Elliptic functions and elliptic curves

Steven Wepster
Departement Wiskunde
Universiteit Utrecht

3 mei 2019

Recap last week

elliptic function

- is inverse of $u=\int^{x} \frac{d t}{\sqrt{p(t)}}$ (where p of degree 3,4)
- is double periodic in the complex plane

Recap last week

elliptic function

- is inverse of $u=\int^{x} \frac{d t}{\sqrt{p(t)}}$ (where p of degree 3,4)
- is double periodic in the complex plane

Example:

$$
u=\int^{x} \frac{d t}{\sqrt{1-t^{4}}}=\int^{x} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1+t^{2}\right)}}
$$

periods ω, i ω ($\omega=$ length of half a lemniscate)
i.e., $x(u)=x(u+n \omega+m i \omega)$ for any $n, m \in \mathbb{Z}$.

Issues

to be discussed in next slides

1. $\sqrt{p(t)}$ is many-valued in \mathbb{C}
2. integration in \mathbb{C} was hardly developed at all

Issue 1: many-valuedness

A relation like $w^{2}=z$ is satisfied by both $w=+\sqrt{z}$ and $w=-\sqrt{z}$.
Quite difficult to build a theory on such technical nuisances

Issue 1: many-valuedness

A relation like $w^{2}=z$ is satisfied by both $w=+\sqrt{z}$ and $w=-\sqrt{z}$.
Quite difficult to build a theory on such technical nuisances Solution (Riemann, 1851): take two copies of the z-plane and merge them at the branch points $z=0$ and $z=\infty$

Issue 1: many-valuedness

A relation like $w^{2}=z$ is satisfied by both $w=+\sqrt{z}$ and $w=-\sqrt{z}$.
Quite difficult to build a theory on such technical nuisances Solution (Riemann, 1851): take two copies of the z-plane and merge them at the branch points $z=0$ and $z=\infty$

On a Riemann surface, many-valued functions are turned into single-valued ones. best considered on $\mathbb{C} \cup \infty$
Major innovation due to elliptic functions

Riemann surface for $\sqrt{z(z-a)(z-b)}$

Branch points at $z=0, z=a, z=b, z=$ infty. Two sheets because of $\sqrt{ }$-operation:

i.e., $u=\int^{x} \frac{d z}{\sqrt{z(z-a)(z-b)}}$ naturally lives on a torus.

double periodicity $=$ torus

Consider the period lattice $n \omega_{1}+m \omega_{2}$, for $n, m \in \mathbb{Z}$:

double periodicity $=$ torus

Consider the period lattice $n \omega_{1}+m \omega_{2}$, for $n, m \in \mathbb{Z}$:

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series
- (side note: functions \leftrightarrow series?)

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series
- (side note: functions \leftrightarrow series?)
- take care of double periodicity!

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series
- (side note: functions \leftrightarrow series?)
- take care of double periodicity!
- Jacobi: θ-functions

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series
- (side note: functions \leftrightarrow series?)
- take care of double periodicity!
- Jacobi: θ-functions
- Eisenstein: $\sum_{n, m} \frac{1}{\left(z+n \omega_{1}+m \omega_{2}\right)^{2}}$
for periods ω_{1}, ω_{2} (but bad convergence)

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series
- (side note: functions \leftrightarrow series?)
- take care of double periodicity!
- Jacobi: θ-functions
- Eisenstein: $\sum_{n, m} \frac{1}{\left(z+n \omega_{1}+m \omega_{2}\right)^{2}}$
for periods ω_{1}, ω_{2} (but bad convergence)
- Weierstrass:

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n m \neq 0}\left(\frac{1}{\left(z+n \omega_{1}+m \omega_{2}\right)^{2}}-\frac{1}{\left(n \omega_{1}+m \omega_{2}\right)^{2}}\right)
$$

Issue 2: complex integration

- Cauchy developed complex fucntion theory, but meanwhile a different path was pioneered:
- forget integration, instead define elliptic functions as series
- (side note: functions \leftrightarrow series?)
- take care of double periodicity!
- Jacobi: θ-functions
- Eisenstein: $\sum_{n, m} \frac{1}{\left(z+n \omega_{1}+m \omega_{2}\right)^{2}}$
for periods ω_{1}, ω_{2} (but bad convergence)
- Weierstrass:

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{n m \neq 0}\left(\frac{1}{\left(z+n \omega_{1}+m \omega_{2}\right)^{2}}-\frac{1}{\left(n \omega_{1}+m \omega_{2}\right)^{2}}\right)
$$

- again: major innovation due to elliptic functions!

Weierstrass \wp-function

- now most common and easily understood elliptic function
- satisfies differential equation:

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}
$$

for specific constants g_{2} and g_{3}

- for diehards: $g_{2}=60 \sum \frac{1}{\left(n \omega_{1}+m \omega_{2}\right)^{4}}, g_{3}=140 \sum \frac{1}{\left(n \omega_{1}+m \omega_{2}\right)^{6}}$

Curves: 1st example

- Consider circle $x^{2}+y^{2}=1$, or $y^{2}=1-x^{2}$.

Curves: 1st example

- Consider circle $x^{2}+y^{2}=1$, or $y^{2}=1-x^{2}$.
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{1-t^{2}}}$

Curves: 1st example

- Consider circle $x^{2}+y^{2}=1$, or $y^{2}=1-x^{2}$.
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{1-t^{2}}}$
- Recall: $u=\arcsin x$, i.e., $x=u^{-1}(u)=\sin u$.

Curves: 1st example

- Consider circle $x^{2}+y^{2}=1$, or $y^{2}=1-x^{2}$.
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{1-t^{2}}}$
- Recall: $u=\arcsin x$, i.e., $x=u^{-1}(u)=\sin u$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}=\frac{1}{y}$

Curves: 1st example

- Consider circle $x^{2}+y^{2}=1$, or $y^{2}=1-x^{2}$.
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{1-t^{2}}}$
- Recall: $u=\arcsin x$, i.e., $x=u^{-1}(u)=\sin u$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}=\frac{1}{y}$
- i.e., $y=\frac{d x}{d u}=\cos u$

Curves: 1st example

- Consider circle $x^{2}+y^{2}=1$, or $y^{2}=1-x^{2}$.
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{1-t^{2}}}$
- Recall: $u=\arcsin x$, i.e., $x=u^{-1}(u)=\sin u$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}=\frac{1}{y}$
- i.e., $y=\frac{d x}{d u}=\cos u$
- Morale: circle can be parametrised by circle functions

$$
(x, y)=\left(u^{-1},\left(u^{-1}\right)^{\prime}\right)
$$

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{p(x)}}$

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{p(x)}}$
- i.e., $x=u^{-1}(u)$.

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{p(x)}}$
- i.e., $x=u^{-1}(u)$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{p(x)}}=\frac{1}{y} \quad$ or $y=\frac{d x}{d u}$

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{p(x)}}$
- i.e., $x=u^{-1}(u)$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{p(x)}}=\frac{1}{y} \quad$ or $y=\frac{d x}{d u}$
- So again: curve $y^{2}=p(x)$ can be parametrised by

$$
(x, y)=\left(u^{-1},\left(u^{-1}\right)^{\prime}\right)
$$

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{p(x)}}$
- i.e., $x=u^{-1}(u)$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{p(x)}}=\frac{1}{y} \quad$ or $y=\frac{d x}{d u}$
- So again: curve $y^{2}=p(x)$ can be parametrised by

$$
(x, y)=\left(u^{-1},\left(u^{-1}\right)^{\prime}\right)
$$

- Hence the modern definition: an elliptic curve is any curve parametrised by elliptic functions.

Elliptic curves

- Consider curve $y^{2}=p(x), p$ polynomial of degree 3,4
- Define $u(x)=\int^{x} \frac{d t}{\sqrt{p(x)}}$
- i.e., $x=u^{-1}(u)$.
- Also: $u^{\prime}(x)=\frac{1}{\sqrt{p(x)}}=\frac{1}{y} \quad$ or $y=\frac{d x}{d u}$
- So again: curve $y^{2}=p(x)$ can be parametrised by

$$
(x, y)=\left(u^{-1},\left(u^{-1}\right)^{\prime}\right)
$$

- Hence the modern definition: an elliptic curve is any curve parametrised by elliptic functions.
- Note that Weierstrass function \wp satisfies

$$
\left(\wp^{\prime}\right)^{2}=4 \wp^{3}-g_{2} \wp-g_{3}
$$

and therefore it parametrises the elliptic curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$.

Clebsch and group structure

- collinear points on curve $y^{2}=p(x)$ correspond to addition theorems for eliptic integrals

Clebsch and group structure

- collinear points on curve $y^{2}=p(x)$ correspond to addition theorems for eliptic integrals
- geometry, analysis

Clebsch and group structure

- collinear points on curve $y^{2}=p(x)$ correspond to addition theorems for eliptic integrals
- geometry, analysis
- number theory

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites
- topology (analysis situs)

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites
- topology (analysis situs)
- groups, algebra

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites
- topology (analysis situs)
- groups, algebra
- n-dimensional space, surfaces

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites
- topology (analysis situs)
- groups, algebra
- n-dimensional space, surfaces
- axioms instead of "truths"

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites
- topology (analysis situs)
- groups, algebra
- n-dimensional space, surfaces
- axioms instead of "truths"

19th Century

end of 18th Century: "The mine of mathematics is exhausted" But then:

- non-Euclidean geometry
- projective geometry
- differential geometry
- algebraic geometry, invariants
- complex function theory
- rigour in analysis $(\epsilon-\delta)$
- at last: real numbers!
- set theory, transfinites
- topology (analysis situs)
- groups, algebra
- n-dimensional space, surfaces
- axioms instead of "truths"

Niels Henrik Abel 1802-1829

- poor personal circumstances
- had read everything available to him on math
- received a hint to turn to elliptic integrals
- warmly received by Crelle in Berlin
- poorly received in Paris
- mostly jobless and dies early (tbc)

Carl Gustav Jacob Jacobi 1804-1851

- happier circumstances, though career still insecure
- inspired by Euler to work on elliptic functions
- sees applications of elliptic functions to number theory; but he also works in math physics, determinants, history of math
- novelty: research seminars
- dies of smallpox

Legendre to Jacobi

"It gives me a great satisfaction to see two young mathematicians such as you and [Abel] cultivate with success a branch of analysis which for so long a time has been the object of my favourite studies and which has not been received in my own country as well as it would deserve. By these works you place yourselves in the ranks of the best asnalysts of our era."

Abel prize

THE ABEL PRIZE

ABOUT THE ABEL PRIZE
LAUREATES
THE ABEL YEARS
MEDIA
NIELS HENRIK ABEL

The Abel Prize Laureate 2019

The Norwegian Academy of Science and Letters has decided to award the Abel Prize for 2019 to

Karen Keskulla Uhlenbeck

University of Texas at Austin, USA

"for her pioneering achievements in geometric partial differential equations, gauge theory and integrable systems, and for the fundamental impact of her work on analysis, geometry and mathematical physics."

The Abel Prize Laureate 2019
> The Abel Prize Laureate 2019 International Page

Welcome to the Abel Prize

The Abel Prize was established on 1 January 2002. The purpose is to award the Abel Prize for outstanding scientific work in the field of mathematics. The prize

The Abel Prize 2019 Events
Registration
The registration for the Abel Prize 2019 events is now onen.

Assignment 5

Read (part of) any one of these publications:

- Abel; Recherches sur les fonctions elliptiques (English available) - introduction has a programmatic general view
- Riemann: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (English or German) including his introduction of Riemann surfaces
- Legendre, Traité des fonctions elliptiques (French)
- Gauss, Tagebuch (Latin with German commentary)
- anything from Euler (various languages and translations)
- any other mathematical research published between 1800 and 1900 to which you feel attracted (explain why)
After reading, write your own personalised review. E.g., describe how the content of this historical material relates to your own advances in mathematics; consider the style and type of mathematics; express your wonder, amazement or disdain, etc. Your review should contain both non-trivial (not necessarily hard) mathematics and personal reflection.

Assignment 6

Another topic deserving some attention is to look at the community of mathematicians and how they cooperate (or not). The 19th Century sees the founding of a number of important journals that still exist, like Annales de M. (Gergonne), Comtes Rendus, Crelle, Liouville, Acta Mathematica (Mittag-Leffler), and Mathematische Annalen (Clebsch, Neumann). A well-known example of non-cooperation is described in Van Dalen. See if you can find other examples (pre 1900) of extreme (non)cooperation.

