
A crash course in the
history of music

modelling

Frans Wiering
f.wiering@uu.nl

Department of Information and
Computing Sciences

mailto:f.wiering@uu.nl

Abstract

A computer is a symbol manipulation machine. In order to be
able to process music automatically, it has to be captured in
symbols the computer understands. The output of the
manipulation in turn needs to be interpretable as a meaningful
statement in the music domain. There is thus a high-risk,
twofold translation process going on, where modelling
decisions may lead to revealing insights as well as to
perplexity. Moreover, the affordance of models—their
potential to be manipulated—may influence how we see
music, consciously or unconsciously. During the nearly 70
years that music has been studied computationally it has been
modelled in many different ways. This talk gives a brief
overview of this development, highlighting properties and
limitations of some of the most popular approaches.

Contents

• first, a disclaimer…

• case study from my own past
– 1991, nicely in the middle of the

history
– DARMS encoding in action
– several fundamental issues

• generalised model of music
processing

• 7 core music processing tasks
– for each, one (old) encoding system
– modelling of pitch

• differences and interoperability
• the perspective of the researcher
• data creation and availability

not addressed in this talk

1991: interesting, difficult source

The usual manual approach

24 pieces
• time-consuming
• tedious
• error-prone

Ø automate?

Workflow

1. encode tablature in DARMS-like format
2. transcribe to regular DARMS code
3. render with Note Processor software
4. study!

1

2

3

4

Partial solution

what we got what we hoped for

• we get pitches and onsets
• we don’t get voice leading, durations

– in fact, still a research topic (De Valk 2015)
• we lose all information about courses and frets

Indirect pitch representation

• tablature encodes finger position
– indirectly chromatic
– relative pitch

• DARMS encodes vertical position on staff
(vp)
– indirectly diatonic
– clefs ‘anchor’ vps to note names

• to be inferenced/decided
– tuning, absolute pitch
– diatonic reading vp encoding

(Erickson 1975)

Conversion in detail

integer representations after
Brinkman (1986)
• cpc: continuous pitch class
• pc: pitch class
• nc: name class
• oct: octave

DARMS
• vp: vertical position
• acc: accidental

Lute code

cpc

<oct,pc>

<oct, pc, nc>

<vp, acc>

tuning, fret lookup
calculate

calculate

calculate
context check

nc lookup

<3,6,3>

<3,6>

42

<7,#>

--1---

DARMS code 7#Q

merge in
DARMS token

What this case shows

• illustrates then prevailing DIY approach
– create own encoding and software

• music encoding dilemma
– musical logic or graphical representation?

• encoding vs. internal representation
– alphanumeric encoding
– integers, lists, tuples

• internal operations entirely in terms of
arithmetic, table lookup, symbol
manipulation
– there is nothing intrinsically musical going

on inside the computer

Selfridge-Field 1997
describes c. 80 encodings

it’s an algorithmic process
case study suggests a general workflow
for algorithmic music processing

storage

input algorithm output

display

music domain
knowledge

preprocessing rendering

encoding

goals

interpretation

core task

What are those core tasks?

1. generation
– composition
– theory testing
– missing data

2. preservation
– source digitisation
– conservation of heritage

3. rendering
– score generation
– performance

4. analysis
– formalised / quantitative

methods
– corpus-based research

5. transformation
– change notation type
– adapt for performance

6. exploration
– find patterns and

regularities
– select for use

7. relating
– metadata
– versions
– knowledge

preliminary
high-level
typology

Encoding has a special place

• peripheral yet often necessary task
(even today)

• creation/choice of encoding system
influenced by
– intended core tasks
– (manual) data entry process
– inclination towards minimising preprocessing
– …other factors…

• creation of new systems is now less common
– other input modes than direct encoding

• OMR, GUIs, audio analysis
– availability of significant corpora
– increasingly refined interoperability

Representation design

• David Huron (1992)
– ‘it is not possible for a signifier

to represent all properties of a
signified’ (p. 9)

– ‘many of the most useful forms
of representation achieve their
power by virtue of being able to
dispense with detail deemed
irrelevant’ (p. 10)

• Wiggins et al. (1993)
– tradeoff of structural generality and expressive completeness
– ‘the problem for the would-be constructor of a general

purpose system of notation—one simply cannot anticipate all
the purposes to which it may be put’ (p. 41)

Fig. 1. Two dimensions for
comparison of music repre-
sentation systems. The
axes and systems are de-
scribed in the text.

Waveform..-..,
Frequency Spectrum

a

SmOKe

KL-ONE. Music Structures Charm

Score,DARMS

MIDI
Bol Grammar

Structural Generality

What Is Represented?

First, we must be clear about what we are trying to
represent. We draw a distinction between a score (in
the conventional sense)and a musical object. A
score may be thought of as instructions to a musi-
cian, computer system, or whatever, to be read as the
basis for the realization of a piece of music, while the
result obtained from this process, and its subparts,
are musical objects. To put this another way, a score
(usually)only partially defines the musical object
produced when the scored piece is performed; the
score "precedes" the realization or interpretation
(Nattiez 1975, pp. 109-1 17).

Even though our evaluation strategy may be ap-
plied both to scoring systems and to representations
of pure musical objects, confusion will arise if we
mix the two. Therefore, for this discussion, we will
focus on representations of musical objects, which
gives us a broader spectrum to consider.

A further potential confusion is that any represen-
tation of a musical object can be viewed as a score
and made open to "reinterpretation"; conversely,
scores can be (andoften are)viewed as representa-
tions of musical objects. This distinction should be
borne in mind when reading the discussion below.

Procedural and Declarative Representations; Objects

There is a distinction, which will be useful in the
forthcoming discussion, between programming lan-
guages and between data representations that are ei-
ther procedural or declarative. We characterize the
difference for programming languages as follows.
Procedural languages (e.g.,Fortran or C)require us to
state how something is to be done. On the other
hand, declarative languages (e.g., Lisp or Prolog)al-
low us to specify what is to be done or what is true-
execution is left to the programming environment
and is (intheory)not the concern of the programmer.

In more concrete terms, the procedural program-
mer uses a system that follows basic instructions
about the manipulation of data, for example, "add 1
to 2" or "put it in X." The declarative programmer,
on the other hand, works in a rather different way. In
functional languages, like Lisp, one thinks in terms
of a result, obtained by the evaluation of a function,
so instead of saying "add 1 to 2," one would say "the
sum of 1 and 2." The connection between the con-
cept of a sum and the action of adding is made by the
evaluation mechanism. In logic programming lan-
guages such as Prolog, a programmer specifies logical
relations between data, so that "the sum of 1 and 2 is
3" is a simple program. Logical inference is used to
find solutions to queries (forexample, "what is the
sum of 1 and 22" or "what number added to 1 gives
3?") posed to the programming system. This is a very
high-level specification-stating what is true, rather
than giving explicit instructions to manipulate data.

Now consider the distinction for knowledge repre-
sentations. If we have a program that will generate a
declarative representation of a musical object, we
can say that the program itself is a procedural repre-
sentation of that object.

Why then should we not use the program itself, in-
stead of the output it yields, for our purposes of
evaluation? We do this because, practically speaking,
it can be very difficult to get at the data implicit in a
program, especially a procedural program, without
running it. Anyway, if we run the program, we end
up using the explicit data it generates.

The issue of procedural-versus-declarativerepre-
sentations will arise later, but we propose to defer it,

32 Computer Music Tournal

Showcase

Music III: generation

• ‘a program for synthesizing music and psychological stimuli’
(Mathews 1961), written in FORTRAN

• two parts: ‘orchestra’ and ‘score’
• score consists of instructions (OP Code) with parameters

• marked in red:
– P1: instrument
– P2 duration
– P5 pitch (oct.pc)

• pitch frequencies
specified in orchestra

688 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1961

where I[P51 means the integer part of P5, F[P5] means the fractional
part of P5, the sampling rate is 10,000 per second, and P5 = 0.0 refers
to C three octaves below middle C having a frequency of 32.70 cps.
Middle C, for example, would be 3.0 and A above middle C, 3.9.

The remaining conversion function CVT03 causes the attack generator
2Ul to produce one cycle per note, and thus must be

CVT03 =

Notice that this function operates on the duration P2 and requires no
additional parameters on the note card.

Having obtained the necessary Fortran functions, we can now write
the score as shown in Table II.

Comments concerning this example:
1. These two cards cause functions F 1 and F 2 to be generated. PI

determines the generating subroutine to be called and P2 the function
to be generated. If desired, P3 through P12 may be used as parameters
by the generating routine, although such was not done here.

2. This card sets the time scale so that a P2 of 1 produces 1000
samples, or one-tenth second at a 10,000 sample-per-second rate. This
is the duration of an eighth note. The time scale can be reset at any
point in the composition and is reduced to 750 for the second measure
to accomplish the accelerando.

3. The initial rest for instrument 2 is produced by this card. How-

TABLE II - EXAMPLE OF A COMPOSITION

Comments
OP Code Pi P2 PJ P4 P5 (numbers reler

to comments
in text)

GEN 10 1 1
GEN 11 2 1
TME 1000 2
RST 2 1 3

1 3 50 3.9 4
1 2 55 3.4 4
2 2 53 3.0 4

MES 5
TME 750
RST 2 1 6

4 60 3.2 6
1 2 3.4
1 3 3.7

MES
TER 7

COMPILElt FOR MUSIC AXD I'SYCHOLOGICAL STIMULI 687

converting from psychological to physical parameters is then carried by
the computer.

The types of conversions which are usually employed, as well as the
details of a score, arc probably best presented by a short but liberally
annotated example.

Suppose we wish to generate two measures which in conventional
music notation would be written

with instrument 1 (Fig. 4) playing the upper voice and instrument 2
(Fig. 5) playing the lower voice.

Before proceeding we must decide what wave shape function Fl and
what attack and decay function F2 we desire and obtain subprograms
to generate these. It is unfortunately beyond the scope of this paper to
discuss Fortran programming, so for the present let us consider that we
have purchased two subprograms, say GENlO and GENl1, from some
competent Fortran programmer. These, when called upon by the score,
will produce the damped sinusoid and the attack function illustrated on
Fig. 5.

We will also need to obtain from this programmer three conversion
functions CVTO1, CVT02, and CVT03 with which to set the parameters
in our instruments, and we may well choose these functions so as to
simplify our task of score writing. The function CVTOI sets the ampli-
tude of the note, and it is desirable to write the score in a logarithmic
rather than linear scale, since the former much more closelyapproximates
the ear's loudness scale. Hence, let us request that

CVTOI = lOP3/20

and use P3 as amplitude control in decibels.
Assuming that the composition is to be played with an even-tempered

frequency scale, we can easily obtain a conversion which will let us
write frequencies in the form 2.0 through 2.11, where the 2 refers to the
octave and the .0 through .11 to the 12 tones within the octave. For
this purpose

CVT02 512.0 X 3? 70 X 2(I1P5J+F1P51/0.12)
10,000.0 •. ,

Plaine And Easie Code: preservation

• ‘an accurate shorthand for music notation, especially
useful for incipits and excerpts’ (Brooks et al. 1964)

• meant for bibligraphic projects, RISM in particular
• monophonic, not suited for complete works

• 2019: ,,G/,CEG/24'CE/D,xF/2.G+/G/ (RISM OPAC)
• pitch representation: oct, nc, acc

– between graphical and logical representatio

 BARRY S. BROOK AND MURRAY GOULD (NEWYORK)

 Notating Music with Ordinary Typewriter Characters1
 (A Plaine and Easie Code System for Musicke)

 illegrc
 j F n M M

 -—

 J r
 III (All bBEAm 34) ,4G / C E G / 2C 4E / 2D ,4J|F / 2.G_/ G /

 The code system presented here is designed to provide an accurate shorthand for musical
 notation, especially useful for incipits and excerpts. It is not intended to replace conventional
 notation, although it must be capable of doing so. To put it more dramatically: if the system
 has validity, Beethoven could have written the above line of symbols instead of the notes
 without risking the slightest misunderstanding.

 Problem

 To devise a code system for music notation employing ordinary typewriter characters for
 use in:

 1. library card catalogues, providing quick and precise idenification of a musical work by
 its coded incipit.

 2. union catalogues and indexes, thematic catalogues, RISM, dealers and publishers cata
 logues, alternate versions of themes in critical editions, "Kritische Revisionsberichte,"
 brief musical examples in books and articles, etc.

 3. research projects, assisting in search, fact-finding, organization, tabulation, identification
 of anonymous works, etc.

 Conditions

 The effectiveness of this, or any system, will depend on how completely it meets the fol
 lowing optimum conditions:

 Allegro

 III (All tBEAm 34) ,4C / C E G / 2C 4E / 2D ,4.#F / 2.G_/ G /

 1 N.B. This system grew out of the graduate seminar in Music Bibliography conducted by Professor
 Brook at Queens College, Flushing, 67, New York. One aspect of the course deals with the prepara
 tion of specific segments of a bibliography for Music of the Classic Period, a long-range and already
 rather gigantic project designed for ultimate transfer to electronic data-processing equipment; included
 in the project thus far are such major areas as Books and Articles written during the Classic Period,
 More Recent Books, Periodical Articles including reviews, Festschriften, Congress Reports, Disser
 tations, Iconography, Editions of Classic Music, in short, as complete a bibliography as possible of all
 aspects of the Classic Period in Music, excluding only sources which are inventoried by R1SM (a full
 report of this project is in preparation). As his contribution to his bibliographic project, Mr. Gould,
 a student in the seminar, volunteered to find a way of recording incipits of editions of music without
 using conventional notation; he devised a system which has been expanded and improved by both
 authors. There followed an extensive period of testing within the seminar and out, and helpful con
 sultations with Ingmar Bengtsson, Jan LaRue, Noah Greenberg, and several IBM executives.
 Note de la rédaction: Nous avons cru intéressant de consacrer une grande partie de ce cahier des
 Fontes à plusieurs articles qui traitent des catalogues thématiques. Le plus important de ces articles
 est suivi de commentaires.

This content downloaded from 131.211.12.11 on Fri, 13 Sep 2019 19:49:15 UTC
All use subject to https://about.jstor.org/terms

DARMS: rendering

• created by Stefan Bauer-
Mengelberg et al. from 1963

• for high-quality engraving,
graphically oriented

• how to render 2-D polyphony
in 1-D encoding?
– instrument numbers
– linear decomposition

• inputting is optimised
• (non-trivial) 2-D coordination left to the rendering engine

!G !K2# !& !U 3H 2Q 5 / H 4Q. 3E / 2W; //
& !D 0H -2 / 1. -3Q / W // $&

Instrument codes (Brinkman 1986)

Linear decomposition (Dydo 1991)

complex issue in all
score encoding systems

HUMDRUM: analysis

• David Huron (1988)
• analytical toolkit + protocol

for representation
• structural isomorphism:

structural relations between
elements are preserved

• 2-D structure
– sequential event in spines
– concurrent events in lines

• spines may contain notation,
text, analytical information,…

• tools may generate new
spines, e.g. harmonic analysis

pitch made fully explicit (b-, dd)
(Devaney and Gauvin 2017)

CMME.org: transformation

• created by Ted Dumitrescu (1999)
• visual input of mensural notation,

stored as XML
• transformed into CMN, in various

renderings
• supports variant readings
• visual orientation of encoding

<Note>
<Type>Brevis</Type>
<Length>

<Num>4</Num>
<Den>1</Den>

</Length>
<LetterName>B</LetterName>
<OctaveNum>2</OctaveNum>
<ModernText>

<Syllable>munt</Syllable>
<WordEnd />

</ModernText>
</Note>

MP3 and chord labels: exploration

• MP3: perceptual compression
of audio (1993)

• chord label estimation via
chroma features (pitch class
binning of audio)

• formal chord syntax (Harte et
al. 2005)

• huge amounts of guitar tabs
and chord labels on the web

• labels used in services such
as Chordify
– https://chordify.net/chords

/j-s-bach-prelude-in-c-
major-rousseau

Lee & Slaney (2006): BWV 846

b
bb
a
g#
g
f#
f
e
eb
d
c#
c

Chord

List
note

degree

root
components

bass

degree

degree

Figure 2: Model for chord definition

keyboard. We also define thirteen intervals (numbers 1
to 13, eqn. 2), which correspond to the major diatonic in-
tervals (i.e. they are either major or perfect) up to one
octave plus a sixth (shown in Figure 3). To allow correct
spelling of enharmonics we also define two modifier op-
erators, sharp and flat. Thus:

natural = {A | B | C | D | E | F | G} (1)
interval = {1 | 2 | 3 · · · 11 | 12 | 13} (2)
modifier = sharp | flat (3)

Naturals and intervals may be operated on by these modi-
fiers. In this way, notes and degrees may be defined as:

note = natural | modifier(note) (4)
degree = interval | modifier(degree) (5)

An example model of a chord is shown in Figure 4. The
chord in the example is a C minor seventh chord in first
inversion. The root of this chord is a C. The component
intervals are a minor third, a perfect fifth and a minor sev-
enth (♭3, 5, ♭7). The bass note of a first inversion chord is
its 3rd degree, which in this example is an E♭.

The sharp and flat modifiers allow proper enharmonic
spelling of notes and intervals. This is important in cases
such as the diminished seventh chord (comprising the mu-
sical intervals ♭3, ♭5, ♭♭7) which contains a diminished
seventh interval (a major seventh interval flattened twice).
Although this interval is tonally equivalent to a major
sixth, it has a different musical function.

aaaaaaaaaaaaaaaaaaa3 ! ! ! ! ! !! ! ! ! ! ! !!!! !! ! ! ! !! ! ! ! !!
1 M2 M3 P4 P5 M6 M7 oct8 9 10 11 12 13Interval:Step: T T S T T T S T T S T T

Figure 3: The Major diatonic intervals upon middle C. ‘T’
denotes a step of a tone between adjacent intervals and ‘S’
a semitone.

4 REPRESENTION OF CHORDS IN
FLAT TEXT

In this section we develop a general system for notating
chords in flat text that is both musically intuitive and flex-

C root bass

Listcomponents
flat
3

flat
75

flat
3

Chord

Figure 4: Example model of a first inversion C minor-
seventh chord

ible but at the same time rigidly structured. The basic syn-
tax of the notation is outlined in Section 4.1. A shorthand
system using a vocabulary of predefined labels for com-
mon chords is introduced in Section 4.2. Finally, a for-
malised description of the syntax for the system is given
in Backus-Naur Form Ledgard and Marcotty (1981) in Ta-
ble 1.

4.1 Developing a Syntax for Chord Notation

It is important for use in text annotation that chord sym-
bols be context independent. Using the chord model de-
scribed in Section 3 and a context independent approach
to notation, similar to the Jazz style described in Section 2,
we define the following syntax for representing a chord in
flat text:

root : (degree1, degree2...) / bass

The root note is written first followed by a colon (:) sep-
arator. A comma delimited list of the chord degrees is
then written, contained by parentheses. Finally, an op-
tional bass note may be added at the end after a forward
slash character (/) if it is different to the root. The natu-
rals, intervals and modifiers are defined in Table 1 follow-
ing equations 1 to 3. The sharp and flat are signified by
the hash symbol # and the lowercase b respectively.

To keep the notation musically intuitive, note modi-
fiers come after naturals so A♭ becomes Ab. Degree mod-
ifiers come before intervals so a flattened seventh becomes
b7. An extra chord state denoted by a single uppercase N
is also added to signify ‘no chord’ to mark silence or un-
tuned, possibly percussive musical material. To resolve
the possible ambiguity between a note B and a flat modi-
fier b the notation is necessarily case sensitive.

Following these rules, all chords may now be de-
scribed in flat text in an unambiguous manner. For ex-
ample, using our system a C major chord becomes:

C:(3,5)

Likewise, a C minor chord becomes:

C:(b3,5)

A more complex chord such as a D♯ minor seventh chord
in second inversion with an added ninth would become:

D#:(b3,5,b7,9)/5

68

C:(b3,5,b7)/3

https://chordify.net/chords/j-s-bach-prelude-in-c-major-rousseau

SMDL: relating

• Standard Music Description
Language (Sloan 1993)

• music representation language
and interchange format

• proposal for 4 interrelated
domains

• cantus domain specifies
musical logic

<pitchgam id=pitchgm0 --start of pitch gamut--
gamutdes="conventional 12-tone equal

temperament"
highstep=11
octratio-2 >

…
<namestep><pitchdef><pitchnm>eb</pitchnm>

<gamstep>0</gamstep></pitchdef></namestep>
<namestep><pitchdef><pitchnm>f</pitchnm>
<gamstep>2</gamstep></pitchdef></namestep>...

<start>
<ce>t 1 eb
<ce>t 2 c
<ce>t 1 bb
<ce>3t4 0 bb
<ce>t4 1 g

Summary

task music as example other candidates

create process MUSIC III Csound

preserve heritage PAEC ESAC

render product DARMS MusicXML, MIDI, Lilypond

analyse problem Humdrum Music21

transform source CMME ECOLM

explore experience MP3, chord labels ABC, guitar tabs

relate information SMDL IEEE 1599, MEI

NB most systems cover a range of tasks

Pitch representations

• various viewpoints
– freq <-> pitch
– chromatic <-> diatonic
– pitch <-> interval
– graphical <-> logical

• mappings provided in e.g.
Music III and SMDL

• underlying modelling issue
– discretisation of the continuous

frequency space
– can be done in a number of ways
– repertoire and task dependent

• in rhythm, discretisation is also an issue
– durations unspecified in lute tablature
– swing, inegale, phrasing…

pitch discretisation in Tarsos

Interoperability

• encoding systems are designed differently, e.g.
– representational needs of the intended task
– demarcation of graphical and logical
– discrete vs. continuous
– coverage of notation systems
– uncertainty and incompleteness

• interoperability is not a core musicological task
• important mainly (only?) when size matters
• implies aligning academic communities

– tend to have separate interests, goals, values and
therefore encoding convictions

Where does this leave you?

suppose your work could benefit from computing, ask yourself
the following questions
1. does it involve music processing?

– if not, use general tools
2. what are the modelling requirements of the task (data,

process)?
– can you get access to suitable software?

3. if so, is data available?
– is it suitable for the task, after preprocessing?
– is data quality sufficient?

• big data: use as is and report quality metrics
• small data: correct, add missing information
• encode essential missing items, using same format
• donate your encodings to the community

– if the answer is no, either stop or move to next level

Where does this leave you?

4. create your own data
– big data: create proper (international) project
– small data: select lightweight method to create optimal

data for you
– spend 10% of your effort to make it reusable

• extensibility
• documentation
• metadata
• quality metrics

5. distribute
– use existing channels
– choose appropriate license (e.g. Creative Commons)

our personal collection of music examples, transcriptions
etc. is an important resource to be mobilised

Towards maturity

• many issues in computational musicology have been solved
– representational issues are understood
– surfeit of computational methods (often from Music

Information Retrieval) ready to be explored
• data availability is the main bottleneck

– folk song research is probably doing best
– well-connected community

• some thoughts on data creation…
– humanities style of collaboration
– coordination without parochialism
– extensible minimalism for maximal efficiency (10% rule)
– what makes data creation fun and rewarding?
– and yes, we should mobilise the (often very

knowledgeable) citizen scientists

Thank you!

Bibliography (1)

Brinkman, A. R. (1986). Representing Musical Scores for Computer Analysis.
Journal of Music Theory, 30(2), 225–275.

Brook, B. S., Gould, M., LaRue, J., Bengtsson, I., Bridgman, N., Benton, R., &
Chaillon-Guiomar, P. (1964). Notating music with ordinary typewriter
characters (a plaine and easie code system for musicke). Fontes Artis
Musicae, 11(3), 142–159.

Devaney, J., & Gauvin, H. L. (2017). Encoding music performance data in
Humdrum and MEI. International Journal on Digital Libraries, 20, 81–91.

Dydo, S. (1991). The Note Processor User’s Guide. Thoughtprocessors.
Erickson, R. F. (1975). “The Darms project”: A status report. Computers and the

Humanities, 9(6), 291–298.
Galilei, V. (1584). Il Fronimo. Venice: Herede di Girolamo Scotto.
Harte, C., Sandler, M. B., Abdallah, S. A., & Gómez, E. (2005). Symbolic

Representation of Musical Chords: A Proposed Syntax for Text Annotations.
Proceedings ISMIR, 5, 66–71.

Huron, D. (1988). Error categories, detection, and reduction in a musical database.
Computers and the Humanities, 22(4), 253–264.

Bibliography (2)

Huron, D. (1992). Design principles in computer-based music representation. In A.
Marsden & A. Pople (Eds.), Computer representations and models in music
(pp. 5–39). Academic Press Ltd.

Lee, K., & Slaney, M. (2006). Automatic Chord Recognition from Audio Using a
HMM with Supervised Learning. Proceedings ISMIR, 133–137.

Mathews, M. V. (1961). An Acoustic Compiler for Music and Psychological Stimuli.
Bell System Technical Journal, 40(3), 677–694.

Selfridge-Field, E. (Ed.). (1997). Beyond MIDI. The handbook of musical codes.
MIT Press.

Sloan, D. (1993). Aspects of Music Representation in HyTime/SMDL. Computer
Music Journal, 17(4), 51–59.

Valk, R. de (2015). Structuring lute tablature and MIDI data: Machine learning
models for voice separation in symbolic music representations (PhD Thesis).
City, University of London.

Wiering, F. (1997). DARMS extensions for lute tablatures. In Selfridge-Field, E.
(Ed.), Beyond MIDI. The handbook of musical codes (pp. 201–206). MIT
Press.

Wiggins, G., Miranda, E., Smaill, A., & Harris, M. (1993). A Framework for the
Evaluation of Music Representation Systems. Computer Music Journal, 17(3),
31–42.

