
The Greeks often thought of the factors of a number as its
“parts.” Thus for example the number 4 represented justice
since it is the smallest number made up of two equals, 4 = 2×2.
The number 7 is special from this point of view also, as Aristotle
explains (fragment 203):

Since the number 7 neither generates [in the sense
of multiplication] nor is generated by any of the
numbers in the decad [i.e., the first ten numbers],
they identified it with Athene. For the number 2
generates 4, 3 generates 9, and 6, 4 generates 8, and
5 generates 10, and 4, 6, 8, 9, and 10 are also them-
selves generated, but 7 neither generates any num-
ber nor is generated from any; and so too Athene
was motherless and ever-virgin.

When the factors of a number are considered its parts it be-
comes natural to ask whether all numbers are the sum of its
parts. In fact this is not so; very few numbers are “perfect”
enough to have this pleasant property, as Nicomachus (c. 100)
explains:

When a number, comparing with itself the sum
and combination of all the factors whose presence
it will admit, it neither exceeds them in multitude
nor is exceeded by them, then such a number is
properly said to be perfect, as one which is equal to
its own parts. Such numbers are 6 and 28; for 6 has
the factors 3, 2, and 1, and these added together
make 6 and are equal to the original number, and
neither more nor less. 28 has the factors 14, 7, 4, 2,
and 1; these added together make 28, and so nei-
ther are the parts greater than the whole nor the
whole greater than the parts, but their comparison
is in equality, which is the peculiar quality of the
perfect number.

It comes about that even as fair and excellent
things are few and easily enumerated, while ugly
and evil ones are widespread, so also are the super-
abundant and deficient numbers found in great
multitude and irregularly placed, but the perfect
numbers are easily enumerated and arranged with
suitable order; for only one is found among the
units, 6, only one among the tens, 28, and a third
in the ranks of the hundreds, , and a fourth
within the limits of the thousands, 8128.

Euclid proved that if p is a prime and 2p −1 is also prime then
2p−1(2p −1) is perfect. This is the grand finale of Euclid’s num-
ber theory (Elements IX.36). The theorem amounts to a recipe
for finding perfect numbers: in a column list the prime num-
bers; in a second column the values 2p − 1; cross out all rows
in which the second column is not a prime number; for the re-
maining rows, place 2p−1(2p −1) in the third column. Then the
numbers in the third column are perfect numbers.

2.2. Find the perfect number omitted in the Nicomachus
quote above using Euclid’s recipe. What prime p did you
need to use?

The following is essentially Euclid’s proof of the theorem. If 2p−
1 is prime, it is clear that the proper divisors of 2p−1(2p −1) are
1,2,22, . . . ,2p−1 and (2p −1),2(2p −1),22(2p −1), . . . ,2p−2(2p −1).
So these are the numbers we need to add up to see if their sum
equals the number itself.

2.3. (a) Show that 1+2+22+. . .+2p−1 = 2p−1 by adding 1 at
the very left and gradually simplify the series from
that end.

(b) Use a similar trick for the remaining sum, and thus
conclude the proof.

§ 3. Origins of geometry

Figure 5: Egyptian geometers, or “rope-stretchers” as they were
called, delineating a field by means of a stretched rope.

“Geometry” means “earth-measurement,” and indeed the sub-
ject began as such, according to ancient sources such as Pro-
clus and Herodotus, as we see in the readings. This was neces-
sitated by the yearly overflowing of the Nile in Egypt: the flood-
ing made the banks of the river fertile in an otherwise desert
land, but it also wiped away boundaries between plots, so a ge-
ometer, or “earth-measurer,” had to be called upon to redraw
a fair division of the precious farmable land. In fact the divi-
sion was perhaps not always so fair, as Proclus also suggests,
for one can fool those not knowledgable in mathematics into
accepting a smaller plot by letting them believe that the value
of a plot is determined by the number of paces around it.

3.1. Prove that a square has greater area than any rectangle of
the same perimeter.

3.2. Discuss what general point about history we can learn
from the following paraphrase of Proclus’s remark in
Heath’s History of Greek Mathematics (1921): “[Proclus]
mentions also certain members of communistic soci-
eties in his own time who cheated their fellow-members
by giving them land of greater perimeter but less area
than the plots which they took themselves, so that, while
they got a reputation for greater honesty, they in fact took
more than their share of the produce.” (206–207)

Among the first things one would discover in such a practical
context would be how to draw straight lines and circles. In fact
you need nothing but a piece of string to do this.

3.3. Explain how.
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3.4. Problem 3.1 shows that it is important to be able to con-
struct squares. How would do this with your piece of
string?

3.5. In the Rhind Papyrys (c. −1650) the area of a circular field
is calculated as follows: “Example of a round field of a di-
ameter 9 khet. What is its area? Take away 1

9 of the diam-
eter, namely 1; the remainder is 8. Multiply 8 times 8; it
makes 64. Therefore it contains 64 setat of land.” What is
the value of π according to the Rhind Papyrys?

People soon recognised the austere beauty of geometrical con-
structions and began using it for decorative and especially reli-
gious purposes. Indeed, Egyptian temples are very geometrical
in their design; the famous pyramids are but the most notable
cases. One of the first decorative shapes one discovers how to
draw when playing around with a piece of string is the regular
hexagon.

3.6. Show how this is done.

The hexagon has great decorative potential since it can be
used to tile the plane. Hexagonal tiling patterns occur in
Mesopotamian mosaics from as early as about -700.

3.7. Show that the hexagon contains even more area than a
square of the same perimeter. As Pappus explains in the
readings, bees seem to know this.

The step from this kind of decorative and ritualistic pattern-
making to deductive geometry need not be very great. In fact,
two of the most ancient theorems of geometry could quite
plausibly have been discovered is such a context. Take for in-
stance the Pythagorean Theorem. Its algebraic form “a2 +b2 =
c2” seems to be the only thing some people remember from
school mathematics, but classically speaking the theorem is
not about some letters in a formula but actual squares:

a

b

c

The simplest case of the theorem, when the two legs are equal
(a = b), is very easy to see when looking at a tiled floor, as we
see in the reading from Plato’s Meno. Inspired by this striking
result, ancient man might have gone on to consider the case
of a slanted square, and then discovered that with some easy
puzzling the theorem is easily generalised to this case as well:

3.8. Explain how this proves the theorem.

The Greek tradition has it that Thales (c. −600) was the first to
introduce deductive reasoning in geometry. One of the theo-
rems he supposedly dealt with was “Thales’ Theorem” that the
triangles raised on the diameter of a circle all have a right angle:

3.9. Explain how Thales’ Theorem can very easily be discov-
ered when playing around with making rectangles and
circles. Hint: Construct a rectangle; draw its diagonals;
draw the circumscribed circle.

Thus we see a fairly plausible train of thought leading from the
birth of geometry in practical necessity, to an appreciation for
its artistic potential, to the discovery of the notions of theorem
and proof.

Another indication of the use of constructions is the engineer-
ing problem of digging a tunnel through a mountain. Digging
through a mountain with manual labour is of course very time-
consuming. It is therefore desirable to dig from both ends si-
multaneously. But how can we make sure that the diggers start-
ing at either end meet in the middle instead of digging past
each other and making two tunnels?

3.10. Solve this problem using a rope. (You may assume that
the land is flat except for the mountain.)

Such methods were used in ancient times. On the Greek island
of Samos, for example, a tunnel over one kilometer in length
was dug around year −530, for the purpose of transporting
fresh water to the capital. It was indeed dug from both ends.

§ 4. Babylonia
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