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Abstract
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1 Introduction
A fascinating way in which humans reason is by making defeasible inferences. This means
that we can make inferences that can be retracted later when more information is acquired.
For example, suppose there is a bird named Tweety. On the basis that Tweety is a bird and
that we know that birds usually fly, we infer that Tweety can fly. However, we have good
reason to retract this statement later when we learn that Tweety is a penguin.

Defeasible reasoning is something that we do a lot in our everyday lives, which we could
demonstrate with a few examples of (Strasser and Antonelli, 2001). Imagine we see the
streets are wet, from this we may infer that it has been raining recently. However, when
we later see that the rooftops are dry and recall that this day the streets are usually cleaned,
we will retract this inference. This type of reasoning is called abductive reasoning, which
could be understood as inferring to the best explanation and is one example of defeasible
reasoning. Another example would be when we assume something is true (or false) because
it has not been stated. When making a puzzle about crossing a river, we automatically
assume that there are no bridges or other means of transportation available than stated
(McCarthy, 1981; McCarthy and Hayes, 1981). Similarly, when we store data in databases,
not stating a flight in a flight schedule, simply means there is no flight at that time. We
also find defeasible inferences in scientific reasoning, where we create hypotheses based
on current evidence, which could later be retracted or altered based on newly acquired
evidence (Strasser and Antonelli, 2001).

A vast area in AI research is trying to bridge the gap between human reasoning and auto-
mated inference. Inference plays an important part in arriving at justifiable conclusions.
Many logics have been defined that aim to capture human deductive reasoning. Like de-
ductive reasoning, defeasible reasoning can follow complex patterns. Unfortunately, those
patterns are beyond reach for the logics we use for deductive reasoning, like classical lo-
gic and intuitionistic logic, since by their very nature they do not allow for a retraction
of inferences. This is caused by the fact that these logics are monotonic, which states
that consequences are robust under the addition of information. To capture and represent
defeasible inferences a family of formal frameworks was devised, collectively called non-
monotonic logic (NML). NML’s, like the name suggests, violate the monotony property
(Strasser and Antonelli, 2001).

A notable example of those NML’s are argumentation frameworks, introduced in (Dung,
1995). An argumentation framework is an abstract representation of an argument, it con-
sists of a set of arguments and an attack relation upon them, which means that arguments
can attack each other, just like in a normal argumentation. To determine the acceptability
of a group of arguments Dung introduces semantics and extensions. A semantic is a collec-
tion of criteria and an extension is a set of the arguments that meet the requirements posed
by the semantic. Such an extension is a subset of the original set of arguments. To find
extensions, the labelling approach is often used, originally proposed in (Pollock, 1995).
Simply put, a labelling is an elaboration of an extension, which not only points out which
arguments are acceptable, but also which are unacceptable or uncertain.

Concerning the semantics of argumentation frameworks questions could be posed, bring-
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ing light to the characteristics of each semantic. (Modgil and Caminada, 2009) pose the
following questions that naturally arise from Dung’s definition of argumentation frame-
works and their semantics.

1. Global questions
(a) Does an extension exist?
(b) Give an extension (it does not matter which, just give one).
(c) Give all extensions.

2. Local questions
(a) Is A contained in an extension? (Credulous membership question).
(b) Is A contained in all extensions? (Sceptical membership question).
(c) Is A attacked by an extension?
(d) Is A attacked by all extensions?
(e) Give an extension containing A.
(f) Give all extensions containing A.
(g) Give an extension that attacks A.
(h) Give all extensions that attack A.

In the global questions, we look from the perspective of the entire argumentation frame-
work, while in local questions we look from the perspective of a single argument. Modgil
and Caminada answer the global and local questions by describing the procedures and giv-
ing pseudocode for algorithms that find the labellings for several semantics and prove that
their procedures are correct using argument games and thus answer their respective ques-
tion. They do this for the grounded, preferred, stable and semi-stable semantics. (Camin-
ada, 2010) also provides this for the stage semantics, and (Caminada and Pigozzi, 2011)
describe a procedure to find the ideal and eager labellings.

The research goals of this thesis are as follows. We will start with an overview of argu-
mentation frameworks and their most notable semantics. For each semantic, I will explain
the procedures that find their respective labelling(s). The semantics that will be discussed
are the following. The grounded, preferred, stable, semi-stable semantics as described
in (Modgil and Caminada, 2009), the stage semantics from (Caminada, 2010), the ideal
semantics from (Dung et al., 2006), and the eager semantics from (Caminada, 2007b).
We will then build further upon the work of (Modgil and Caminada, 2009), and provide
procedures that compute labellings for each of these semantics. We will use judgement
aggregation for the procedures of the ideal and eager labellings, as described in (Caminada
and Pigozzi, 2011). These procedures currently have no pseudocode provided by Camin-
ada et al., therefore I will expand on their previous research and provide pseudocode at the
end of those sections. The proof of correctness for all the procedures is included in the
papers above. The final step of this thesis is to use this information to write concrete im-
plementations of these procedures, which is submitted along with this thesis. The concrete
implementation of my algorithms will be written in the programming language C#. The
global question that each implementation should answer is as follows.

4



Give all labellings that satisfy semantic S .

The rest of this thesis will be structured as follows. We begin in Section 2 with an overview
of Dung’s argumentation framework and introduce the necessary theory for the semantics,
extensions and labellings. Then in Section 3, we will look at each semantics individually.
For each semantic, we start by introducing the definition, then look at how this relates to
their respective extension and labelling and follow this up by explaining the implementa-
tion for the labelling algorithm, accompanied by pseudocode. Finally in section 4, we will
end with a reflection on all the semantics and implemented algorithms.

2 Abstract argumentation frameworks
Before we are able to implement and understand the algorithms that compute labellings in
argumentation frameworks we need to have an understanding of the underlying theory and
essential definitions. We will start by looking at Dung’s argumentation frameworks and
their semantics.

The main idea of formal argumentation is that non-monotonic reasoning can be achieved
by constructing and evaluating arguments. An argument expresses one or more reasons
that lead to a proposition, which allows them to be defeasible, namely in the way that the
validity of their conclusions can be disputed by other arguments. Whether a claim can
be accepted or rejected, not only depends on the existence of arguments that support this
claim but also depends on the existence of possible counterarguments, which themselves
can also be attacked by other counterarguments and so on (Baroni et al., 2011).

Nowadays, the abstract argumentation theory of (Dung, 1995) holds a significant role in
formal argumentation. The central concept in this theory are argumentation frameworks,
which can be regarded as a directed graph where nodes represent arguments and arrows
represent an attack relation on the arguments. In contrast to other approaches in formal
argumentation, Dung’s Argumentation frameworks only focusses on the topology of the
arguments. Meaning his approach does not distinguish between the various ways in which
an argument can attack another. Such as undermining, undercutting or rebutting (Koons,
2005). However, argumentation frameworks can be extended to have several different
attack relations. This is for example the case in ASPIC+ (Prakken, 2010), which extends
Dung’s argumentation frameworks and makes use of all three forms of attack.

(Dung, 1995) defines an argumentation framework as follows.

Definition 1 An argumentation framework is a pair AF = (AR, attacks). Where AR is a
set of arguments and attacks is a binary relation on AR, i.e., attacks ⊆ AR × AR.

For two arguments a, b ∈ AR, attacks(a, b) means that argument a is attacking argument
b, and that argument b is attacked by a. Before continuing lets look at a few examples of
argumentation frameworks.
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Figure 1: Example of an argumentation framework. Its set of arguments AR consists of
three arguments a, b, and c. In this AF argument a attacks b and argument b attacks c.

Figure 2: An Argumentation framework with five arguments. Arguments a and b mutually
attack each other and argument b attacks c. The arguments c, d and e form a cycle of
attacks, where c attacks d, d attacks e and e attacks c (Caminada, 2007b).

Figure 3: Another example of an argumentation framework, with five arguments. Here
argument a, b and c form a cycle. Arguments a, b and c attack d, and argument d attacks e
(Caminada, 2010).

2.1 Semantics for argumentation frameworks
Now we know what argumentation frameworks are, a simple question arises. How do
we determine which arguments we should accept and which arguments we should reject?
To determine the acceptability of a group of arguments Dung introduces semantics and
extensions. A semantic is a collection of criteria and an extension is a set of the arguments
that meet the requirements posed by the semantic. Such an extension is a subset of the
original set of arguments (Elaroussi et al., 2022).

To determine the acceptability of arguments in the entire framework, we first need to con-
sider the acceptability of arguments relative to other arguments. To be able to do this
(Dung, 1995) introduces the notion of acceptable arguments relative to a set of argu-
ments.
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Definition 2 An argument a ∈ AR is acceptable with respect to a set S of arguments, (also
called defended by S ) iff for each argument b ∈ AR: if b attacks a, then b is attacked by S .

A way to look at this is that an argument is acceptable to a set of arguments S if it is
defended by this set S itself, i.e. for every attacker of this argument there is an argument
in S that attacks this attacker. In addition to this, it also makes sense that the arguments
we accept should not attack each other. This property is captured by Dung’s principle of
conflict-freeness.

Definition 3 A set S of arguments is said to be conflict-free if there are no arguments a
and b in S such that a attacks b.

Central to Dung’s approach is the idea of an admissible set of arguments. This is achieved
by combining Definitions 2 and 3.

Definition 4 A conflict-free set of arguments S is admissible iff each argument in S is
acceptable with respect to S .

An admissible set of arguments can be regarded as a valid set of arguments, where each
argument is defended by the set itself. There are two main approaches for the semantics of
argumentation frameworks described in the literature: the extension-based approach and
the labelling-approach.

2.1.1 Labelling-based approach

In this section, we give a brief overview of the labelling-based approach, initially intro-
duced in (Pollock, 1995). A labelling assigns each argument exactly one label. Most
commonly used are the labels: IN, OUT and UNDEC. Here the label IN means that the
argument is accepted (meaning it is justified), the label OUT means the argument is re-
jected because it is overruled by another argument, and the label UNDEC means that we
abstain from forming an opinion on whether the argument is accepted or rejected. (Modgil
and Caminada, 2009) define a labelling as stated below.

Definition 5 Let AF = (A,R) be an argumentation framework.

• A labelling is a total function L : A→ {IN,OUT,UNDEC}

• We define:

– in(L) = {x | L(x) = IN};

– out(L) = {x | L(x) = OUT };

– undec(L) = {x | L(x) = UNDEC};

From here on we will represent a labelling as a triple (in(L), out(L), undec(L)). In Fig-
ure 1, a reasonable labelling would be to assign argument a the label IN, as it is not
attacked by any argument. Then we would assign argument b the label OUT , as it is at-
tacked by argument a which is accepted. Then we can assign argument c the label IN, as
it is only attacked by b which is rejected. The resulting labelling would look as follows
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L = ({a, c}, {b}, ∅). Another labelling would be to assign all arguments the label IN, this
labelling seems less reasonable however, as the accepted set has arguments attacking other
accepted arguments, meaning it is not conflict-free. On the other hand, we could assign
all arguments the label UNDEC, which seems excessively cautious as argument a is un-
attacked. To be able to select reasonable labellings, out of all possible labellings, we use
labelling-based argumentation semantics (Baroni et al., 2011).

We will now define what it means for an argument to be assigned a legal labelling. This
definition for legal labellings is meant for admissible labellings, which can be used for
most semantics. By contrast, the definition for stage semantics (3.5) is built upon conflict-
freeness and not admissibility. There we will define the definition for legal labellings for
conflict-free semantics. (Modgil and Caminada, 2009) handle the following definition for
legal labellings in admissibility-based semantics.

Definition 6 Let L be a labelling for AF = (A, R) and x ∈ A, then:

1. x is legally IN iff x is labelled IN and every y that attacks x (yRx) is labelled OUT;

2. x is legally OUT iff x is labelled OUT and there is at least one y that attacks x and
y is labelled IN;

3. x is legally UNDEC iff x is labelled UNDEC, there is no y that attacks x such that
y is labelled IN, and it is not the case that: for all y, y attacks x implies y is labelled
OUT.

The rules above defining legal labellings, aim to capture one’s intuitive understanding of
when arguments should be accepted or rejected. Here it is the case that an argument is IN,
only if all its attackers are OUT . An argument is OUT if it has at least one attacker that
is IN. And an argument is UNDEC if it cannot be IN or OUT . Since arguments can be
legally labelled, they can also be illegally labelled (Modgil and Caminada, 2009).

Definition 7 For l ∈ {IN, OUT, UNDEC} an argument x is said to be illegally l iff x is
labelled l, and it is not legally l.

1. An admissible labelling L is a labelling without arguments that are illegally IN and
without arguments that are illegally OUT.

2. A complete labelling L is an admissible labelling without arguments that are illeg-
ally UNDEC.

Observe that a labelling where all arguments are labelled UNDEC is admissible accord-
ing to this definition. Admissible labellings require good reasons before an argument can
be labelled IN or OUT , but always leave room to abstain from an argument. Complete
labellings however, are stricter as to when an argument should be UNDEC. Complete
labellings are forced to label arguments IN or OUT when they can be and only allow
UNDEC arguments when there are insufficient grounds for accepting or rejecting an argu-
ment (Baroni et al., 2011).
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2.1.2 Extension-based approach

In the extension-based approach, our aim is to identify sets of arguments, called extensions,
which can survive conflict from outside attackers altogether. Collectively they embody a
reasonable position of an autonomous reasoner. As we will focus on labellings in this pa-
per, we can regard an extension simply as the IN-set of a labelling. For a proof that there
is a one-to-one correspondence between labellings and extensions see (Caminada, 2007a;
Caminada, 2011; Caminada and Pigozzi, 2011). Remember however, that just like la-
bellings there exists specific extension-based argumentation semantics, which allows us to
select “reasonable” sets of arguments among all possible ones (Baroni et al., 2011).

For the sake of completeness, I will still provide the definition of the extension for every se-
mantics. Subsequently follow a few more definitions, used and necessary for the extension-
based approach. Extension-based argumentation semantics often use the terms A+, A−, to
denote sets of arguments attacked or defended by a single argument, and use Args+ and
Args− which do the same for sets. These are useful as the acceptability of arguments de-
pends on the interaction with other arguments, and we have no OUT - or UNDEC-set to
place restrictions on. The following terms are defined as in (Baroni et al., 2011).

Definition 8 Let AF = (Ar, att), for A ∈ Ar and Args ⊆ Ar, we write:

1. A− for {B | (B, A) ∈ att};

2. A+ for {B | (A, B) ∈ att};

3. Args− for
⋃

A∈Args A−;

4. Args+ for
⋃

A∈Args A+.

Definitions of extensions often use the expressions maximal and minimal with respect to
set inclusiveness. A maximal set w.r.t set inclusion among a collection of sets, is a set that
is not a subset of some other set in this collection. A minimal set w.r.t set inclusion among
a collection of sets, is a set in the collection that is not a superset of any other set in the
collection. In addition to maximal, a set can also be the greatest set. A set is the greatest
w.r.t set inclusion if it is bigger than everything it can be compared to.

Each labelling can be turned into an extension, which means we have admissible extensions
which are just admissible sets. The rules for admissible labellings and extensions together
are part of admissible semantics, which is the foundation for a lot of the semantics we will
examine next.

3 Semantics and their labelling algorithms
Now that we have had all the preliminary theory we can look at some of the most not-
able semantics of argumentation frameworks. This section will give an overview of the
grounded, preferred, stable, semi-stable, stage, ideal and eager semantics.
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3.1 Grounded semantics
The first semantic we will examine is the grounded semantic, introduced in (Dung, 1995).
The basic idea is to only accept the arguments that one cannot avoid to accept and reject the
arguments that one cannot avoid to reject, and refrain from passing any other judgement
upon the rest of the arguments. This principle is also called taking the most ”grounded”
position, hence the name. By refraining as much as possible we get the most sceptical or
least committed semantics based on complete extensions (Baroni et al., 2011). For any
argumentation framework, there exists exactly one grounded extension.

Grounded semantics can be characterized by a fixed point of the characterization function
of (Dung, 1995), which is defined as follows.

Definition 9 Let AF = (Ar, att) be an argumentation framework and Args ⊆ Ar. The
characteristic function of AF, denoted by FAF is defined as follows: F : 2Ar → 2Ar,
FAF(S ) = {A | A is acceptable with respect to S }.

So, the characteristic function looks for all arguments that are acceptable (or defended) by
set S. Using the characteristic function, we can formulate the definition for the complete
extension of Dung, which is as follows.

Definition 10 A conflict-free set of arguments E is a complete extension iff E = FAF(E).

The grounded extension is then simply the minimal (w.r.t. to set inclusion) complete ex-
tension. This means it is the least fixed point of the characterization function. Thus, we get
the following definition for the grounded extension (Dung, 1995).

Definition 11 The grounded extension of an argumentation framework AF, denoted by
GEAF is the least fixed point of FAF .

This definition signifies that we can build the grounded extension from the ground up,
starting with an empty set, and iteratively apply the characterization function on this set,
until the result set of the characteristic function is the same as the input.

We can take this definition and easily turn it into a definition for a labelling. As the ex-
tension is based on a complete extension, the labelling should be based on a complete
labelling. Since we only want to accept arguments that we can in no way avoid accepting,
we only need to minimize the IN-set of the labelling (which is the extension). Because the
labelling must be complete, placing the restriction of minimizing the IN-set has the result
that the OUT -set is minimal as well, as an argument can only be OUT if it is attacked by
an argument that is IN. This results in the following definition for the grounded labelling
(Modgil and Caminada, 2009).

Definition 12 A labelling L is a grounded labelling iff there does not exist a complete
labelling L′ such that in(L′) ⊂ in(L).

Note that we still get the grounded extension if we minimize the OUT -set of the labelling
instead of the IN-set, or if we maximize the UNDEC-set.
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3.1.1 Procedure for the grounded labelling

Because the grounded semantics is defined as the least fixed point, the procedure to find
the grounded labelling is fairly simple. We just keep applying the characterization function
to find arguments to label IN and then update the OUT -set accordingly.

In the first iteration, we start by looking for arguments that are not attacked, as there are no
arguments labelled OUT . We label all these unattacked arguments IN. Then we can auto-
matically label all arguments attacked by an argument we just labelled IN OUT , as they
are now attacked by an argument in S and therefore no longer acceptable in the grounded
extension.

Then we go to the next iteration, where we repeat this process. We now look for all argu-
ments that are only attacked by arguments that are labelled OUT and label those arguments
IN. Then with the newly IN-labelled arguments, we look for new arguments that are at-
tacked by those IN-labelled arguments and again label those OUT . We repeat this process
until executing an iteration yields the same result as before the iteration. We complete
the labelling by giving all unlabelled arguments the labelling UNDEC. This procedure is
captured in the following algorithm.

Algorithm 1 Grounded Labelling (Modgil and Caminada, 2009)
1: function FindGroundedLabelling
2: L0 ← (∅, ∅, ∅)
3:
4: repeat
5: in(Li+1)← in(Li)∪{x | x is not labelled inLi, and ∀y : if yRx then y ∈ out(Li)}
6: out(Li+1)← out(Li)∪{x | x is not labelled inLi, and ∃y : yRx and y ∈ in(Li+1)}
7: until Li , Li+1
8:
9: Lg ← (in(Li), out(Li), (A) − (in(Li) ∪ out(Li))

10: return Lg

If we apply the algorithm above to the examples in Figures 1, 2 and 3, we get the following
grounded labellings.

• Figure 1: LG = ({a, c}, {b}, ∅). Argument a is not under attack meaning we can label
it IN, this makes b OUT . Then in the second iteration c gets labelled IN, because
of b.

• Figure 2: LG = (∅, ∅, {a, b}). The algorithm ends after one iteration as there are no
arguments that are not under attack.

• Figure 3: LG = (∅, ∅, {a, b, c, d, e}). Again, there are no unattacked arguments.

11



3.2 Preferred semantics
While the standpoint of the grounded semantics is sceptical, we could also consider the
alternative view of accepting as many arguments as possible, we call this a credulous point
of view. For example, when two arguments have a mutual attack relation between them,
like Figure 2, looking from a sceptical point of view, we would decide we can make both
arguments neither IN nor OUT . Hence the grounded labelling would have both arguments
labelled UNDEC. But we could consider accepting one of the mutually exclusive altern-
atives, this results in a labelling where we label one of the arguments IN and the other
OUT . This idea of maximizing the arguments that are accepted is embodied by the pre-
ferred semantics (Baroni et al., 2011). The preferred extension of (Dung, 1995) is defined
as follows.

Definition 13 A preferred extension of an argumentation framework AF is a maximal
(with respect to set inclusion) admissible set of AF.

Every argumentation framework has at least one preferred extension, and there can be more
than one. (Modgil and Caminada, 2009) define its corresponding labelling in the following
manner.

Definition 14 L is a preferred labelling iff L is an admissible labelling such that for no
admissible labelling L′ it is the case that in(L′) ⊃ in(L).

When compared with the definition of the grounded semantics, we now consider admiss-
ible labellings, rather than complete, and change the restriction to maximizing the IN-set,
instead of minimizing it. We also get preferred labellings when we maximize the OUT -set
instead of the IN-set. Because maximal admissible sets (w.r.t. set inclusion) are equivalent
to maximal complete extensions and as the grounded extension is in any complete exten-
sion, we get that the grounded extension is contained in every preferred extension (Baroni
et al., 2011).

To find all the preferred labellings we need to traverse a search tree of labellings. To find
all admissible labellings efficiently, we can use the definitions of Legally IN and OUT to
define a transition step (Modgil and Caminada, 2009).

Definition 15 Let L be a labelling for A f = (A, R) and x an argument that is illegally IN
in L. A transition step on x in L consists of the following:

1. the label of x is changed from IN to OUT

2. for every y ∈ x ∪ {z | xRz}, if y is illegally OUT, then the label of y is changed from
OUT to UNDEC (i.e., any argument made illegally OUT by 1 is changed to UNDEC
in 2)

We can turn this definition into a function transition step, which takes as input L and x and
applies the operations above to return a labelling L′. We can then iterate the function over
a labelling to form a transition sequence, which (Modgil and Caminada, 2009) define as
follows.
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Definition 16 A transition sequence is a list [L0, x1,L1, x2, ..., xn,Ln] with (n ≥ 0), where
for i = 1...n, xi is illegally IN in Li−1, and Li = transition step(Li−1, xi).

• A transition sequence is said to be terminated iff Ln does not contain any argument
that is illegally IN.

• For any terminated transition sequence [L0, x1,L1, x2, ..., xn,Ln], it holds that Ln

is an admissible labelling.

• For any preferred labelling L, it holds that there exists a terminated transition se-
quence [L0, x1,L1, x2, ..., xn,Ln], where Ln = L.

When we combine the properties above with the definition for preferred labellings, we get
that the terminated transition sequences whose final labellings maximize the arguments
labelled IN are exactly the preferred labellings. If we only want to find complete labellings
we can guide the choice of arguments on which we apply the transition step. We do this
by only choosing an argument that is super-illegally IN, when it is available (Modgil and
Caminada, 2009).

Definition 17 An argument x in L that is illegally IN, is also super-illegally IN iff it is
attacked by a y that is legally IN in L, or UNDEC in L.

(Caminada, 2007a) shows that guiding the choice of arguments in this manner still results
in admissible labellings at the end of every transition sequence and that every preferred
labelling has a terminated transition sequence. Meaning we can use super-illegal arguments
to more efficiently traverse the search tree of admissible labellings.

3.2.1 Procedure for preferred labellings

From now on all procedures will be called in the following manner, unless specified oth-
erwise. We start by setting the candidate labellings to the empty set and call the labelling
procedure of the semantic we want, supplying it the all-in labelling, where all arguments
are assigned the label IN. The procedure then alters the candidate labellings and when
finished it will contain all the labellings of the respective semantic.

Algorithm 2 Procedure call (Modgil and Caminada, 2009)
1: function Find Labellings
2: candidate Labellings← ∅
3: Call Labelling Procedure(all-in)
4: return candidate Labellings

We can use the transition step to traverse the search tree of admissible labellings in search
of preferred labellings. To find all preferred labellings we have the following algorithm.
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Algorithm 3 Preferred Labellings (Modgil & Caminada, 2009)
1: function Find Preferred Labellings(L)
2: if ∃L′ ∈ candidate Labellings : in(L) ⊂ in(L′) then return
3:
4: if L does not contain an argument that is illegally IN then
5: for each L′ ∈ candidate Labellings do
6: if in(L′) ⊂ in(L) then
7: candidate Labellings← candidate Labellings − {L′}
8: candidate Labellings← candidate Labellings ∪ {L}
9: return

10: else
11: if L has an argument that is super-illegally IN then
12: x← some argument ∈ L that is super-illegally IN
13: Find Preferred Labellings(Transition Step(L, x))
14: else
15: for each x ∈ L, that is illegally IN do
16: Find Preferred Labellings(Transition Step(L, x))

At every node, we enter the procedure Find Preferred Labellings with the labelling L
that we are currently at. In line 2 we check if there already exists a labelling L′ better than
L. In this case, we prune the search tree and backtrack to select another argument in the
search tree, with the statement return.

In line 4 we check if the transition sequence has ended by checking if there are no argu-
ments that are illegally IN. When that is the case we remove all candidates that become
obsolete by this labelling, as their in-set is no longer maximized (lines 5-7). We then add
this argument to the candidate labellings in line 8. Note that this argument can never be
worse than any existing candidate due to line 2. If the transition sequence has not ter-
minated yet, we apply all possible transition steps in lines 14-16. But if there exists an
argument that is super-illegally IN, then we only need to check this branch, as this still
yields all admissible labellings (lines 11-13).

If we apply the algorithm above to the examples in Figures 1, 2 and 3, we get the following
preferred labellings.

• Figure 1: Lpre f = ({a, c}, {b}, ∅). The same as the grounded labelling.

• Figure 2: Lpre f 1 = ({b, d}, {a, c, e}, ∅), Lpre f 2 = ({a}, {b}, {c, d, e}). Here we have
two options as there is a mutual attack between a and b. When we accept argument
b, we can rule out arguments a, c and e, which leaves argument d which we accept.
When we accept argument a, we can rule out b. This leaves the cycle which we
entirely label undecided, as we cannot accept c, because this would make d OUT ,
which then makes e IN, but doing this would make c OUT . For the same reasons,
we cannot accept d and e.
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• Figure 3: Lpre f = (∅, ∅, {a, b, c, d, e}). This time we have an empty preferred exten-
sion. This is caused by the fact that the only admissible labelling for AF is totally
UNDEC.

3.3 Stable semantics
In the semantics discussed so far, there is the option to abstain from accepting or reject-
ing an argument by assigning them the label undecided. However, it is possible to prefer
a more committed labelling, with no room for indecisiveness or neutrality. This is the
case for the stable semantic, where there are no undecided labelled arguments. This res-
ults in an interesting property of the stable semantics, namely that it is xenophobic. This
means that every argument outside of the stable extension is attacked by an argument in
the stable extension (Baroni et al., 2011). The stable extension of (Dung, 1995) is defined
below.

Definition 18 A conflict-free set of arguments S is called a stable extension iff S attacks
each argument which does not belong to S.

(Modgil and Caminada, 2009) define stable labellings in the following manner.

Definition 19 A complete labelling L is a stable labelling iff undec(L) , ∅.

At first glance, these definitions seem quite different, but because every argument in the
stable extension attacks everything outside it, we get a labelling where all these attacked
arguments are labelled OUT . it is then easy to see that this labelling and extension is
admissible. They are also complete as the UNDEC-set of the labelling is empty. Note
that Definition 19 is stated in terms of complete labellings, which automatically means
that every stable labelling is also an admissible, conflict-free and preferred labelling. The
existence of a stable extension (and labelling) is not guaranteed, as it is possible that all
complete extensions contain undecided arguments (Modgil and Caminada, 2009), see Fig-
ure 3.

3.3.1 Procedure for stable labellings

Because all stable labellings are also preferred labellings, we can easily adapt the previ-
ous algorithm from Section 3.2.1 to only yield labellings where no arguments are labelled
UNDEC. We do this by altering line 2. In addition to this, we no longer need to com-
pare the IN-set with other labellings, as there is no restriction in(L′) ⊆ in(L). Meaning
we can remove lines 5-7, which results in the following algorithm (alterations marked in
yellow).
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Algorithm 4 Stable Labellings (Modgil and Caminada, 2009)
1: function Find Stable Labellings(L)
2: if undec(L) , ∅ then return
3:
4: if L does not contain an argument that is illegally IN then
5: candidate Labellings← candidate Labellings ∪ {L}
6: return
7: else
8: if L has an argument that is super-illegally IN then
9: x← some argument ∈ L that is super-illegally IN

10: Find Stable Labellings(Transition Step(L, x))
11: else
12: for each x ∈ L, that is illegally IN do
13: Find Stable Labellings(Transition Step(L, x))

If we apply the algorithm above to the examples in Figures 1, 2 and 3, we get the following
stable labellings. As every stable labelling is a preferred labelling, all labellings we find
here are also found in 3.2.1.

• Figure 1: Lstable = ({a, c}, {b}, ∅). As the UNDEC-set was empty of this preferred
labelling, we get the same stable labelling.

• Figure 2: Lstable = ({b, d}, {a, c, e}, ∅). In this case, one of the preferred labellings
gets eliminated, as the cycle was labelled undecided. Leaving only one stable ex-
tension.

• Figure 3: As the only preferred labelling was totally UNDEC there are no stable
labellings.

3.4 Semi-stable semantics
As illustrated in the previous section of stable semantics, the restriction of not allowing
undecided arguments causes no labellings in some cases. However, in those cases, we
still would like to have a way to express some form of opinion on the arguments. A
sophisticated idea to achieve this is by passing judgement on the largest possible set of
arguments and leaving as few arguments as possible undecided (Baroni et al., 2011). Semi-
stable semantics do this, proposed in (Caminada, 2006). The definition of (Caminada,
Verheij et al., 2010) for the semi-stable extension is as follows.

Definition 20 Args is a semi-stable extension iff Args is an admissible set where Args ∪
Args+ is maximal (w.r.t.set-inclusion) among all admissible sets.

Semi-stable semantics can be placed between preferred and stable semantics, when we
take into account that every stable extension is also a semi-stable extension, and every
semi-stable extension is also a preferred extension (Caminada, 2007a). When put into a
labelling, we get the following definition from (Modgil and Caminada, 2009).
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Definition 21 L is a semi-stable labelling iff L is an admissible labelling such that for no
admissible labelling L’ is it the case that undec(L′) ⊂ undec(L).

3.4.1 Procedure for semi-stable labellings

As all semi-stable labellings are also preferred labellings, we can take the procedure of
Section 3.2.1 and make some adjustments. We only need to alter lines 2 and 5 to minimize
the UNDEC-set, instead of maximizing the IN-set. The paper of (Modgil and Caminada,
2009) contains a typo where it says that line 5 should be undec(L′) ⊂ in(L). This, however,
will result in wrong labellings. The algorithm that computes semi-stable labellings is as
follows.

Algorithm 5 Semi-Stable Labellings (Modgil and Caminada, 2009)
1: function Find Semi-Stable Labellings(L)
2: if ∃L′ ∈ candidate Labellings : undec(L′) ⊂ undec(L) then return

3: if L does not contain an argument that is illegally IN then
4: for each L′ ∈ candidate Labellings do
5: if undec(L) ⊂ undec(L′) then
6: candidate Labellings← candidate Labellings − {L′}
7: candidate Labellings← candidate Labellings ∪ {L}
8: return
9: else

10: if L has an argument that is super-illegally IN then
11: x← some argument ∈ L that is super-illegally IN
12: Find Semi-Stable Labellings(Transition Step(L, x))
13: else
14: for each x ∈ L, that is illegally IN do
15: Find Semi-Stable Labellings(Transition Step(L, x))

If we apply the algorithm above to the examples in Figures 1, 2 and 3, we get the following
semi-stable labellings.

• Figure 1: Lsemi stable = ({a, c}, {b}, ∅). As there was a stable labelling, we get the
same semi-stable labelling.

• Figure 2: Lsemi stable = ({b, d}, {a, c, e}, ∅). Same as the previous example.

• Figure 3: Lsemi stable = (∅, ∅, {a, b, c, d, e}). In contrast to stable labellings, we now
have a semi-stable labelling for this AF. Which is the same as the preferred labelling.

3.5 Stage semantics
Introduced in (Verheij, 1996) and further developed in (Verheij, 2003), stage semantics is
one of the oldest semantics for argumentation frameworks. Instead of the usual extension-
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based approach, stage semantics were originally stated in the form of pairs (J,D). Here,
J is a set of justified arguments and D is a set of defeated arguments. Although stage
semantics have remained relatively unknown in the literature, we have good reasons to
accept it as one of the mainstream semantics for abstract argumentation, as it implements a
fundamentally different intuition compared to the traditional admissibility-based semantics
discussed in the preceding sections (Caminada, 2010). Despite this alternative notation, it
is still possible to translate it to the extension- and labelling-based approach. This allows us
to provide an algorithm for computing all stage labellings, as shown by (Caminada, 2010).
The definition of Caminada for the stage extensions is as follows.

Definition 22 Let AF = (Ar, att) be an argumentation framework. A stage extension is a
conflict-free set Args ⊆ Ar where Args∪ Args+ is maximal (w.r.t. set inclusion) set among
all conflict-free sets.

When we compare the definitions of semi-stable and stage extensions, we see that instead
of being admissibility based, stage extensions are based on conflict-free sets. Because
every admissible set is conflict-free, we get that every stable extension is also a stage
extension. If there exists at least one stable extension, then it also holds that every stage
extension is a stable extension (Baroni et al., 2011). When we regard stage semantics in
the labelling-based approach, we get the following definition of (Caminada, 2010).

Definition 23 Let A f = (Ar, att) be an argumentation framework. L is a stage labelling
iff L is a conflict-free labelling where UNDEC is minimal (w.r.t. set inclusion) among all
conflict-free labellings.

Where maximizing Args ∪ Args+ for stage extension Args is the same as minimizing
the UNDEC set, since UNDEC = Ar − (Args ∪ Args+). Because of the shift from
admissibility to conflict-freeness, we need to redefine what it means for arguments to be
IN or OUT in a conflict-free labelling. This is done as follows in (Caminada, 2010).

Definition 24 Let AF = (Ar, att) be an argumentation framework. A conflict-free la-
belling is a labelling L such that for every A ∈ Ar it holds that:

• if Lab(A) = IN, then ∀B ∈ Ar : (B att A ⊃ Lab(B) , IN).

• if Lab(A) = OUT, then ∃B ∈ Ar : (B att A ∧ Lab(B) = IN).

The only difference is that for an admissible labelling the first clause is stronger, as it does
not allow arguments labelled IN, to be attacked by an argument labelled UNDEC. The
definition for illegally IN and OUT then also changes. We can redefine them in the fol-
lowing manner.

Definition 25 Let L be a labelling of argumentation framework AF = (Ar, att).

1. An IN-labelled argument A is called illegally IN, iff
∃B ∈ Ar : (B att A ∧ L(B) = IN) ∨ ∃B ∈ Ar : (A att B ∧ L(B) = IN).
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2. An OUT-labelled argument A is called illegally OUT, iff
¬∃B ∈ Ar : (B att A ∧ Lab(B) = IN).

This redefinition also alters the working of the transition step of Definition 15, although it
stays the same on the surface, we use legally IN and OUT to determine which arguments
need to change their label. Caminada then proceeds to prove that a terminated transition
sequence with the new definitions results in a conflict-free labelling and that every stage
labelling is found at the end of some terminated transition sequence.

3.5.1 Procedure for stage labellings

As stage labellings are very similar to semi-stable labellings, we can alter the code of Sec-
tion 3.4.1 to find stage labellings. The only difference between the two being the definition
of (il)legally IN and OUT . As this definition has changed, we can no longer make use of
arguments that are super-illegally IN, meaning we can remove lines 10-13. This yields the
following algorithm.

Algorithm 6 Stage Labellings (Caminada, 2010)
1: function Find Stage Labellings(L)
2: if ∃L′ ∈ candidate Labellings : undec(L′) ⊂ undec(L) then return
3:
4: if L does not contain an argument that is illegally IN then
5: for each L′ ∈ candidate Labellings do
6: if undec(L) ⊂ undec(L′) then
7: candidate Labellings← candidate Labellings − {L′}
8: candidate Labellings← candidate Labellings ∪ {L}
9: return

10: else
11: for each x ∈ L, that is illegally IN do
12: Find Semi-Stable Labellings(Transition Step(L, x))

Note that the definitions of illegally IN on lines 4 and 11 have changed. Also remember
that the transition step takes into account the definition of legally IN and OUT , hence the
transition step also needs to be altered.

If we apply the algorithm above to the examples in figure 1, 2 and 3, we get the following
stage labellings.

• Figure 1: Lstage = ({a, c}, {b}, ∅). In this case the change from admissible to conflict-
free, causes no difference.

• Figure 2: Lstage = ({b, d}, {a, c, e}, ∅). Same for this example. Here the cycle is
influenced by argument b, only allowing d to be labelled IN.
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• Figure 3: Lstage1 = ({c, e}, {a, d}, {b}), Lstage2 = ({b, e}, {c, d}, {a}), Lstage3 = ({a, e},
{b, d}, {c}). This AF suddenly has three stage labellings, as opposed to one semi-
stable labelling. This is the case, because in the cycle we can label either of the
three arguments IN, which was not the case in admissible labellings.

3.6 Judgement aggregation
Till now all semantics considered were from the perspective of a single agent, but what if a
group of agents had different views and needed to arrive at a consensus. Assume we have
a group of people that all have their own opinion on the arguments of an argumentation
framework. The group tries to form an opinion together on which arguments to accept
and they try to accept as much as possible. They start by examining what they all agree
and disagree on and check whether this position is still defensible. If this is not the case,
they water it down by abstaining from accepting and rejecting some arguments. They keep
abstaining until their position is defensible (Baroni et al., 2011).

There are two types of judgement aggregation. The first is sceptical judgement aggregation,
which is explained above. The other is credulous judgement aggregation, but here the idea
is that it is not a problem to accept or reject arguments that are not accepted or rejected
by each member of the group, as long as the private opinion of each group member is not
directly against the group outcome (Caminada and Pigozzi, 2011). In this thesis, we will
only look at the procedure for sceptical judgement aggregation.

To define a procedure for sceptical judgement aggregation we need to know what it means
for a labelling to be less, equally or more committed than another labelling. This is defined
in (Caminada and Pigozzi, 2011) as follows.

Definition 26 For two LabellingsL1 andL2 of argumentation framework AF = (Ar, Atts),
we say that:

1. L1 is more or equally committed than L2, L1 ⊑ L2, iff
in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2)

2. L1 is less or equally committed than L2, L1 ⊑ L2, iff
in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2)

We call a labelling bigger if it is more committed than another labelling, smaller if it
is less committed than another labelling, and the biggest if it is the most committed la-
belling.

3.6.1 procedure for sceptical judgement aggregation

First, we need a procedure for the initial step of the group stage, where we initially ac-
cept unanimous accepted arguments and reject unanimous rejected arguments. We call
this procedure the sceptical initial aggregation operator (SioAF). This procedure looks as
follows.
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Algorithm 7 Sceptical Initial Aggregation Operator (SioAF)
1: function SioAF(Labs)
2: Linit ← (∅, ∅, ∅)
3:
4: for each argument x ∈ A do
5: if argument x ∈ in(L),∀L ∈ Labs then
6: in(Linit)← x ∪ in(Linit)
7: else if argument x ∈ out(L),∀L ∈ Labs then
8: out(Linit)← x ∪ out(Linit)
9: else

10: undec(Linit)← x ∪ undec(Linit)
11:
12: return Linit

The next step in the procedure is to water the initial labelling down until it is admissible.
This is done by the contraction function. The contraction function relabels arguments from
IN or OUT to UNDEC. (Caminada and Pigozzi, 2011) define it as follows.

Definition 27 Let Labellings be the set of all possible labellings of argumentation frame-
work AF = (Ar, att). The contraction function is a function CAF : Labellings × Ar →
Labellings such that CAF(L, A) = (L − (A, IN), (A,OUT )) ∪ (A,UNDEC).

Turning this function in an algorithm, yields the following.

Algorithm 8 Contraction Function: (CAF)
1: function CAF(L, x)
2: Li+1 ← (∅, ∅, ∅)
3: in(Li+1)← in(Li) − {x}
4: out(Li+1)← out(Li) − {x}
5: undec(Li+1)← {x} ∪ undec(Li)
6: return Li+1

We now need to iterate over this function until the result is an admissible labelling. We call
this chain of functions a contraction sequence, which is defined in (Caminada and Pigozzi,
2011) as follows.

Definition 28 Let L be a labelling of argumentation framework AF = (Ar, att).
A contraction sequence from L is a list of labellings [L1, . . . ,Lm] such that:

1. L1 = L,

2. for each j ∈ {1, . . . ,m} : L j+1 = CAF(L j, A), where A is an argument that is illegally
IN or illegally OUT in L j, and

21



3. Lm is a labelling without any illegal IN or illegal OUT.

See (Caminada and Pigozzi, 2011) for a proof that the end of the contraction sequence
results in the biggest admissible labelling. Finally, all that is left to do is turn this into
an algorithm that performs the contraction sequence, we call this procedure the sceptical
aggregation operator (SoAF).

Algorithm 9 Sceptical Aggregation Operator: (SoAF)
1: function SoAF(Labs)
2: L0 ← SioAF(Labs)
3: Lm ← Iterate Contraction Sequence(L0)
4: return Lm

5: function Iterate Contraction Sequence(L)
6: if L does not contain any argument that is illegally IN or illegally OUT then
7: return L
8: else
9: x← some argument that is Illegally IN or Illegally Out in L

10: Ln ← CAF(L, x)
11: return Iterate Contraction Sequence(Ln)

Now we can use the procedure SoAF to compute the ideal and eager labellings in the fol-
lowing sections.

3.7 Ideal semantics
Ideal semantics were originally proposed in (Dung et al., 2006). The idea for the ideal
semantics is to be slightly more sceptical than only taking the intersection of all preferred
extensions. The reason for this being, that the intersection of all preferred extensions might
not be an admissible set itself. This is demonstrated in (Caminada, 2007b). The definition
for the ideal extension by Caminada, 2007b is as follows.

Definition 29 The ideal extension is the greatest (w.r.t. set-inclusion) admissible set that
is a subset of each preferred extension.

The definition for ideal labellings as described in (Baroni et al., 2011) is as follows.

Definition 30 Let AF = (Ar, att) be an argumentation framework. The ideal labelling of
AF is the biggest admissible labelling that is smaller or equal to each preferred labelling.

3.7.1 Procedure for ideal labellings

As the ideal labellings are acquired using judgement aggregation, we need to have a new
procedure call for this algorithm.
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Algorithm 10 Ideal Labelling
1: function Find Ideal Labelling
2: candidate Labellings← ∅
3: Find Preferred Labellings(all-in)
4: preferred Labellings← candidate Labellings
5: ideal Labelling← SoAF(preferred Labellings)
6: return ideal Labelling

If we apply the algorithm above to the examples in Figures 1, 2 and 3, we get the following
ideal labellings.

• Figure 1: Lideal = ({a, c}, {b}, ∅). This example has only one preferred labelling,
hence we get the same ideal labelling.

• Figure 2: Lideal = (∅, ∅, {a, b, c, d}). Here the ideal labelling is different from
the preferred labellings. As the intersection was already empty, we get a totally
UNDEC labelling.

• Figure 3: Lideal = (∅, ∅, {a, b, c, d, e}). Same as in the first example.

3.8 Eager semantics
An alternative approach that is very close to ideal semantics is that of eager semantics, in-
troduced in (Caminada, 2007b). Remember that the ideal extension is the (unique) biggest
admissible (and complete) subset of each preferred extension. The eager extension is the
(unique) biggest admissible (and complete) subset of each semi-stable extension. This
makes eager semantics the most credulous unique status semantics in the literature (Baroni
et al., 2011).

The definition for the eager extension is as follows Caminada, 2007b.

Definition 31 The eager extension is the greatest (w.r.t. set-inclusion) admissible set that
is a subset of each semi-stable extension.

Again, we can take this definition and translate it into a definition for the labelling-approach.

Definition 32 Let AF = (Ar, att) be an argumentation framework. The eager labelling of
AF is the biggest admissible labelling that is smaller or equal to each semi-stable labelling

Just like the ideal extension, there exists exactly one eager extension for every argumenta-
tion framework.

3.8.1 Procedure for eager labellings

We only need to slightly alter the procedure of 3.7.1 to apply the sceptical aggregation
operator on the semi-stable labellings, instead of the preferred labellings.
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Algorithm 11 Eager Labelling
1: function Find Eager Labelling
2: candidate Labellings← ∅
3: Find Semi-Stable Labellings(all-in)
4: semi-stable Labellings← candidate Labellings
5: eager Labelling← SoAF(semi-stable Labellings)
6: return eager Labelling

When we apply the algorithm above to the examples in Figures 1, 2 and 3, we get the
following eager labellings.

• Figure 1: Leager = ({a, c}, {b}, ∅). This example yields the same result as for semi-
stable labellings, since there was only one.

• Figure 2: Leager = ({b, d}, {a, c, e}, ∅). Here we also get exactly the semi-stable
labelling.

• Figure 3: Leager = (∅, ∅, {a, b, c, d, e}). The same here.

4 Conclusions
Since the introduction of Dung’s theory of formal argumentation, various semantics have
been devised for abstract argumentation. With this thesis, I aim to provide a basic over-
view of the most notable semantics and give a complete overview of how to implement
the algorithms that find the respective labellings for each semantic. We saw that a lot of
the semantics are closely related, often based on the principles of completeness, admiss-
ibility and conflict-freeness. The main difference between a lot of the semantics is the
restriction placed upon complete or admissible labellings. The table below demonstrates
how admissibility-based semantics can be expressed by placing different restrictions on
complete labellings.

Table 1: Describing admissibility based semantics in terms of complete labellings (Baroni
et al., 2011, p. 23).
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Another interesting way to see the relation between the semantics is by examining the on-
tology of argumentation semantics. We observed for example that every stable labelling
is also a semi-stable labelling and that every semi-stable labelling is also a preferred la-
belling. Figure 4 depicts a graphical overview of an ontology of argumentation semantics.
Note that the same relations hold in extension-based semantics. The figure does not in-
clude eager labellings, but those could be put at exactly the same place as ideal labellings,
meaning that every eager labelling is also a complete labelling.

Figure 4: An ontology of labelling semantics (Baroni et al., 2011, p. 24).

The semantics in this paper are not the only semantics for argumentation frameworks. This
overview could be extended by adding for example the robust, stage2 and CF2 semantics.
Another possibility is examining how the semantics featured in this thesis behave in infin-
ite argumentation frameworks, or one could define procedures that calculate extensions in
extended argumentation frameworks with several attack relations. There is also the possib-
ility for some new semantics to be devised.

The final step of this thesis was to turn the procedures into concrete and running algorithms.
I am happy with the results of the algorithms I wrote and learned a lot while researching
and describing these semantics. Explaining them is one thing but the joy you get when the
algorithm finally works as intended after debugging it is indescribable. I hope the reader
also learned a lot about argumentation frameworks and gets just as excited as I was to start
implementing them.
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