was
later extended by Newton and Leibniz. This infinity
notion is nowadays often combined into the original
uroboros, which means “snake eating its tail”, and is a
symbol for, among others, the cycle of life (Killinger,
2010):

7



Lemniscate

u(x) =

∫ x

0

dt√
1− t4



More lemniscates



Jakob and Johann



Paracentric isochrone by rectification



Elliptic integrals
∫

dt√
1−t4 is a very nice example of what we now call an elliptic

integral.

Terminology: any integral of the form

∫
R
(
x ,
√
P(x)

)
dx

where R(x , y) is a rational function and P(x) a polynomial of
degree 3 or 4.
In general these cannot be expressed in the elementary functions.
Arguably, they are the most obvious candidates for the label
“next-level elementary”.

Other example: ellipse x2

a2
+ y2

b2
= 1 has arc length

∫ x

0

√
a4 − (a2 − b2)x2

a
√
a2 − x2

dx
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Fagnano

Doubling the arc of the lemniscate:

2

∫ x

0

dt√
1− t4

=

∫ y

0

dt√
1− t4

when y =
2x
√

1− x4

1 + x4
.

In other words:
if u(x) is the arclength of radius x ,
then 2u(x) = u(y).
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Fagnano’s works of 1750

Published in 1718, went unnoticed.

Published again in 1750 and given to
Euler: beginning of a new era.
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Euler

Generalises the results of Fagnano, he finds

∫ x1

0

dt√
1− t4

+

∫ x2

0

dt√
1− t4

=

∫ y

0

dt√
1− t4

when y =
x1

√
1− x42 + x2

√
1− x41

1 + x21x
2
2

etc etc. . . Euler produces over 400 pages of this kind of stuff.

Why?
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Looks weird, but. . .

Let’s take this simpler case: define u(x) :=
∫ x
0

dt√
1−t2 .

Remembering that u(x) = arcsin x ,
we see that u = u(x) has a very nice inverse x(u) = sin u.

Now, let’s call u1 + u2 = u3. Addition formula:

sin(u3) sin(u1 + u2) = sin u1 cos u2 + sin u2 cos u1

or with xi = sin ui :

x3 = x1

√
1− x22 + x2

√
1− x21

Hence the sine addition formula induces an integal addition formula

∫ x3

0

dt√
1− t2

=

∫ x1

0

dt√
1− t2

+

∫ x2

0

dt√
1− t2

Elliptic additon formulas are just the next level of this.
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Euler on Elliptic integrals



Euler on Elliptic integrals

Consideration of formulas, of which the integral can be obtained by
sections of arcs of cones i.e., by elliptic integrals
No figures! notice the shift from geometry to algebraic
manipulations



Legendre

Comprehensive theory of
elliptic integrals,
reduced to three basic types,
600 pages
obsolete within few years. . .



Looking at the wrong functions

Instead of u =

∫ x dt√
1− t2

, we should be looking at x = sin u;

Instead of u =

∫ x dt√
1− t4

, we should be looking at its inverse:

that is what Abel called an elliptic function

• Gauss: sinus lemniscatus x = sl(u)

• Abel: x = φ(u)

• Jacobi: sn, cn, dn



Gauss: an interesting string of connections

pauca sed
matura

• division of an arc into n equal pieces

• discovers constructability of 17-gon

• next level: division of lemniscate

• seemingly unrelated: agM =
arithmetic-geometric mean:
start with numbers a0, b0
put a1 = a0+b0

2 , b1 =
√
a0b0,

repeat for a1, b1 etc. Converges!

• The agM(1,
√

2) equals
π

ω
where

ω =length of lemniscate

• ?!?! . . . this cannot be a coincidence,
thinks Gauss

• elliptic functions are double periodic
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Double periodicity

The arc length of the leminscate equals 2ω, hence

sl(u + 2ω) = sl(u),

i.e., 2ω is a period of sl .

Now if

u =

∫ x dt√
1− t4

then

iu =

∫ x d(it)√
1− (it)4

=

∫ ix dt√
1− t4

hence sl(iu) = i sl(u), i.e., 2iω is also a period of sl .
Double periodicity is a genuine feature of elliptic functions, first
recognised by Gauss in his sinus lemniscatus.
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Abel

next week. . .



Ecole Polytechnique

• Founded by Monge and Carnot, 1794

• produced enigeers for the French
army

• model for similar schools across
Europe (TH Delft)

• Many (most?) famous French
mathematicians worked here

• Before this time, Universities were
not the place to be for advanced
research!



Reform of German universities after 1815

• Inspired by Wilhelm von Humboldt

• Education based on neo-humanistic ideals: academic freedom,
pure research, Bildung, etc. Anti-French.

• professors combine research and teaching. Research often
shared in lectures to advanced students (“Seminarium”)

• Students who finished at universities could get jobs at
Gymnasia and continue with scientific research

• This system made Germany the center of the mathematical
world until 1933.
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Who pays these men, for what?

Here is a possible assignment for you: give examples for each of
the following forms of financing of mathematical research.

• own/family fortune

• specific budget to solve a specific problem

• general budget to do just any math

• talent unrestrained by lack of budget



How do mathematical inventions happen?

Here is another possible assignment:

• by real coincidence: probably we wouldn’t know this result
potherwise

• by necessary coincidence: this result might have turned up in
a different form, but something like this was bound to happen

• by necessity: this is the obvious and exact next step to take

This requires that you delve deeper in the mathematical and
circumstantial context of the time.


