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Abstract

In the field of eXplainable Artificial Intelligence, many algorithms
have been proposed to try to get an understanding of black box ma-
chine learning models. LIME is one of these proposed algorithms,
and since its inception has been heavily discussed in the literature. To
verify its functionality, our research aims to reproduce an experiment
from the paper in which the algorithm is originally proposed [7]. This
experiment tests the functionality of LIME explaining the predictions
of a black box classifier trained on a biased image dataset. After per-
forming the experiment, we found our results portrayed the bias of
the image dataset similarly to the results of the original experiment,
and were useful for determining the trustworthiness of the classifier.
However, we also find the algorithm is volatile and heavily depen-
dant on parameters for local sampling. These limitations prevent the
algorithm from accurately finding nuanced biases, and deter the tech-
nique from being trustworthy for serious applications in the grander
scheme of Artificial Intelligence.

1 Introduction

The usage of artificial intelligence has increased substantially over the last
few decades, being applied in many different job sectors. The main uti-
lization of these new techniques is automatization for what was previously
done by human workers. Repetitive tasks for data science and accounting
are already being automised by machine learning models, but this technol-
ogy is also being deployed for more complex tasks such as aiding health
practitioners and aiding in the judicial system. With these tasks being more
complex and having substantial consequences for human lives, it becomes
important for us to be able to trust the decisions being made by complex
machine learning models. At the inception of machine learning, this was
not yet a problem as the models used were of small enough complexity for
humans to understand. However, with the rise of neural network based
models, the machine learning models we deploy for tasks are black-box
based. These models are not easily interpretable by the people determin-
ing the correctness of their predictions. This gap in interpretation caused a
movement for eXplainable Artificial Intelligence (XAI) [6] trying to provide
interpretations for the black-boxes generated by complex machine learning
models. XAI now forms an important discipline in the study of artificial
intelligence and its importance is widely understood.

Machine learning models are not uninterpretable per definition, as lin-
ear classification models do provide a model from which an explanation for
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a prediction can be inferred. For example, an algorithm using linear classi-
fication for determining whether a 32 by 32 pixel image is a representation
of the number 9 can be interpreted by humans by looking at how much
weight each pixel was assigned to. If the model works correctly, the pixels
with the highest weights will form something partially presenting a nine.
As per the example, this works well with linear models as the weights can
be directly looked at. However with deep learning, much of the weights are
contained in a black box model and correspond to more difficult to inter-
pret patterns. XAI algorithms such as LIME and SHAP [8] form a method
to look beyond the black box, and try to find interpretable explanations for
these deep learning models.

This paper will mainly focus on the Local Interpretable Model-agnostic
Explanations (LIME) technique as proposed by Ribeiro et al. in 2016 [7].
The reason LIME is chosen for this research is that the robustness and ac-
curacy of LIME is heavily discussed in literature [2, 4, 8], with one source
bringing up theoretical proof that LIME should work on simple datasets
of words [4] and images [3]. However, other sources are more critical of
LIME, and point out that it is highly unstable with regard to changes in its
parameters [8].

We will test the accuracy of the algorithm originally proposed by writ-
ing our own implementation focused on generating explanations for image
classification models. We will use this implementation to recreate an exper-
iment done by Ribeiro et al. [7] and verify that we get similar results. In this
experiment, a highly biased image dataset is used to train a logistic regres-
sion classifier, causing predictions of the classifier to be based mostly on
the bias from the image dataset. The LIME algorithm is then used to gen-
erate explanations which accurately depict the trained bias of the logistic
regression model. We hypothesize that the LIME algorithm will generate
explanations as expected and give similar clarity to the bias as the original
experiment. After performing the experiment, our hypothesis is confirmed
with the generated explanations clearly presenting that the predictions of
the classifier are affected by a bias. However, our implementation of the
LIME algorithm also highlights some concerns with the stability of the al-
gorithm making its use for more critical or substantial use cases unreliable.

This paper will start off by giving a general overview of the LIME al-
gorithm and the experiment which will be reproduced, along with a jus-
tification for the expected results. Then, a detailed report is given of our
implementation, after which the results of this experiment are presented
with an analysis of the effectiveness of the algorithm.
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2 Relevance in Artificial Intelligence

This papers main connection to the broader field of artificial intelligence is
the discussion of an eXplainable Artificial Intelligence technique. We pro-
vide an analysis on the LIME algorithm, which allows humans to get an
insight in predictions from black-box machine learning models. As these
models tend to be very complex and thus not easily graspable by humans,
it becomes beneficial to acquire explanations from machine learning mod-
els which accurately portray their inner workings. Aside from increasing
trustworthiness of the prediction by giving a justification, the explanation
can also be used to evaluate the performance of a model as well as qual-
ity of the data set. For example, a study has found that an automated ju-
dicial system possesses a bias towards historically marginalized groups,
prompting the system to assign a high risk of recidivism for convicts of
those groups more often compared to other ethnical groups [1]. XAI tech-
niques revealed this bias, highlighting the problematic dataset that the sys-
tem used, which contained a disproportionate number of offenders from
marginalized groups due to historical issues. Because of these findings,
the systems prediction were found to be much less trustworthy and future
systems can be made with these limitations in mind.

3 Preliminaries

Before discussing our reproduction, it is important to have an understand-
ing about what an explanation for a machine learning model would entail,
the general concept of LIME and a detailed overview of the experiment we
will reproduce.

3.1 Interpretable Explanations

To properly evaluate and trust the performance of a machine learning model,
explanations are created which try to convey the process a model used to
get to its prediction. Phillips et al. refer to two approaches to explain this
process [6]. Local explanations try to explain a single input/output pair of
a model. This is useful to understand what parts of an input the model
used to get to its prediction of a specific instance. The other approach is
a global explanation, which tries to give information about the entire algo-
rithm. These explanations help understand the model’s general biases and
reliability across various input contexts.

3



As its name suggests, LIME (Local Interpretable Model-agnostic Expla-
nations) is a technique for generating local explanations. Ribeiro et al. de-
fine an explanation g as a model which covers the domain of presence/absence
of interpretable features of an input [7]. These interpretable features come
in many forms, but have as most important criterium that they must be un-
derstandable to humans, regardless of whether they are used by the model
they are supposed to explain. As an example, for image classification, an
interpretable representation of an image might be a vector containing the
presence or absence of a contiguous patch of similar pixels (superpixel),
while the classifier might represent the image as a tensor with three chan-
nels per pixel [7].

In addition to the interpretable features, the complexity of the explana-
tion model also needs to be taken into account. An explanation model with
a high complexity is not beneficial, as the explanation becomes overwhelm-
ing for humans to comprehend. For instance, were the explanation model
a decision tree, the depth of the tree would greatly influence how much
information humans could grasp from the model. For our image classi-
fication example, this means that the amount of superpixels needs to be
limited as not to have the image divided in too many regions. Overly small
regions are more difficult to interpret and thus some limit needs to be set.
This comes with a trade-off however, as acting over the presence/absence
of large patches of pixels will lessen the finesse of the explanation, because
only large difference can be evaluated. Thus a great explanation model
tries to get the complexity low enough to be easily interpreted by humans,
whilst minimizing its error in assessing the impact of the presence/absence
of the interpretable features.

Lastly, note that the explanations discussed here are explanations of a
black box model for a single instance of prediction. That means that the ex-
planation g might cover explaining one instance accurately, whilst not cor-
rectly conveying information about another instance, the explanations are
thus local to the instance being explained and do not reflect on all choices
of the black box (some intuition behind this can be seen in Figure 1). As
black box models often contain many more input variables than humans
can comprehend, capturing all the intricacies of its decisions becomes a
most unfeasible task. With these local explanations, accurate insight can be
obtained whilst keeping the explanations human understandable.
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Figure 1: An example from the original paper to explain the intuition be-
hind LIME. The blue/pink background represent the complex decision
function f of a black box model. The bold red cross is the instance be-
ing explained. Perturbations are generated and weighed according to their
proximity to the instance being explained, after which predictions are got-
ten using f (represented by the crosses and dots, proximity represented by
size). The dashed line is the learned explanation that should be faithful to
the instance we wanted explained (but not globally to f ) [7].

3.2 Overview of LIME

The LIME technique allows the output for complex machine learning mod-
els to be evaluated in an interpretable manner. Let f be a model represented
by a function mapping input of the model to output given by the model.
Let x be an input for model f . The aim of LIME is to generate an explana-
tion ϕ for f (x). This explanation should be human interpretable, meaning
that a (trained) person should get insight from ϕ what features f used of
x to output f (x). To achieve this, we create an interpretable version x′ of
x which tries to represent x in a form that would be human interpretable.
The paper [7] mentions for example that were x a data resource and f a
text classifier, x′ could be a vector containing every word present in x and
ϕ could be a binary vector indicating whether each word in x′ influenced
the prediction f (x) or not. To generate ϕ, the LIME technique goes through
the following algorithm.

First, a data set of n ∈ N perturbations locally sampled around x is
created. A perturbation is created as follows. From x′, a random amount
of entries are turned off resulting in an interpretable version of x with a
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random amount of features removed. This version is then converted to its
original representation. Let the perturbation in the interpretable represen-
tation be called z′ and in the original representation be called z.

Figure 2: An example of how perturbations could be created of a text
source. An interpretable version is made, from which a random amount
of features are turned off for each perturbation.

Next, a simple classifier model is created, g. This classifier is trained on
a dataset Z′ which is filled with perturbations z′ of the datapoint x. The
label of a datapoint z′ ∈ Z′ is given by f (z), the label assigned by the
model f to the perturbation in the original representation. Each z′ ∈ Z′ is
weighted according to the distance between z and x. By training g, we get
the explanation ϕ by evaluating the learned weights g has for each feature
in x′.

3.3 The Experiment

The experiment which will be implemented for this paper is described un-
der Section 6.2 of the original proposal for the LIME algorithm [7]. In this
experiment, a logistic regression classifier is trained with a highly biased
image data set. The data set consists of images of huskies and wolves, with
every picture of a wolf specifically chosen with snow visible in the lower
half of the picture. A picture of a wolf from the trainings data is chosen to
generate an explanation for. Using a segmentation algorithm, this image is
divided into superpixels (continuous patches of similar pixels) which will
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be used as the interpretable features of this image. The LIME technique is
then used to generate an explanation for this model. These highlight that
the lower half of the image is primarily being used to assess whether the
picture is of a wolf or a husky, see Figure 3 for an example taken from [7].

Figure 3: Example of a husky classified as wolf with explanation from the
original paper [7].

We hypothesize that LIME will generate explanations similar to expla-
nations of the original experiment. Overall, this would mean that the expla-
nations show the predictions of the logistic regression classifier are biased
and classifier should not be trusted to differentiate wolves from huskies
like humans do. Specifically, we should see that when the logistic regres-
sion classifier predicts “wolf” for an image of a husky with snow in the
lower half of the picture, the explanation should look similar to Figure 3.
The explanation should show that snowy segments in the picture influence
the prediction of the logistic regression classifier.

We justify our hypothesis with the following. The training data will
have consistent pixel values in the lower half of the pictures for the wolf
photos and inconsistent pixel values for the husky photos. The logistic re-
gression classifier will set each pixel as an individual feature and can thus
discover that wolf photos have a consistent pattern whilst husky photos do
not, and thus will overfit to the lower half of the image. Then, for local
sampling of perturbations, perturbations with the lower half of the picture
removed will cause a prediction of a husky, and perturbations with the
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lower half of the picture present will cause a prediction of a wolf. The lin-
ear regression classifier trained on these data and labels will fit and assign
bigger weights to the superpixels in the lower half of the picture compared
to upper half, which we can use as proper explanation for viewing the bias
in the original logistic regression classifier.

4 Method

In this section we set out what we used to reproduce the experiment. We
follow the LIME technique from the original paper by Ribeiro et al. [7],
however some modifications are made to specific details which will be
highlighted in the Analysis & Discussion section.

4.1 Experiment Setup

For our implementation of the experiment Python version 3.10 was used
as the main coding language, making heavy use of the scikit-learn (version
1.2.1) library [5] to handle the machine learning models and scikit-image
(version 0.19.3) library [10] for image manipulations.

4.1.1 Image Dataset

For the image dataset, a variety of images were acquired from Google Im-
ages which were scaled to 128 by 128 pixels using the scikit-image library.
These images cover two classes: photos of wolves in a snowy area and pho-
tos of huskies. The pictures where chosen such that every picture of a wolf
contained snow in the lower half of the picture and every picture of a husky
did not. No further criteria were given to the pictures, so the animals are
depicted in varying poses and in varying positions on the photos. Fifteen
photos in each class were chosen, with 10 being used for the training set
and 5 for the test set. The logistic classifier used as the black box for the
experiment was taken from the scikit-learn library, as well as the linear re-
gression classifier used for the explanation. Three pictures were chosen to
create an explanation for, shown in Figure 4. Pictures (a) and (b) are taken
from the wolf and husky dataset respectively. Picture (c) contains a husky
with snow in the lower half of the picture.
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Figure 4: The images used for the experiment.

4.1.2 Sampling Perturbations

An explanation for each picture was generated following the LIME algo-
rithm. The image in original representation x was gotten by loading the
image and resizing it to be 128 by 128 pixels using the scikit-image library
tools. This array was used to divide the picture into segments using the
SLIC segmentation algorithm as provided by the scikit-image library. We
set the algorithm to find 100 segments. Each segment found represents a
superpixel. From this we get interpretable representation x′ which is a one
dimensional vector containing every segment number. In Figure 5 the pro-
cess is shown for a picture of a wolf.

Figure 5: Instance of the original wolf picture (left) and the image after
resizing (right) with the segments found by SLIC denoted with a yellow
border. SLIC was used with n_segments = 100 and found 72 unique seg-
ments.

After creating the interpretable representation, a collection of 5000 per-
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turbations are generated. A set of vectors Z′ in which each vector has the
same size as x′ is created with each vector only containing true values. For
each vector z′ in Z′, a uniformly random amount of values are turned to
false, with at least one value in z′ being true after finishing. These vec-
tors represent which segments found in x should stay on, true, and which
should be turned off, false. Each vector in Z′ is also converted to the origi-
nal representation z by copying image x and turning each segment which
is denoted false by z′ gray. These images are collected in set Z. We also keep
track of the distance between each perturbation z and the original image x.
This was done by turning both z and x grayscale, flattening the arrays and
then calculating the euclidean distance between the two. These weights are
then collected in W.

Figure 6: A couple of perturbations in original presentation. The color of
the turned off superpixels is gray.

4.2 Generating Explanations

After following the setup, the explanations were generated as follows. First,
the logistic regression model f was trained using the biased image dataset.
After fitting to the dataset, the sampled perturbations Z were used to get
predictions f (Z) which were used as labels for the training data set Z′. The
linear regression model is trained using Z′ as training data and f (Z) as
training labels. The weights collected in W are used as sample weight to
adjust each entry in Z′ by. After the linear regression model was fitted, the
weights were gathered. With each weight corresponding to a segment from
x′, an explanation image was generated by copying x and giving the five
segments with the highest weight a green color in the image.
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5 Results

The aim of the experiment was to test if we get similar results compared to
the original experiment as done by Ribeiro et al. [7]. To evaluate this, it is
important to have an understanding on both the performance of the logistic
regression model and the explanations provided by following the LIME
algorithm, as the logistic regression model directly influences the generated
explanation.

5.1 Black Box Performance

After fitting the logistic regression model to the biased training image data,
it scored an accuracy of 70% on test images from a dataset with the same
built-in bias. Two instances of a husky were predicted to be a wolf, and one
instance of a wolf was predicted to be a husky.

Figure 7: Three images of the test set which were classified incorrectly by
the logistic regression classifier after being fitted on the train set. From left
to right, the logistic regression model classified the pictures as wolf, wolf
and husky.

5.2 Explanations

Following the LIME technique, perturbation images were generated from
which linear regression classifiers were trained. The six highest positive
weights of each linear regression classifier were gathered, and the corre-
sponding superpixels were colored green to form the explanations in Fig-
ure 8.
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Figure 8: Explanations generated for predictions of the logistic regression
classifier on the images in Figure 4. The pictures depict (a) a wolf, (b) a
husky and (c) a husky in a snowy landscape. The logistic regression model
predicted for these pictures respectively (a) wolf, (b) husky and (c) wolf.
The green areas show the six superpixels with the highest weight after
training the (linear regression) explanation model for each picture.

Explanation (a) and (c) contains some green areas in the lower half of
the picture. All spots that were colored green were originally mostly white,
with the exception of the leg of the wolf in explanation (a). Explanation (b)
does not contain any green segments. Furthermore, we see that the logis-
tic regression model correctly predicted the classes of the wolf and husky
pictures, but was fooled by the picture of a husky in a snowy environment.

6 Analysis & Discussion

Whilst evaluating the results, it is important to understand some differ-
ences between the original experiment and our reproduction. Additionally,
some issues were found during testing which puts on further elements to
discuss about the performance of the LIME model. These topics, including
a conclusion to our research question and proposals for follow up research
will be adressed in this section.

6.1 Implementation Differences

While trying to stay true to the original experiment from Ribeiro et al. [7],
we found some changes were useful to implement in our environment. For
the experiment from the paper, superpixels of the images that were to be
explained were found using the QuickShift algorithm [11]. In our testing,
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we found this algorithm to produce too many segments, with most seg-
ments consisting of only a couple of pixels. As we wanted to minimize
the complexity of the explanation model, the amount of superpixels found
needed to be limited. We also did not want too few superpixels, as each
segment would still need to be indicative of a specific informative part of
the picture. For example the black part of the nose of a wolf should be
contained in one segment. The SLIC algorithm provided functionality to
specify the amount of segments we wanted as well as segment based on
color, which was sufficient for the purposes of our reproduction.

Another part our implementation differs is that the logistic regression
model is trained on a different source. Ribeiro et al. used a logistic regres-
sion model which was fitted to the features of a pre-trained neural network
model, the Inception V3 network [9]. Features of each image were extracted
by putting them in the network and extracting values of the first soft-max
layer. For our reproduction we wanted a controlled environment for both
the images and the model used. We opted to fit the logistic regression clas-
sifier to less complex data, the rgb color values of all pixels of the image.

Lastly, no information on some specifics of the original experiment were
given in the paper describing the experiment [7]. This meant that we did
not have access to the images used to train the logistic regression classifier
of the original experiment. Moreover, no specific parameter values were
given for fitting the logistic regression and linear regression model, and no
threshold value was given for which weight-values of the linear regression
model should be included in the explanations.

6.2 Explanation Analysis

By performing this reproduction, we wanted to generate explanations which
would portray a similar bias as can be seen in Figure 3. Particularly we
wanted the explanations to show that the logistic regression classifier had
a bias towards white areas on the lower half of the picture. As we can see
in Figure 8, explanation (a) was most in line with this expectation. Clearly,
snowy areas on the lower half of the picture are given a high weight value,
meaning they had a high influence on the prediction of ‘wolf’ for the image.
Notable is the brown leg of the wolf that was found to be significant for the
explanation. Upon evaluating our image dataset, we found that most wolf
pictures had a part of the wolf found in that similar spot. Since all wolf
pictures were of brown wolves, there is a consistent brown spot across the
wolf picture dataset at that part of the picture, which could explain why
the explanation assigned a high weight to that area.
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An unexpected issue with the LIME algorithm came to light with analysing
explanation (b). No segments are marked green on the explanation. Upon
evaluating the results more, it was uncovered that each segment of the im-
age was given a weight value of zero, meaning no segment was eligible to
be colored green in the explanation. Trying to generate explanations for
other husky images from our dataset resulted in similar results. To explain
why this happens, we need to look at our black box model. Recall that
the logistic regression model will label each picture without white at the
bottom as a husky. With the biased husky images, almost none contained
white at the bottom. For the locally sampled perturbations of these images,
parts of the image were turned gray, meaning no white parts were ever
added to the picture. This meant that no perturbation generated contained
white at the bottom of the picture causing the logistic regression model to
label each perturbation as ‘husky’. As a result, the linear regression model
was trained with a dataset containing only one class, resulting in each su-
perpixel being given the same weight. Specifically for explanation (b), we
can see that not much white is found in the lower half of the picture. How-
ever, there is a white area in the center of the picture. Compare this area
to explanation (a), where we notice that the logistic regression classifier ex-
pects to find brown in this area to predict ‘wolf’ for this image. As the
perturbations also never add brown areas to the picture, we can see that
the same phenomenon happens causing all weights to be given a weight of
zero.

Lastly, we evaluate explanation (c). The context of this explanation, a
husky in a snowy landscape, is exactly the same as the example from the
original experiment (Figure 3), and thus we expect a similar result. How-
ever, explanation (c) depicts that the logistic regression classifier was also
influenced by a white segment in the upper left area of the image. This
disparity was also caused by a flaw with our image dataset. As we wanted
to choose pictures of wolves with white in the lower area of the image,
our ’wolf’ dataset contained some pictures of wolves in a snowy landscape
which could be seen entirely around the wolf. This may have caused the
white segment in the upper left area of the husky in snowy area image to
be included in the highest weighted segments used to draw the explana-
tion. Nevertheless, explanation (c) still portrays that the snowy areas in the
picture had the most influence on ‘wolf’ being predicted.

These explanations also give some insight in why the logistic regression
classifier predicted some images of the test data wrong, as seen in Figure 7.
The picture of the wolf, which was predicted to be a husky, only has a
small area of white at the bottom of the image. This would indicate that the
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white area is not big enough for the classifier to predict ’wolf’ for the image.
Similarly, the two pictures of huskies which were predicted as ’wolf’ might
have big enough white areas at certain spots in the picture to fulfill the
requirements of the ’wolf’ prediction.

With all the explanations evaluated, it is important to keep in mind that
the LIME algorithm generates local explanations. By viewing these expla-
nations we found out certain nuances of our image dataset which influ-
enced the logistic regression classifiers weight values. However, the algo-
rithm is not intended to provide explanations for the thought process of
the entire black box. These explanations only portray what the black box
used in that specific instance to generate its prediction. As the original in-
tention of proposing the LIME algorithm was giving insight in predictions
made by black box models [7], the LIME algorithm did give proper insight
in why this model is unsuitable for human-like husky/wolf classification,
and thus usage of the algorithm was a success.

6.3 Complications with the LIME Technique

Besides our results showing the LIME algorithm can be used to reflect the
bias the logistic regression classifier was fitted towards, some evidence of
the reported instability of the algorithm [8] were also found during imple-
mentation and testing. Volatility of the results became evident after run-
ning the algorithm multiple times with different random seeds and obtain-
ing slightly different explanations. Figure 9.I shows some examples of this
phenomenon. As the amount of superpixels chosen to be turned off are de-
termined randomly for each sampled perturbation, the dataset for the lin-
ear explanation model should change a bit with a different random seed.
Upping the amount of locally sampled perturbation might lessen this ef-
fect, although it would be difficult to determine how many perturbations
is enough. We do see that the area that is colored green stays somewhat
consistent between the experiment runs, so we can still generally deduce
the same bias from each explanation, dampening the disturbance of this
randomness. However, with more nuanced biases in a dataset, this might
become more of a problem. We can also see that the amount of perturba-
tions generated affects the resulting explanations which can be attributed
to the dataset of the linear regression model having fewer training data
with less perturbations generated, and as such has less information to fit
to. This additionaly could be solved with generating more perturbations,
however that also comes with its problems, as each extra perturbation gen-
erated means one more call to the black box for getting the label used to
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train the explainer model. Making predictions from a black box model
can be quite computationally expensive, so ideally these prediction calls
should be limited. It could be suggested that more perturbations means
the explanation model will overfit to the perturbations, however we would
argue that this only comes to benefit the accuracy of the explanation. As a
proper XAI model should show what a black box model used for its pre-
diction [6], we want an explainer to be trained on as many combinations
of the interpretable segments as possible to view the most important ones.
The explainer model is only used to explain one instance, and as such the
error of that explainer should be minimized as much as possible.

Figure 9: (I): Different explanations generated after running the experi-
ment with the same parameters (same amount of locally sampled pertur-
bations, same area from which perturbations are sampled) and different
random seed. (II): Different explanations generated after running the ex-
periment with a differing number of generated perturbations (from left to
right respectively 1000, 4000 and 5000) using the same randomness seed.

Another drawback of the LIME algorithm also came to light during the
implementation of the reproduction. In the experiment the bias of the im-
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age dataset is based on color. However, the deactivated superpixels of the
perturbations also need to have a color assigned to them, as the logistic re-
gression model only accepts inputs equivalent in size to the original image.
This means that the color chosen for the turned off superpixels has a large
effect on the labels given to the perturbations as they are predicted by the
black box model, and thus influence the generated explanation. To verify
this, we ran the experiment for picture (a) of Figure 4 again and changed
the perturbations to show off segments with a black color instead of gray.
As can be seen in Figure 10, the change in color caused the weights given to
the segments to be altered slightly, which led to a different part of the image
having the heighest weights. In this context, the bias of the image dataset
can still be concluded from both explanations, however with more complex
biases this might have a significant impact on the generated explanation.

This phenomenon is mainly the result of choosing colored superpixels
for the interpretable representation of the input. Changing the interpretable
representation might be beneficial to prevent this, however, it is quite dif-
ficult to find a better suited interpretable representation as the superpixel
representation is very clear to visualize.

Figure 10: Different explanations created by changing the color of the ’off’
segments in the perturbation training images to gray and black respec-
tively.

6.4 Conclusion and Further Studies

Before implementing the algorithm, we hypothesized that the LIME algo-
rithm will generate explanations which give similar clarity to the bias of the
image dataset as explanations generated in the original experiment done
by Ribeiro et al. [7]. Based on our analysis on the generated explanations
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and our observations testing the LIME algorithm, we have arrived at the
following conclusions. The results of our reproduction reflect the results
established by the original experiment. Two of the three explanations we
generated properly visualized that the logistic regression classifier had a
bias towards snowy areas for generating its predictions. Especially com-
paring the explanation example from the original experiment (Figure 3) to
the explanation we generated within a similar context (Figure 8.c) shows
that the explanations depict a similar bias for the same context. Further-
more, for every explanation we generated, we can conclude that the lo-
gistic regression classifier did not make its prediction similar as a human
would. Thus the LIME algorithm did help give insight that the predictions
generated by the logistic regression classifier were not trustworthy for dif-
ferentiating huskies from wolves.

Even though the LIME algorithm did help enlighten the bias of the lo-
gistic regression model in the context of the experiment, our observations
indicate that the algorithm is not suitable to discover more nuanced biases
of black box models or declare a model unquestionably trustworthy. We
confirmed the instability of the algorithm as mentioned in the literature [8]
and showed that changing parameters of the algorithm could influence
the resulting explanations. In the grander scheme of Artificial Intelligence
LIME is a great step in making machine learning models more approach-
able for the layman, but its lack of consistency makes it an improper fit for
any use cases with serious consequences from the explanations.

Possibilities for further studies would be to investigate if the optimal
amount of perturbations necessary to eliminate the randomness found in
this study can be theoretically calculated. There is already a technique sug-
gested called focused sampling [8], and it would be interesting to study if
its application would lower the randomness of our LIME implementation.
This could also be combined with more research on the distance metric
used for sampling perturbations. In our implementation we do not limit
the distance at which perturbations can be generated, the intuition of which
can be seen in Figure 1. Some experimentation can be done on sampling
perturbation sets with a differing maximum allowed distance to the orig-
inal image, and visualizing if a significant difference can be seen between
each perturbation set.
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