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About assignments

from the website:

Students work in pairs on three assignments.
Two assignments each lecture; select three

We encourage you to explore the historical and social aspects of
mathematics as well as to understand the mathematics at a more
intuitive level than you have become accustomed to in regular
mathematics courses.

Results are to be handed in in the form of one article-style paper



Clarification

Submit your article for publication in:
the Journal of Elliptic Adventures in History (JEAH)

e edited by dr. V. Blasjg and
dr. S. Wepster.

e The journal is aimed at advanced
undergraduates.

e The editors accept nontrivial, original
papers that present interesting
viewpoints and are well written.

e You want to have your paper accepted
for publication but of course you are time
constrained.
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Leibniz: paracentric isochrone

t=4 1 B et * il

reduces to integrating 1/v/1—x* —

Find the curve under which a point moves under gravity (no
friction) in such a way that the distance from the initial point
increases uniformly with time.



differential eqn or integral

differential eqn:

dr adz

this is the 18th century way of saying

/fi_ © adt
0 \/H 0 \/t(az—t2)

DA



How study such problems?

Today, we associate an integral like [ f(t) dt with area
(quadrature, 0J)

But length is a simpler notion, geometrically.

So when geometrical construction is of concern then you prefer to
express your integral as an arc length of some curve.



OK then which curve?

Jakob Bernouli takes x = vaz + z2 and y = Vaz — z2.

Then he gets for the arclength element

d
ds:w/dx2+dy2:‘972

z(a%? — 22)

while x and y satisfy:

o
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OK then which curve?

Jakob Bernouli takes x = vaz + z2 and y = Vaz — z2.

Then he gets for the arclength element

d
ds:w/dx2+dy2:‘972

z(a%? — 22)
while x and y satisfy:
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(< +y?)* =2a°(x* — y?)

Johann: much nicer with t? = az because the arc length turns into

ds =2 dt .
at —t4



Construction by rectification

paracentric isoschrone

To construct dr/dt = constant

shape of elastic beam

or rectify .
lemniscate




Lemniscate




More lemniscates
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Jakob and Johann




Paracentric isochrone by rectification
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Elliptic integrals

i \/ffj is a very nice example of what we now call an elliptic
integral.
Terminology: any integral of the form

/ R(x, /P(x)) dx

where R(x, y) is a rational function and P(x) a polynomial of
degree 3 or 4.

In general these cannot be expressed in the elementary functions.
Arguably, they are the most obvious candidates for the label
“next-level elementary” .

Other example: ellipse ’;—i + )1;—2 =1 has arc length

X 3~ (32 — p2)x2
/ Vat—(a )x d
0

ava? — x2




Fagnano
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Fagnano

ARTICOLO VL a6y
Todicoin primo luogo , che fe nell’
equazione { 1) V'efponence s Gighifica
Fanick poficiva 5 Lintegeale dell*ag-
gregaro dc’ due Polinomj X4 Z2

uguale a ;f:;:
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Doubling the arc of the lemniscate:

2/* dt _l/y dt
0o V1—t* o V1—1t4

In other words:
if u(x) is the arclength of radius x,
then 2u(x) = u(y).



Fagnano's works of 1750

PRODUZIONI

MATEMATICHE

DEL CONTE GIULIO CARLO

DI FAGNANO,
MARCHESE DE’ TOSCHI,
E DI SANT’ ONORIO

NOBILE ROMANO, E PATRIZIO SENOGAGLIESE

ALLA SANTIT 4 DI N. .

BENEDETTO XIV.

PONTEFICE MASSIMO.

IN PESARO
L' ANNO DEL GIUBBILEO M. DCC. L.
NELLA STAMPERIA GAVELLIANA
CON LICENZA DE SUPERIORI.

Published in 1718, went unnoticed.
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PRODUZIONI

MATEMATICHE

DEL CONTE GIULIO CARLO

DI FAGNANO,
MARCHESE DE’ TOSCHI,
E DI SANT’ ONORIO

NOBILE ROMANO, E PATRIZIO SENOGAGLIESE

ALLA SANTIT 4 DI N. .

BENEDETTO XIV.

PONTEFICE MASSIMO.

IN PESARO
L' ANNO DEL GIUBBILEO M. DCC. L.
NELLA STAMPERIA GAVELLIANA
CON LICENZA DE SUPERIORI.

Published in 1718, went unnoticed.
Published again in 1750 and given to
Euler: beginning of a new era.



Euler

Generalises the results of Fagnano, he finds

/Xl dt N /X2 dt /Y dt
o V1—tt 0o V1-—1t4 0o V1—1t4

x“/l—xg—kxz\/l—xf

14 X12X22
etc etc. . . Euler produces over 400 pages of this kind of stuff.

when y =
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Looks weird, but. ..

Let's take this simpler case: define u(x) := [ Ao
Remembering that u(x) = arcsin x,
we see that u = u(x) has a very nice inverse x(u) = sin u.
Now, let's call u; + up» = u3. Addition formula:

sin(us) sin(u1 + u2) = sin g cos up + sin uy cos ug
or with x; = sin u;:

X3:x1\/1—x22—|—x2\/1—x12

Hence the sine addition formula induces an integal addition formula

/X3 dt /Xl dt n /X2 dt
0 \/1—t2_ 0o V1-—1t2 0o V1-—1t2

Elliptic additon formulas are just the next level of this.



Euler on Elliptic integrals
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Euler on Elliptic integrals
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Legendre

TRAITE

DES

FONCTIONS ELLIPTIQUES

ET DES INTEGRALES EULERIENNES,

Avec des Tables pour en faciliter le caleal numérique;

TOME PREMIER,

Contenant Ia théorie des Fonctions cllptiques et son application  différens problémes
de Géométrie et de Meécanique.

Ugoncte

Ly

Comprehensive theory of

elliptic integrals, PARIS,
reduced to three basic types, e

600 pages N 988 .
obsolete within few years. ..



Looking at the wrong functions

X dt
Instead of u = / ————, we should be looking at x = sin u;
Vi-2 8

X dt
Instead of u = / T we should be looking at its inverse:
t

that is what Abel called an elliptic function

e Gauss: sinus lemniscatus x = s/(u)
e Abel: x = ¢(u)

e Jacobi: sn, cn, dn



Gauss: an interesting string of connections
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seemingly unrelated: agM =
arithmetic-geometric mean:
start with numbers ag, bg
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The agM(1,/2) equals T where
w
w =length of lemniscate

71?1 ... this cannot be a coincidence,
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elliptic functions are double periodic
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Double periodicity
The arc length of the leminscate equals 2w, hence
sl(u + 2w) = sl(u),

i.e., 2w is a period of s/.
Now if

u_/x dt
) Vi—#

X od(it) ™ dt

hence sl(iu) = isl(u), i.e., 2iw is also a period of sl.
Double periodicity is a genuine feature of elliptic functions, first
recognised by Gauss in his sinus lemniscatus.



next week. . .
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Ecole Polytechnique

e Founded by Monge and Carnot, 1794

e produced enigeers for the French
army

e model for similar schools across
Europe (TH Delft)

e Many (most?) famous French
mathematicians worked here

e Before this time, Universities were
not the place to be for advanced
research!



Reform of German universities after 1815

e Inspired by Wilhelm von Humboldt

e Education based on neo-humanistic ideals: academic freedom,
pure research, Bildung, etc. Anti-French.

e professors combine research and teaching. Research often
shared in lectures to advanced students ( “Seminarium”)

e Students who finished at universities could get jobs at
Gymnasia and continue with scientific research

e This system made Germany the center of the mathematical
world until 1933.
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Who pays these men, for what?

Here is a possible assignment for you: give examples for each of
the following forms of financing of mathematical research.

e own/family fortune

e specific budget to solve a specific problem
e general budget to do just any math

e talent unrestrained by /ack of budget



How do mathematical inventions happen?

Here is another possible assignment:

e by real coincidence: probably we wouldn't know this result
potherwise

e by necessary coincidence: this result might have turned up in
a different form, but something like this was bound to happen

e by necessity: this is the obvious and exact next step to take

This requires that you delve deeper in the mathematical and
circumstantial context of the time.



