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Recap last week

elliptic function

• is inverse of u =
∫ x dt√

p(t)
(where p of degree 3,4)

• is double periodic in the complex plane

Example:

u =

∫ x dt√
1− t4

=

∫ x dt√
(1− t2)(1 + t2)

periods ω, iω (ω = length of half a lemniscate)
i.e., x(u) = x(u + nω + miω) for any n,m ∈ Z.
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Issues

to be discussed in next slides

1.
√

p(t) is many-valued in C
2. integration in C was hardly developed at all



Issue 1: many-valuedness

A relation like w2 = z
is satisfied by both w = +

√
z and w = −

√
z .

Quite difficult to build a theory on such technical nuisances

Solution (Riemann, 1851): take two copies of the z-plane and
merge them at the branch points z = 0 and z =∞

On a Riemann surface, many-valued functions are turned into
single-valued ones. best considered on C ∪∞
Major innovation due to elliptic functions
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Riemann surface for
√

z(z − a)(z − b)

Branch points at z = 0, z = a, z = b, z = infty .
Two sheets because of

√
-operation:

i.e., u =

∫ x dz√
z(z − a)(z − b)

naturally lives on a torus.



double periodicity = torus

Consider the period lattice nω1 + mω2, for n,m ∈ Z:
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Issue 2: complex integration

• Cauchy developed complex fucntion theory, but meanwhile a
different path was pioneered:

• forget integration,
instead define elliptic functions as series

• (side note: functions ↔ series?)

• take care of double periodicity!

• Jacobi: θ-functions

• Eisenstein:
∑
n,m

1

(z + nω1 + mω2)2

for periods ω1, ω2 (but bad convergence)

• Weierstrass:

℘(z) =
1

z2
+
∑
nm 6=0

(
1

(z + nω1 + mω2)2
− 1

(nω1 + mω2)2

)
• again: major innovation due to elliptic functions!
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Weierstrass ℘-function

• now most common and easily understood elliptic function

• satisfies differential equation:

(℘′)2 = 4℘3 − g2℘− g3

for specific constants g2 and g3

• for diehards: g2 = 60
∑

1
(nω1+mω2)4

, g3 = 140
∑

1
(nω1+mω2)6



Curves: 1st example

• Consider circle x2 + y2 = 1, or y2 = 1− x2.

• Define u(x) =
∫ x dt√

1−t2

• Recall: u = arcsin x , i.e., x = u−1(u) = sin u.

• Also: u′(x) = 1√
1−x2 = 1

y

• i.e., y = dx
du = cos u

• Morale: circle can be parametrised by circle functions

(x , y) = (u−1, (u−1)′)
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Elliptic curves

• Consider curve y2 = p(x), p polynomial of degree 3,4

• Define u(x) =
∫ x dt√

p(x)

• i.e., x = u−1(u).

• Also: u′(x) = 1√
p(x)

= 1
y or y = dx

du

• So again: curve y2 = p(x) can be parametrised by

(x , y) = (u−1, (u−1)′)

• Hence the modern definition: an elliptic curve is any curve
parametrised by elliptic functions.

• Note that Weierstrass function ℘ satisfies

(℘′)2 = 4℘3 − g2℘− g3

and therefore it parametrises the elliptic curve
y2 = 4x3 − g2x − g3.
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Clebsch and group structure

• collinear points on curve y2 = p(x) correspond to
addition theorems for eliptic integrals

• geometry, analysis

• number theory
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19th Century
end of 18th Century: “The mine of mathematics is exhausted”
But then:

• non-Euclidean geometry

• projective geometry

• differential geometry

• algebraic geometry, invariants

• complex function theory

• rigour in analysis (ε-δ)

• at last: real numbers!

• set theory, transfinites

• topology (analysis situs)

• groups, algebra

• n-dimensional space, surfaces

• axioms instead of “truths”

•
•
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Niels Henrik Abel 1802-1829

• poor personal circumstances

• had read everything available to him on math

• received a hint to turn to elliptic integrals

• warmly received by Crelle in Berlin

• poorly received in Paris

• mostly jobless and dies early (tbc)



Carl Gustav Jacob Jacobi 1804–1851

• happier circumstances, though career still insecure

• inspired by Euler to work on elliptic functions

• sees applications of elliptic functions to number theory; but he
also works in math physics, determinants, history of math

• novelty: research seminars

• dies of smallpox



Legendre to Jacobi

“It gives me a great satisfaction to see two young mathematicians
such as you and [Abel] cultivate with success a branch of analysis
which for so long a time has been the object of my favourite
studies and which has not been received in my own country as well
as it would deserve. By these works you place yourselves in the
ranks of the best asnalysts of our era.”



Abel prize



Assignment 5
Read (part of) any one of these publications:

• Abel; Recherches sur les fonctions elliptiques (English
available) – introduction has a programmatic general view

• Riemann: Grundlagen für eine allgemeine Theorie der
Functionen einer veränderlichen complexen Grösse (English or
German) including his introduction of Riemann surfaces

• Legendre, Traité des fonctions elliptiques (French)

• Gauss, Tagebuch (Latin with German commentary)

• anything from Euler (various languages and translations)

• any other mathematical research published between 1800 and
1900 to which you feel attracted (explain why)

After reading, write your own personalised review. E.g., describe
how the content of this historical material relates to your own
advances in mathematics; consider the style and type of
mathematics; express your wonder, amazement or disdain, etc.
Your review should contain both non-trivial (not necessarily hard)
mathematics and personal reflection.



Assignment 6

Another topic deserving some attention is to look at the
community of mathematicians and how they cooperate (or not).
The 19th Century sees the founding of a number of important
journals that still exist, like Annales de M. (Gergonne), Comtes
Rendus, Crelle, Liouville, Acta Mathematica (Mittag-Leffler), and
Mathematische Annalen (Clebsch, Neumann). A well-known
example of non-cooperation is described in Van Dalen. See if you
can find other examples (pre 1900) of extreme (non)cooperation.


