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Chapter

Introduction

7= ASE-BASED REASONING (CBR) involves comparing a problem to prior cases
d| to guide decision-making and draw conclusions (Ashley, 1992). This type

S Q are constrained to abide by precedent cases according to the stare decisis
| principle. In these systems, attorneys compare current disputes to past cases
to construct arguments, while judges use past cases to justify and explain their conclusions.
More recently, CBR is found in data-driven machine learning systems, which rely on datasets
of input-output pairs to produce output for new input in a way that appropriately generalizes
the previously seen data. This has been compared to the way in which courts abide by
precedent (Cyras et al., 2016; Prakken & Ratsma, 2022).

It comes as no surprise, then, that CBR has been a focal point of the literature on artificial
intelligence (A1) & law. A prototypical example in this line of work is the HYPO computer
program, designed to generate legal arguments about who should win a dispute on trade
secret law (Ashley, 1991; Rissland & Ashley, 1987). It does so chiefly on the basis of
citations of prior cases called precedents. Cases are represented by the use of factors—in
the words of Ashley (1991, Section 2):

Factors [...] are generalizations. Unlike rules, they do not specify necessary
and sufficient conditions for a conclusion. Instead, they designate collections
of facts, commonly observed in cases, that tend to strengthen or weaken a
plaintiff’s argument in favor of a conclusion, such as a legal conclusion that
the plaintiff has a trade secret.

It is difficult to define exactly what a trade secret is, and so factors are used to describe
aspects of the situation at hand which make the case stronger or weaker for the party
claiming to have the trade secret. A few examples of factors in this domain are:

¢ The extent to which the information is known to outsiders.

* The value of the information to the owner of the information, and to competitors.

* The amount of effort or money expended by the owner on developing the information.
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The HYPO program can generate a 3-ply legal argument for both sides of a dispute, by
sequentially analogizing, distinguishing, and rebutting citations of precedent cases, on the
basis of similarities and differences in the factor representations of the precedent cases and
some novel problem situation. This innovative use of factors as a knowledge representation
device, on the basis of which precedents can be compared and contrasted with novel fact
situations, has become an essential aspect of many subsequent works.

Several programs akin to HYPO were developed in its wake. What could be considered its
immediate successor was the CATO program—an intelligent learning environment designed
to teach case-based legal reasoning to law students (Aleven, 2003; Aleven & Ashley, 1997).
In many ways, CATO is comparable to HYPO: It builds arguments for either side of a legal
dispute by citing precedent cases, which are represented using factors. However, in contrast
to HYPO, the CATO program constructs multi-case arguments organized around issues—the
key legal questions that arise from the facts of a case, and that courts often address when
explaining their decisions. Such arguments are constructed by cATO through the use of
middle-level normative background knowledge for the domain of law under consideration,
which is represented as a factor hierarchy. The idea of such a hierarchy is that the factors
that are used to represent cases provide support or opposition to higher-level normative
concepts called abstract factors. For example, the factor that “the information under
consideration in a trade secrets dispute is not known outside of the plaintiff’s business” has
influence on the more abstract factor that this information is valuable, which in turn bears
on the legal issue of whether the information is a trade secret. Legal reasoning, according
to this model, proceeds in a stepwise fashion from the lower-level factors through the
higher-level factors, ultimately deciding on the legal issues, which then form the basis of a
decision for either the plaintiff or the defendant. As HYPO pioneered the use of factors as a
knowledge representation device for cases, so did CATO pioneer the use of factor hierarchies.
Continuing this line of work, the 1BP and vJAP programs were presented by Bruninghaus
and Ashley (2003) and Grabmair (2017), developed for the purpose of predicting legal case
outcomes, and both of which operate on the basis of factor hierarchies.

Aside from spurring the further development of programs designed to produce legal
arguments, or even to predict case outcomes, HYPO has also inspired work of a more
theoretical character. In particular, a line of work developed which focused on giving a
formal account of precedential constraint—the way in which precedent cases constrain
future decision-making according to the stare decisis principle. Notably, building on the
reason-based logic of Hage and Verheij (1994) and the formal theory of legal CBR by
Prakken and Sartor (1998), Roth (2003) represented cases using a logical language and
formulated a fundamental a fortiori principle of constraint. This principle roughly states
that in a novel fact situation the same decision should be reached as in a precedent case, if
the novel fact situation has equal-or-more support for that decision than the precedent case
did, as measured in terms of their factor representations. Concurrently, Horty (2004, 2011)
concisely isolated this same principle in his result model (RM) of precedential constraint,
again using a factor-based representation of cases. The rRM, and extensions thereof, have
been influential in the literature on formal precedential constraint, and are foundational to
this thesis.
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1.1 A theory of a fortiori case-based reasoning

The rRM describes the type of reasoning performed by a decision-maker, such as a court
or a judge, when it tries to adhere to past decisions called precedent cases. The model
describes when a new decision is, or is not, consistent with respect to the precedents. In
other words, it normatively describes the way in which a set of precedents constrains future
decision-making. The RM works on the basis of a knowledge representation using factors,
which, as mentioned, are legally relevant fact patterns that are assumed to favor either a
decision for the plaintiff or for the defendant of the case.

Example 1.1. Consider, as an example, the decision of a judge on whether to release
a subject on bail. Bail is a sum of money that the defendant must pay to the court as a
guarantee that they will appear at their trial—if the defendant does not appear, the bail is
forfeited. The decision to grant bail is influenced by several factors: Is the person at risk of
recidivism? Do they have a history of appearing for trial? Do they have strong communal
ties? Let us assume, for the sake of simplicity, that these are the only relevant factors to
consider. To come to a decision on whether to release the defendant on bail, the judge
will then weigh the answers to these questions, each of which either support or oppose
the conclusion to grant bail. In this example, the decision to grant bail is opposed by the
presence of a recidivism risk, whereas it is supported by a history of appearance and strong
communal ties. The situation can be depicted graphically as follows, where a dashed line
indicates opposition and a solid line indicates support:

Bail

e ‘ \ (1.1.1)

Recid Appear Ties

Now, suppose that the judge has previously decided to grant bail to a person who was not
at risk of recidivism, and had strong communal ties, but did not have a history of appearing
for trial. Then, a fortiori, the judge should also grant bail to a defendant sharing these same
characteristics, with the exception that they do have a history of appearing for trial. This
obligation is called precedential constraint, and it is what the RM is designed to formalize.

The rRM generalizes the situation described in Example 1.1. It assumes that a decision
is made for one of two sides of a dispute, say a plaintiff and a defendant, based on two
sets, Pro and Con, containing factors supporting or opposing a decision for the plaintiff,
respectively. A fact situation is described as a pair (X, Y) of subsets X < Pro and Y < Con,
indicating which of the factors apply in the fact situation. The RM prescribes a formal
principle of a fortiori constraint in this setting: Once a fact situation (X, Y) is decided for
the plaintiff, any fact situation (X', Y’) with X € X’ € Pro and Y’ € Y < Con should also be
decided for the plaintiff. A dual principle applies to decisions for the defendant.

The rM is elegant in its simplicity—but in many instances it is too simple (Bench-Capon,
2024; Canavotto & Horty, 2023b; Horty, 2011, 2019). In particular, some shortcomings
of its factor-based representation of cases have been pointed out, three of which we will
now discuss. The first is that not all legally relevant information can be captured as a
binary proposition, as it may be multivalued. As a matter of fact, HyPo did allow for the
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representation of multivalued information in the form of what its authors called dimensions,
but many of the subsequent works that sprung from HYPO, such as CATO, only used factors.
To account for multivalued information, Horty (2019) presented an extended version of
the rm which uses a knowledge representation that allows the legally relevant facts to take
values in ordered sets, also called dimensions. For the purpose of comparison we will refer
to this version as the dimensional result model (DRM).

Example 1.2. To apply the RM to the domain discussed in Example 1.1 we should assume
that its factors are binary, meaning they either apply or do not apply in any particular
situation. However, it is easy to see that in practice it could be beneficial to employ a
more fine-grained representation to describe these factors. For example, the factor Appear,
which corresponds to a history of appearing for trial, could also be described as the relative
frequency of past trial appearances, which clearly carries more information. Likewise, we
might imagine that that the recidivism risk factor Recid is quantified as a number ranging
from 1 (lowest) to 10 (highest), rather than as a binary “risk or no risk” judgment.

In the pDRM, dimensions are assumed to be ordered, and this order expresses the
preference that values of the dimension have towards either of the two possible outcomes
of a case: A value in a dimension is “greater than” another if it provides greater support for
the plaintiff. In other words, in Horty’s model, values do not directly favor an outcome, but
instead may be more or less in favor of an outcome compared to other values. Cases in
the DRM are modelled as assignments of values to all the dimensions describing the legal
domain under consideration, and precedential constraint is defined using the same a fortiori
principle that is used for the plain RM: An outcome is forced for a side by a precedent case
if the novel fact situation has equal-or-greater support for that side.

A second shortcoming of the RM, as also pointed out by Horty (2011), is that in practice
factors often have a hierarchical structure, which the RM does not take into account. A
court uses this hierarchical structure to move from low-level factors through a series of
intermediate concepts, called abstract factors, before arriving at some final conclusion.
This hierarchical structure was utilized by CATO to construct multi-case arguments for
a conclusion. The rRM, on the other hand, makes a simplifying assumption that the
precedential constraint proceeds directly from the base-level factors to a decision for either
of the two possible case outcomes, based on the comparison with a single precedent case.

Example 1.3. The factors of Example 1.1, depicted in (1.1.1), can be understood as fitting
into a larger factor hierarchy, by recognizing that a recidivism risk assessment itself follows
a weighing of pro and con factors. Much research has been done on the factors influencing
recidivism—see e.g. Yukhnenko et al. (2020) for a recent meta-study. Examples of such
factors include: Does the person have a criminal record? Are they male? Did they obtain a
high school diploma? Appending these factors to the graph depicted in (1.1.1) we obtain
the following factor hierarchy, culminating in a bail decision:

Bail

-
-
-
-
-
-
-

Recid Appear Ties (1.1.2)

~
~
~
~
~
~
~

Record Male Education
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Thirdly, and lastly, we note that the representation of cases used by the RM assumes
that every factor either applies or does not apply—but in practice it might be unknown,
or irrelevant, whether a factor applies. Examples of this arise naturally in the context of
factor hierarchies, where precedential reasoning involves multiple steps, moving through
intermediate concepts to an eventual decision. Modeling this process involves representing
partial information, wherein the status of higher-level concepts may not (yet) be determined.

Example 1.4. Consider the factor hierarchy depicted in (1.1.2). Initially, a judge deciding
whether to grant bail to a defendant would be presented with information on some, or
all, of the lowest level factors, such as whether the person has finished high school. A
representation of this initial situation should not yet contain information on whether the
person presents a recidivism risk. Based on the initial information, the judge may decide
to assess the recidivism risk, and then come to a bail decision. Alternatively, the judge
might decide, for example, that a lack of communal ties and a history of nonappearance
already provide sufficient reason to deny bail, and forego a recidivism risk assessment. The
knowledge representation framework should be able to describe these various scenarios.

The rM concisely formulates a principle of a fortiori constraint for cases using a
factor-based representation. However, this representation makes simplifying assumptions
that do not always apply in practice. This leads us to the first of our research questions:

Research question 1: Can we extend the result model of precedential constraint
to a general theory of a fortiori case-based reasoning? In particular:

A How can incomplete, dimensional, and hierarchical information be incorpo-
rated in the knowledge representation, and what should the corresponding
notion of constraint be?

B How can the models developed in response to 1A be formally compared,
and what are their differences and similarities?

C What is the relation between this theory and other reasoning formalisms,
such as logic?

Part I of this thesis will be devoted to answering Research question 1 and its subquestions.
Question 1A is addressed in the first three chapters of this part. In Chapter 2 we review the
RM in detail, laying the groundwork for subsequent chapters, and we address Question 1A
regarding the representation of incomplete information. In Chapter 3 we discuss the
dimension-based extension of the RM, the DRM, and position it in a broader context using
order theory and many-sorted logic, to answer Question 1C. Then, in Chapter 4, we propose
an extension of the RM that incorporates factors with hierarchical structure. In Chapter 5 we
introduce the notion of dimension hierarchy—simply put, a set of hierarchically structured
dimensions—and propose an extension of the HRM which operates on a dimension hierarchy
instead of a factor hierarchy. We call the resulting model the DHRM. After each model is
introduced, it is formally compared to the other ones, in order to answer Question 1B.

The rM and the DrRM have also met with criticism with regards to their applicability
to modeling the common law doctrine of precedent (see e.g. Horty, 2011; Rigoni, 2018).
However, the RM and its extensions can still be usefully applied more generally as a model
of a fortiori reasoning—particularly in the context of A1, as we will see in the next section.
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1.2 Applications in artificial intelligence and law

Much present-day research is focused on increasing the interpretability of Al systems, i.e.,
to enable humans to understand why a complex Al system behaves in the way it does. This
research is partially done in response to mounting concerns that uninterpretable algorithms,
so-called black box A1, are making high-impact decisions—such as those with legal, social,
or ethical consequences—in an unfair or irresponsible manner. A prominent example of
such a system is the proprietary software Correctional Offender Management Profiling
for Alternative Sanctions (ComPAS), developed by Northepointe (now called Equivant) for
automatic risk assessment of various forms of recidivism, which has seen nationwide use
in the United States (Equivant, 2019). High-profile allegations by Angwin et al. (2016) that
COMPAS racially discriminates in its decision-making process have led to a host of follow-up
research and discussions. Since then, significant problems in the analysis by Angwin
et al. (2016) have been identified (Barenstein, 2019; Dieterich et al., 2016; Flores et al.,
2016)—but as Rudin et al. (2020a) point out, this situation is symptomatic of the larger
problem that the use of such black box systems is obstructing independent assessment of
bias, regardless of the veracity of the allegations in this particular instance.

Many different kinds of solutions have been proposed, among which those to make Al
inherently more transparent (Rudin, 2019), to formulate appropriate regulations (Wachter
et al., 2017), to monitor the systems and measure bias over time (Kurita et al., 2019), and
to develop post-hoc explanation methods, in which the black-box system is analyzed after
it has been trained and little to no access to the way it functions is assumed. There are
in turn many types of post hoc explanation methods, see e.g. the work by Koh and Liang
(2017), Ribeiro et al. (2016), and Wachter et al. (2018).

Another approach is to consider the problems and solutions studied in the field of A1 &
law, of which explainability has always been a core aspect (Atkinson et al., 2020; Verheij,
2020). Indeed, we have seen several applications of models of case-based reasoning from
the A1 & law literature to the improvement of interpretability, and value alignment of Al
systems (Canavotto & Horty, 2022; Cyras et al., 2016, 2019; Liu et al., 2022; Prakken
& Ratsma, 2022). The idea of a CBR explanation of a decision is to provide an analogy
between the decision and relevant training examples. Proponents of the cBR-explanation
approach, such as Nugent and Cunningham (2005), argue that explanations of this form are
natural to humans: they are simple, people are well-acquainted with reasoning by analogy,
and these explanations draw on real evidence in the sense that training examples typically
serve as a gold standard that a machine learning system adheres to.

The dimension-based result model (DRM), which we discussed in the previous section,
was conceived primarily as a formal model of legal CBR, but since its inception it has found
applications to research on interpretable A1, based on the analogy of training examples as
cases: Just as a court draws on precedent cases to decide on a novel fact situation, machine
learning systems draw on training data to decide on novel data points. Based on this
analogy, Prakken and Ratsma (2022) combined the DRM with HYPO style argumentation to
develop an a fortiori case-based argumentation (AF-CBA) method for justifying the decisions
of data-driven machine learning systems. The AF-CBA method conceptually tries to mimic
the arguments used by lawyers with respect to case law. In such discussions, precedent
cases are cited by both sides as a means of arguing that the present (focus) case should be
decided similarly as the precedent. Both sides may attack the other’s citations, by pointing
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to important differences between the citation and the focus case; and they may defend
themselves against such attacks, by pointing to aspects of the focus case which compensates
for these differences.

Example 1.5. We consider, as an example, the aforementioned COMPAS program, which
is designed to predict recidivism, and has been at the center of debates on the fairness of
decisions made by black-box Al systems. Suppose, for the sake of simplicity, that it makes
decisions based on three input features of a person:

Recid

/ | el (1.2.1)

Priors Age Education

Here, Priors represents a number of prior convictions, Age the age of the person, and
Education a binary feature indicating whether the person finished high school. The number
of priors is positively correlated with a high-risk assessment, as indicated by the solid line
above; while the person’s age and level of education is negatively correlated, as indicated
by the dashed line.

The comPAs program was trained to predict recidivism based on a dataset of such
features together with labels indicating whether a recidivism offense took place (Brennan
et al., 2009). Given a particular input-output pair, called the focus case, generated by
COMPAS, the AF-CBA method can generate an explanation of the focus case in the form
of an argumentative dialogue. This dialogue starts with the citation of a most-similar
precedent in the dataset used to train the model—the precedent case. The AF-CBA method
then proceeds by comparing the focus case to this precedent. If the precedent and focus
case share the same outcome, the explanation emphasizes their similarities and addresses
any differences by arguing that these do not significantly affect the decision. For instance,
if the focus case involves a younger individual but still results in a high-risk prediction, the
explanation might argue that the higher number of prior convictions compensates for the
mitigating effect of age. Conversely, if the precedent has an opposite outcome, the method
identifies relevant differences and uses those to justify the opposing outcomes.

The method by Prakken and Ratsma (2022) uses the DRM to interpret a machine learning
dataset as a set of precedent cases, on the basis of which to generate explanatory dialogues.
In other words, the data used to train the Al is taken as the set of precedent cases. Another
option is to take a set of decisions made by the AL, and use that as the set of precedent to
compare decisions to. In that setting, the notion of precedential constraint formulated by
the DRM can be used as a measure of the internal consistency of the decisions made by the
AI system.

Example 1.6. Consider again the set of features depicted in (1.2.1) of Example 1.5.
Suppose that a 20 year old with 2 prior offenses and no high-school diploma was deemed to
be at a high risk of recidivism by coMPAS. According to the a fortiori constraint principle
of the DRM, this sets a precedent which constrains future decision-making: Anyone who is
at or below the age of 20, has 2 or more prior offenses, and has not completed high-school,
should be deemed at high risk of recidivism. Any decision made by compAs which violates
this constraint is considered inconsistent by the model, and given a set of decisions by
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coMPAS the relative frequency of inconsistent decisions within it can be used as a concrete
measure of its decision fairness.

In a similar vein, DRM has also been implemented as part of a human-in-the-loop
decision support system for classification of fraudulent web shops at the Dutch National
Police Lab A1 (Odekerken & Bex, 2020; Odekerken et al., 2023b). To facilitate this and
similar applications, Odekerken et al. (2023b) have further developed the theory of the
DRM by adding formal notions of justification, stability, and relevance. These notions allow
the model to be applied to fact situations in which the values of the dimensions are not
known precisely, but are only known to lie within a certain subset.

In sum, models of CBR that stem from the literature on Al & law are increasingly being
applied in the context of artificial intelligence, to analyze, justify, or even make data-driven
decisions. These applications lead us to the second set of research questions:

Research question 2: How can the models of a fortiori precedential constraint be
applied to artificial intelligence? In particular:

A How can the theory of a fortiori precedential constraint be used to formalize
compensation and citability, to aid in justifying data-driven decisions?

B How can we write capable and efficient computer implementations of these
models?

C Is precedential constraint useful as a measure of data-driven decision consis-
tency?

Part IT of this thesis will be devoted to answering Research question 2 and its subquestions.
To start, we consider the application of the DRM to post-hoc explanation in the AF-CBA
style of Example 1.5. We review the method in detail, and propose extending it with
formal notions of compensation and citability, to answer Question 2A. In Chapter 7 we
turn to Question 2B. Specifically, we draw on the logical theory which will be developed
in Chapter 3 to implement the DRM in the satisfiability modulo theories (SMT) solver
73 (de Moura & Bjgrner, 2008). This implementation is then put to work to analyze
the consistency of several machine learning datasets. Lastly, to answer Question 2C
in Chapter 8, we use Z3 to implement an extended version of the DRM which will be
developed in Chapter 5, and use this implementation to analyze a dataset of recidivism
risk assessments made by the COMPAS program, and measure the internal consistency of its
decisions.

1.3 Thesis outline

This thesis is divided into two parts and contains a total of 9 chapters, including this one.

Part I: A Theory of a Fortiori Case-Based Reasoning In this part we will answer
research question 1, regarding the development of a general theory of a fortiori reasoning.
In Chapter 2 we review the RM, upon which the rest of the chapters in this part will be
build. In Chapter 3 we review the DRM, and position it within the broader literature on
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order theory and many-sorted logic. In Chapter 4 we present an extension of the RM which
operates on a factor hierarchy, as opposed to a flat set of factors, as a first step towards
answering research question 1. Lastly, in Chapter 5, we will present an extension of
the HRM, called the dimensional hierarchical result model (DHRM), which operates on a
dimension hierarchy, as the answer to research question 1.

Part II: Applications in Artificial Intelligence and Law In this part we will answer
research question 2, regarding the implementation and application of models of a fortiori
precedential constraint to Al and law. In Chapter 6 we will review the AF-CBA method for
post-hoc explanations and propose extensions to it. In Chapter 7 we will implement the DRM
using the Z3 sMT solver and analyze the consistency of several machine learning datasets.
In Chapter 8 we will implement the DHRM and use it to analyze a dataset of recidivism
risk assessments made by the COMPAS program, measuring the internal consistency of its
decisions.

Conclusion Lastly, in Chapter 9, we conclude the thesis by summarizing and discussing
our answers to the research questions, and outlining directions for future work.
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A Theory of a Fortiori
Case-Based Reasoning

Es wird . . . im Sinne der Bestrebungen unserer Gesellschaft liegen,
wenn in ihren Tagungen die alte Wahrheit . . . Wiirdigung findet, daf}
...dem Anwenden das Erkennen vorausgehen muB.

—Max Planck, Das Wesen des Lichts, 1919

FORTIORI REASONING was described by Horty through his result model (Rm)
of precedential constraint. Part I of this thesis is devoted to extending the
RM, in order to progressively develop increasingly expressive models of a
fortiori case-based reasoning. We begin by extending the RM, which uses
a plain factor-based representation of cases in the style of HYPO, to make
use of a hierarchical factor-based representation in the style of cATO; we call the resulting
model the hierarchical result model (HRM). Then, just as Horty extended his RM to the
DRM in order to account for dimensional information, we extend the HRM to account for
dimensional information; we call the resulting model the dimensional hierarchical result
model (DHRM). We motivate and illustrate the applicability of these various a fortiori
models by use of a running example from the legal domain of criminal sentencing. More
specifically, we consider the tasks of judging recidivism risk and granting bail. We show
that a fortiori reasoning is applicable to these tasks, and requires the use of a knowledge
representation incorporating both dimensional and hierarchical information. Criminal
sentencing is a highly relevant domain for our purposes—decisions surrounding criminal
sentences have the potential to greatly affect peoples’ lives, and Al is increasingly being
used to complement or even replace human decision-making for these tasks.
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Modeling Factor-Based
Constraint

of precedential constraint.! In Section 2.1 we explain the concept of factors
through the use of a running example based on the legal domain of criminal
sentencing. We then formalize the knowledge representation used by Horty’s
model in Section 2.2, and subsequently give his notion of constraint in
Section 2.3. In Section 2.4, we generalize Horty’s theory by allowing fact situations to
assign a truth value to only a subset of the factors of the given domain, and adapt the notion
of constraint to this setting. We refer to this as the “result model” (RM), and it will serve as
the basis for the models we present in the subsequent sections. In Section 2.5 we consider
the notion of case base consistency, which states that the cases in the case base adhere to
the constraint they induce. We then consider in Section 2.6 whether the type of reasoning
represented by the RM is monotonic or not. We consider two types of monotonicity; that in
the addition of new cases to the case base, and that in the addition of new information to the
focus fact situation. We find that the RM is monotonic with respect to both of these types
of additions. As the last of our considerations on this topic, we compare Horty’s (2011)
result model to his reason model in Section 2.7. We hope that this bridge between these
two models might allow our findings regarding the result model to find applications to the
reason model, which has continued to receive attention in the literature (Bench-Capon,
2024; Canavotto & Horty, 2023a, 2023b). We end the chapter in Section 2.8 with some
concluding remarks.

2.1 An example of factors

We illustrate the various kinds of models discussed in this work through a running example
in the criminal sentencing domain. In this case, we consider a judgment of whether a

IThe material in this chapter—with the exception of Sections 2.5 and 2.7, which are new—stems from van
Woerkom et al. (2025).
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convict is at low or high risk of recidivism. Much research has been done on the factors
influencing recidivism; see e.g. the work by Yukhnenko et al. (2020) for a recent meta-study.
Below is a graphical representation of a number of such factors:

Recid _

S o

Record Male Education Married - Age

The factors in the bottom row respectively indicate whether the defendant has a criminal
record (Record), is male (Male), has a high-school diploma (Education), is married
(Married), and is over the age of 21 (Age). A solid line between a factor and the Recid
node indicates that the presence of that factor suggests a higher risk of recidivism, while
a dotted line indicates that its presence suggests a lower risk. For instance, having a
criminal record indicates a higher risk, while being married indicates a lower risk. Now,
suppose a 30 year-old unmarried male defendant with a pre-existing criminal record and
no high-school diploma was judged to be at high risk of recidivism. Given our assumption
that older people tend to recidivate less, it follows a fortiori that a defendant who is on all
accounts similar, but is 20 years old instead of 30, should also be judged to be at high risk
of recidivism.

2.2 Knowledge representation

A factor is a propositional variable, i.e. a variable which is either true (denoted t) or
false (denoted f). We denote factors using lowercase letters p,q,r, etc. The domain
is modeled by a factor partition F = Prou Con, where Pro and Con are sets of factors
satisfying Pron Con = @. A fact situation is a valuation of F, i.e. a function X : F — {t,f}
assigning true or false to every factor in F. We use upper case letters X, Y, Z etc. to denote
fact situations, and write X E p for X(p) =t and X F —1p for X(p) =f. We may combine
statements of this form with set notation, so for instance by X F {p, 7q, r} we mean X k p,
XkE-g,and XEr.

Cases are decided for either of two sides: the plaintiff, denoted by 7, or the defendant,
denoted by 8. Each factor p € F has a preference for exactly one of the two sides, which is
modeled by two sets Pro and Con, which represent the factors supporting or opposing a
decision for the plaintiff, respectively. If a factor is pro-z (6) we assume it is con-6 (),
and so we write Pro(m) = Con(6) = Pro and Con(r) = Pro(6) = Con. It is often useful to
just speak of a generic side s € {m,d}, in which case we denote the “other” side by §; so
7=6and 5 =7. A caseisa pair (X, s) with X a fact situation and s a side; a case base €
is a finite set of cases. The notation and terminology of plaintiff, 7, and defendant, 4, is
standard in the literature. However, throughout this work we will also use the RM (and its
extensions that we discuss in Chapters 3,4, and 5) to model scenarios that do not necessarily
involve a plaintiff and defendant. For instance, in our running example of a recidivism risk
assessment (2.1.1) the decision represents a judgment by a court of whether a person is at
high or low risk of recidivism, and not a decision for a plaintiff or a defendant. For this
reason we may also use the neutral denotations 0 and 1 to indicate the outcomes 6 and
7, respectively. We note that these are also the labels often used in the setting of binary
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classification—a task commonly encountered in machine learning.

Our method of representing cases differs slightly in form compared to that used by Horty
(2011), who models a fact situation X as a subset X € F of the factors. However, formally
speaking, there is no difference between these two approaches—it is a well-known result
in set theory that the powerset Z2(F) of a set F is in bijection to the set {t, £F of all
functions with signature F — {t,f}. In other words, whether we define a case in terms of a
function X : F — {t,f} or a subset X < F does not formally make any difference. Of course,
semantically we could argue that “assigning false” (X (p) = f) to a factor carries a different
meaning than when it “is absent” from a fact situation (p € X). We will return to this
discussion about undefined factors in Section 2.4 below.

2.3 Constraint

We can now define how a decision on a new case is constrained based on a given case base
of past decisions. For this, we define the notion of forcing a decision in fact situation given
a case base.

The idea behind the RM is that a decision of a fact situation X for a side s constitutes a
balancing of the pro-s factors in X against the con-s factors in X. The support that factors
provide for an outcome is defeasible and unquantified, which makes it difficult to weigh
sets of pros against sets of cons. However, once a set of pros was deemed to outweigh a set
of cons, any superset of the set of pros should also outweigh any subset of the set of cons.
This intuition is formalized by the following definition.

Definition 2.1. Let X be a fact situation and € a case base, then the decision of X for m is
forced by €, denoted €, X F m, if and only if there is a case (Y, ) € € such that:

e forall p e Pro: if Y = p then X E p, and

 forall peCon: if XE p then Y E p.

Likewise, the decision of X for & is forced by €, denoted €, X E 0, iff there is a case
(Y, ) € € such that:

e for all pe Con: if Y F p then X E p, and
e forall pePro: if Xk pthen Y E p.

Example 2.2. We demonstrate Definition 2.1 through an example based on the factors
in (2.1.1). Let (Y,1) be a case with Y F {Record, "Male, "Education, Married, ~Age},
and where 1 represents a judgment of high recidivism risk. In other words, the case (Y, 1)
represents a decision that the person described as fact situation Y was deemed to pose a
high recidivism risk by some decision-maker. When does this precedent constrain the risk
assessment of a new fact situation X? Unfolding the definition we find:

{(Y, D}, XE1
iff o for all p € {Record,Male}: if Y E p then X F p, and

« for all p € {Education, Married,Age}: if XEpthen Y Ep
iff X E {Record, "Education, —"Age}.
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Indeed, when X matches the truth status of all the factors that were indicative of a recidivism
risk in Y, then X should also be judged to be at a high risk. The truth status in X of
the other factors is relevant—for example, with respect to the comparison with Y it does
not matter whether X is married or not, because if X is not married then this will only
further strengthen the case for a “high risk” assessment. However, if X fails to match
the status of, say, Record, then it may be argued that X has less support for a “high risk
assessment’—compared to Y—and thus the precedent case (Y, 1) should not constrain X.

Note that the RM could in principle be used as a classifier which assigns outcomes to
a new fact situation X: assign outcome 1 if €, X E 1, and assign outcome 0 if €, X F 0
(we will expand on this idea in Section 3.10.3). However, the intended purpose of the
RM is not to weigh pros and cons against each other, but rather to normatively prescribe
an a fortiori principle to some such weighing method. For example, given the factors
depicted in (2.1.1), the intended purpose of the RM is not to classify a given defendant as
low or high risk. Instead, it prescribes to a decision-maker, such as a court, what it means
to make recidivism risk assignments in accordance with the precedent and the a fortiori
principle. It is on this basis that the RM can be used in the context of AlL: by interpreting
features as factors, and training data as precedent cases, the decisions of an Al system can
be compared to the constraint induced by the RM. Such a comparison will be the primary
focus of Chapter 7 in Part II of this work.

2.4 Partial fact situations

The knowledge representation used by the RM requires that for any particular fact situation
we specify, for each factor, whether it applies in the situation or not. This is not always an
appropriate assumption, because in practice it may be unknown what the truth value of a
factor is. It may be argued that, for the subset representation, the meaning of the absence
of a factor from the subset is that it is unknown whether it applies or not. However, this
interpretation has the same problem of not being sufficiently fine-grained—if, for example,
the Married factor of (2.1.1) is absent from a subset, does this represent that the defendant
is unmarried, or that it is not known whether the defendant is married?

The need for a more fine-grained representation will become all the more pressing
once we move from a plain set of factors to a factor hierarchy in Chapter 4, and so we
will consider a modification to the knowledge representation of the RM that accounts for
unassigned factors. We do so by considering partial fact situations, in the sense of partial
functions on sets. A partial function of a set A to a set B is a function f: C — B for some
subset C < A. Given a partial function on a set A we write dom(f) < A for the subset
of A on which f is defined. Applying this definition to valuations yields the definition
of a partial fact situation X: a valuation that is only defined on some subset G < F of
factors. Note that, according to this definition, a situation X which is defined on all factors
(so dom(X) = F) is also considered a partial fact situation. To differentiate these from
strictly partial fact situations we will call such fact situations complete. We maintain the
same notation regarding applicability of factors in partial fact situations: we write X E p
when X(p) =t, and X F = p when X(p) =f. In addition, we write X E ?p to denote the
expression p ¢ dom(X), so X E ?p holds if and only if X is undefined on p. Note that for
partial fact situations the equivalence X F —p < X ¥ p no longer holds. In turn, we can
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now consider cases (X, s) where X is a partial fact situation, which represents a decision
made by the court on the basis of incomplete information. We will say a case is partial, or
complete, if its underlying fact situation is.

The use of partial fact situations and cases raises the question if, and if so how,
Definition 2.1 of constraint should be altered. Suppose Y is a partial fact situation which
was decided for side s, so (Y, s) is a partial case, when does the decision (Y, s) induce
constraint on a partial focus fact situation X? Our philosophy when it comes to constraint
induced by a partial case can be summarized as follows: if the status of a factor in the
precedent case added strength to the side for which the case was decided, then the status of
that factor should be matched in the focus fact situation in order for constraint to apply. We
note three consequences of this view in particular:

* Factors on which the precedent case is undefined are inconsequential to the notion of
constraint. We interpret a decision of Y for s as meaning that the factors in dom(Y)
were sufficient to arrive at a decision for s, and so only the factors in dom(Y) should
have an influence on the constraint induced by (Y, s).

 If p is a pro-s factor such that Y E p, then p added strength to the side s and so
it should also apply in the focus fact situation in order for it to be said to have
equal-or-greater support for side s. In particular, if X is undecided on p then (Y, s)
should not induce constraint on X.

 Similarly, if p is a con-s factor such that Y & —1p, then the status of p added support
for s, and so it should be matched by X. In particular, if X is undecided on p then
no constraint should be induced.

In principle, Definition 2.1 can be interpreted without problems when the focus fact
situation X and the precedent case (Y, s) it involves are partial. However, in light of the
aforementioned considerations, the resulting notion of constraint does not align with our
intuitive notion of how constraint should work. The misalignment arises when we consider
a con-s factor p, as illustrated in Table 2.1. The condition in Definition 2.1 for such a
factor states that, in order for (Y, s) to induce constraint, the implication “if X & p then
Y E p" should hold. In particular, when X E p and Y E ?p then this implication does not
hold, whereas intuitively we do not want to exclude constraint in such a scenario. Similarly,
when X E ?p and Y F —1p then constraint may still possibly be induced, while intuitively
we want to exclude it. The rest of the possible scenarios do align with our intuition.

The solution we thus propose is to instead use the implication “if Y = —p then X E —p"
for the con factors. As shown in Table 2.1 this solution does align with our intuition. In
sum, this results in the following definition of constraint for partial fact situations.?

Definition 2.3. Let X be a partial fact situation and € a case base of partial cases, then
the decision of X for m is forced by €, denoted €, X E m, if and only if there is a case
(Y, m) € € such that:

e for all p € Pro: if Y  p then X F p, and
e for all pe Con: if Y E —1p then X E —p.

2This is an updated version of the definition used by van Woerkom et al. (2023a, 2023b), which contains the
implication “if X  p then Y  p” for the con factors of the precedent case.
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Table 2.1: An overview of the differences for two possible prerequisites for a partial precedent case
(Y, s) to induce constraint on a partial fact situation X. Here p is an arbitrary con-s factor, and every
row represents a possible value assignment by the fact situations X and Y.

Y(p) X(p) ifXEpthenYEp ifYE-pthenXE-p

t t v v

f v v
t ? v v
f t X X

L f Y A

f ? v X
? t x v
? f N v
? ? v v

Likewise, the decision of X for 0 is forced by €, denoted €, X E ¢ iff there is a case
(Y,0) € € such that:

e for all pePro: if Y & -p then X F —p, and
e forall peCon: if Y F p then X F p.

Note that for complete fact situations the implication for con factors is just the
contrapositive of the one used in Definition 2.1; e.g., for the decision of X for = we have:

“f XEpthenYEp” iff “fYEpthen XEp” iff “if YE-pthen XEp”.

This means that for complete fact situations Definitions 2.1 and 2.3 coincide, which allows
us to use the same notation for both definitions.

Remark 2.4. An alternative version of Definition 2.3 is obtained by using the implication
“if X = p then Y F p” for the con-s factors. For the sake of comparison we will refer to this
version as option (2) of the definition, and the current version—using the implication “if
Y E —p then X E —p”—as option (1).

Example 2.5. We reconsider Example 2.2 with respect to Definition 2.3. Suppose it is
not known whether Y is married or not, so Y = ?Married, but that Y was nevertheless
deemed to be a high recidivism risk, so we have a precedent case (Y, 1). Should this case
be able to induce constraint on a new fact situation X satisfying X = Married? According
to Definition 2.3 the answer is yes—since Y ¥ "Married, there is no further requirement
placed on X with regards to the Married factor. In this regard, the situation is identical to
the scenario in which Y was in fact married, i.e. it is as though we assume that Y = Married.
Similarly, suppose that the age of X is unknown, whilst it is known that Y is younger than
21; so X E?Age and Y E —Age. Again we ask: should (Y, 1) be able to constrain a decision
for X? This time the answer is no—since Y = —1Age is a reason to decide Y for 1, the fact
that X F ?Age means that X does not match this support for a high-risk judgment and so
constraint is excluded. In this regard, the situation is identical to the scenario in which X
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was not over the age of 21, i.e. it is as though we assume that X = Age. These observations
with regards to assumptions about the truth values of the undefined factors in the precedent
and focus fact situations are part of a general pattern, to which we will return in Section 2.6.

2.5 Consistency

We now briefly turn to an important notion in the work of Horty (2011, 2019), which is
that of consistency: decisions are consistent with a case base if and only if they are in
agreement with the constraint it induces. First we give Horty’s notion of consistency for
the RM.

Definition 2.6. A case base € is strongly inconsistent if it contains a case (X, ) such that
€,X E 6, or if it contains a case (Y,0) such that €, Y E m; otherwise it is weakly consistent.

Example 2.7. We illustrate this notion by reconsidering Example 2.2. Suppose Z is a
fact situation with Z = {Record, Male, “Education, “Married, 7Age}. This means Z is
in all aspects indicative of high recidivism risk. If, in spite of this, Z was deemed to be
at a low risk of recidivism, we get a case base {(Y,1),(Z,0)}. We can then compute that
{(Y,1),(Z,0)}, Z E 1 because Z = {Record, "Education, 7Age}. This means {(Y, 1), (Z,0)}
is strongly inconsistent in the sense of Definition 2.6: Z was deemed to be at a low risk,
even though Y was deemed to be at a high risk and the factors in Z make a stronger case
for a high risk assessment.

We have added the qualifiers “strong” and “weak” for the sake of comparison with a
second possible definition of consistency, which is defined as follows.

Definition 2.8. A case base € is weakly inconsistent if there exists a fact situation X such
that €, X Em and €6, X E 0; otherwise, it is strongly consistent.

Note the difference between Definitions 2.6 and 2.8: the former quantifies only over
cases within the case base ¥, while the latter quantifies over all possible fact situations. The
use of the strength qualifiers in these definitions is justified by the following proposition.

Proposition 2.9. Strong inconsistency implies weak inconsistency.

Proof. Suppose (X,m) € 6 and €, X E . Any case forces its own outcome so 6, X E 7,
which means we have found a fact situation X satisfying the desired requirements. O

The contrapositive of Proposition 2.9 states that strong consistency implies weak consistency.
So far, no distinction has been made in the literature between Definitions 2.6 and 2.8.
Presumably, this is because for complete fact situations they coincide—as we now show.

Proposition 2.10. Let € be a case base consisting of complete cases, then € is strongly
inconsistent iff it is weakly inconsistent.

Proof. By Proposition 2.9 it remains to show the direction from right to left. If € is weakly
inconsistent then this means there is a fact situation X such that ¢,X Ex and €,X E 6.
So, there exists a case (Y, ) € € forcing the decision of X for 7, and a case (Z,0) € €
forcing it for 6. We now show that €,Y E §, so that € is indeed strongly inconsistent. We
do this by proving that
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e for all p e Pro: ZE —p implies Y & —p, and
* forall pe Con: ZE p implies Y & p.

Let p € Pro such that Z E =p. Assume for the sake of contradiction that Y # —1p. Then, as
Y is complete, we have Y E p. Since (Y, 7) forces the decision of X for 7 this means that
X & p. However, since (Z,6) forces it for §, we have that Z &= —p implies X F —p, which
contradicts X F p, and so Y E —p. The second implication can be proven using the same
reasoning, so that indeed ¥¢,Y E §, meaning ¥ is strongly inconsistent. O

The proof of Proposition 2.10 relies essentially on the assumption that € only contains
complete fact situations; indeed, case bases that contain partial cases can be both weakly
inconsistent and not strongly inconsistent.

Proposition 2.11. Weak consistency does not imply strong consistency.

Proof. We exhibit a case base that is both weakly consistent and weakly inconsistent.
Consider a factor partition F given by Pro = {p, g} and Con = {r,s}. Let X, Y, Z be fact
situations for F such that X = {p, q,r,s}, Y E{p,?q,r,2s}, and Z E {?p, q,?r, s}. Now, we
claim the case base € = {(Y, ), (Z,6)} satisfies the desired properties. Firstly, it is weakly
consistent because €, Y ¥ 6 and €6, Z ¥ n. For example, the only way ¢, Y E § could hold
is if (Z,0) forces the decision of Y for 8, in order for which we should have Y E s; but
Y is undecided on s. However, ¥ is also weakly inconsistent, as X k {p, s} entails both
¢, XEmand €,XF6. O]

The counterexample in Proposition 2.11 may seem synthetic. In a real setting, this
would have the form that a court would weigh the pro and con factors p and r in favor of
the plaintiff (in absence of g and s) while weighing g and s for the defendant (in absence of
p and r). This need not introduce any inconsistency with earlier decisions, but it introduces
an “inconsistency waiting to happen.” It would be interesting to see a real-life example
of a case base that is both weakly consistent and weakly inconsistent. However, the data
analyses we will perform in Part II will only use complete case bases and so the difference
between the two notions of consistency discussed in this section will not play a role there.

2.6 Monotonicity

Since the notion of constraint can be thought of as a type of entailment relation we
can consider whether it is monotonic: can deductions be invalidated by the addition of
information? This is a property which characterizes the defeasibility of inferences, and
plays an important role in the study of reasoning and argumentation (Strasser & Antonelli,
2019). Classical logic is well-known to be monotonic, which is formally captured by the
implication that if ® - ¢ and ® € @' then @' - ¢, for any formula ¢ and sets of formulas
®,®'. This property runs contrary to everyday reasoning, and so the monotonicity of
classical logic has spurred much research on nonmonotonic logic and defeasible reasoning
in general (Koons, 2017; Strasser & Antonelli, 2019).

One relevant adaptation of the statement of monotonicity for the RM is the question
whether the forcing of a decision of a fact situation for a particular side can be invalidated
by an expansion of the case base. It is not hard to see that the RM is indeed monotonic in
this sense, as the following proposition shows.
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Proposition 2.12. If€,X E s and € <9 then 9, X E s.

Proof. To show 2,X E s we need (Y,s) € 2 satisfying the appropriate conditions of
Definition 2.3. Since €, X E s there is such a (Y, s) € €, and therefore by € < 2 we have
(Y, s) € D as desired. O

Example 2.13. We have seen an example of Proposition 2.12 in Example 2.7: {(Y,1)},ZE 1
because Z = {Record, "Education, —Age}, and the addition of (Z, 0) to the case base {(Y, 1)}
does nothing to interfere with this derivation, so we also have {(Y, 1), (Z,0)}, Z E 1.

However, the use of partial fact situations introduces a second form of monotonicity
for consideration: can deductions be invalidated by adding information to the focus fact
situation? We define the addition of information in this case using the notion of function
extension.

Definition 2.14. Given a function f: A— B and a subset C £ A we define the restriction
flc:C—Bof ftoCby flc(x)= f(x) for xe C.

Definition 2.15. A function f is an extension of a function g, denoted by g c f, if
dom(g) < dom(f) and f[gom(g) = §-

Since we consider fact situations to be just functions, these concepts are directly applicable
to fact situations. In this context, a fact situation Y extends a fact situation X if they agree
on all factors in dom(X), but where Y is possibly defined on more factors than X. So, we
can regard an extension Y of a fact situation X as containing more information than X,
and ask whether the notion of constraint is monotonic with respect to the addition of this
information. Again, this is indeed the case.

Proposition 2.16. Ler X and Y be fact situations such that X € Y, then €, X & s implies
€6,Y E s for se{m,6}.

Proof. We consider the case where s = 7; the other case is similar. Suppose €, X F 7,
then there is (Z, ) € 6 such that for all p € Pro: Z & p implies X & p; and for all p € Con:
Z E —p implies X E —p. We show that the same implications hold for Y, so that €,Y En
as desired. Note that since, X € Y, X E p implies Y E p, and hence Z E p implies X E p
implies Y E p, for any p € Pro; the case for p € Con is analogous. O

Remark 2.17. The phrasing of Proposition 2.16 relies on the use of partial fact situations—
if a fact situation is defined on all values, meaning it assigns true or false to each factor,
then there is no way in which additional information can be added to it. It may be argued
that there is a difference here with respect to the representation of fact situations used
by Horty (2011), where a fact situation X is given as a subset X < F (cf. the discussion
in Section 2.2). We could then ask whether ¢, X E s and X € Y implies 6,Y E s, and
indeed this implication does not hold. However, Horty (2011) does not specify the meaning
of the absence of a factor from a fact situation, so p ¢ X could mean either that p explicitly
does not hold in X, or that it is unknown whether p applies in X. In the former case, the
addition of p to X does not constitute an addition, but rather a modification of information
to X—the ‘truth value’ of p is changed from false to true. This would not align with the
usual interpretation of monotonicity in logic; for example, ® U {-p} I- ¢ does not imply
® U {p} F ¢ in general. Therefore, we feel this further distinction made by partiality of
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fact situations is required to discuss monotonicity in the addition of information to fact
situations.

Remark 2.18. It is interesting to note that for option (2) of the definition of constraint (see
Remark 2.4), the notion of constraint is still monotonic in the case base, but nonmonotonic
with respect to the addition of information to fact situations. This can be understood by
looking at the row in Table 2.1 corresponding to the scenario where X (p) is undefined, and
Y E —p. With option (2), constraint is not excluded in this scenario. Extending the fact
situation X to Z (so X € Z) with Z & p would mean constraint is excluded, as illustrated
by the fourth row in the table. This pattern, where options (1) and (2) give different results
with respect to monotonicity of constraint, continues in the hierarchical version of the
result model which we introduce in the next section (cf. Remark 4.15).

As an application of monotonicity, we will now formalize the observation made in
Example 2.5 with regards to our treatment of undefined factors in Definition 2.3 of
constraint, which can be phrased informally as follows. Given an outcome s and a precedent
case (Y, s), the pro-s factors that are undefined in Y are treated as if they were false, and
the con-s factors that are undefined in Y are treated as if they were true. Conversely, in a
focus fact situation X the pro-s factors that are undefined in X are treated as if they were
true, and the con-s factors are treated as if they were false. That this is true can be partially
read off from Table 2.1: the rows in which Y (p) is undefined are identical to the rows in
which Y (p) is false (with respect to the condition “if Y E —p then X E —p”), and the same
holds for X(p). We will now phrase and prove this formally.

Let X be a fact situation, s € {7r,5} an outcome, and define a fact situation X _ by:

X (p)=

=S

{t if X(p) = torif p € Con(s) \ dom(X), 2.6.1)

f if X(p) =forif pePro(s)\dom(X).
Note that X € X and that X is complete, meaning dom(X ) = F. We start with a lemma.

Lemma 2.19. For p € Pro(s), if X & p then X E p; for p € Con(s), if X, F —p then
XEp.

Proof. Let p € Pro(s) and suppose X F p. By (2.6.1) this means that either X = p or
p € Con(s) \dom(X). This latter option contradicts the assumption that p € Pro(s), and so
indeed X k= p. The reasoning for the second implication follows the same pattern. O

Let X and Y be some fact situations. We have the following propositions.

Proposition 2.20. {(Y,s)}, X E sifand only if {(Y ., )}, X E s.

i

Proof. For the left-to-right direction, we assume that {(Y, s)}, X E s. Now, note that by
Lemma 2.19 we have that for all p € Pro(s), Y = p implies Y & p, and so X  p by the
assumption that {(Y, s)}, X E s. In the same vein Lemma 2.19 shows that for all p € Con(s),
Y E-pimplies X F —p and so indeed {(Y , s)}, X I 5. The right-to-left direction follows
readily from Y € Y ; for example if p € Pro(s), then Y = p implies Y (F p andso X = p
by assumption. O

Proposition 2.21. {(Y,s)}, X E s if and only if {(Y,9)}, X F s.
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Proof. Left-to-right is an instance of Proposition 2.16. For the other direction, suppose that
{(Y,9)}, X Fs. Now if p € Pro(s) and Y F p, then X = p by assumption and so X  p by
Lemma 2.19. The case for p € Con(s) is similar, and so we indeed have {(Y, )}, X Es. [

Lastly, we show that Propositions 2.20 and 2.21 also hold for case bases. To this end,
let € be a case base, and define € ={(Y ,s) | (Y,s) € 6}.

Theorem 2.22. €, Xk sifandonlyif €,X Fs.

Proof. For left-to-right, suppose that €, X E s; then there is some (Y, s) € € such that
{(Y, )}, X F s. By Propositions 2.20 and 2.21 we thus have {(Y , $)}, X F s, and so since
{(Y,,8)} €€ we get €, X = s from Proposition 2.12. The other direction is analogous. [

Theorem 2.22 shows that any instance of partial constraint can be understood as an
instance of complete constraint, in which pro-s factors are taken to be false, and undefined
con-s factors are taken to be true. In this sense, our approach to partial constraint can be
seen as assigning default truth values to undefined factors, relative to an outcome s. Such
default values have played a role in the study of nonmonotonic logics (Strasser & Antonelli,
2019, Section 3.4), but a further comparison between our definitions and default values in
logic is beyond the scope of this work.

Example 2.23. We turn once more to the set of recidivism factors in 2.1.1. Suppose Y
was a fact situation with Y F {?Record, Male, “Education, ?Married, 7Age}. Furthermore,
suppose Y was deemed to pose a recidivism risk, so that we have a case (Y, 1). Proposi-
tion 2.20 tells us Y induces the same constraint as its completion (Y,1). Applying the
definition in (2.6.1) we see that Y, = {=Record, Married}. In other words, our proposed
definition of constraint treats (Y,1) as if Y assigned true to the Married factor, and false
to the Record factor. The same holds for a focus fact situation X satisfying, for example,
X  {?Record, "Male, Education, ?2Married, Age}; Proposition 2.21 states that X is forced
for outcome 1 by a precedent case if and only if X, is forced by that precedent case, and
X, E {7Record, Married}. Note, however, that this situation is reversed with respect to
constraint for outcome 0: we then have X, = {Record, "Married}.

Remark 2.24. For option (2) of Definition 2.3 a similar result holds, but then both pro-s
and con-s are interpreted as being false, rather than just the pro-s factors.

2.7 The reason model

In addition to the result model Horty (2011) introduced a second model, called the reason
model. It expands on the result model by supplementing the definition of a case with a
reason for the decision, in the form of a subset of the factors pro the outcome of the case.
In this thesis the focus is on the result model and not on the reason model, because the
former is more readily applied to Al-related purposes. Nevertheless, the reason model has
continued to receive attention in the literature, and in particular in the context of computable
normative reasoning (Bench-Capon, 2024; Canavotto & Horty, 2022, 2023a, 2023b). In
this section, as the last of our considerations on the topic of factor-based contraint, we
investigate the relation between the result and reason models. We recall the definitions of
the reason model, and show that its associated notion of consistency is interdefinable with
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that of the result model. By relating the two models, we hope that our findings regarding
the result model in the forthcoming chapters may be of use to work on the reason model.

For this discussion we will use the same knowledge representation as the one discussed
in Section 2.2, except that we will now use the subset representation of fact situations (see
the discussion in Section 2.2). In other words, a fact situation is now a subset X € F of the
factors, meaning that a factor is deemed to apply in X if and only if it is an element of X.
Given a fact situation X € F and an outcome s we write X(s) = X nPro(s) for the set of
pro-s factors that apply in X.

Definition 2.25. A reason for an outcome s is a subset U < Pro(s). A reason applies in a
fact situation X when U < X.

Definition 2.26. A result case is a pair (X, s) consisting of a fact situation X and an
outcome . A reason case is a triple (X, U, s) such that (X, s) is a result case and U a reason
for s that applies in X. A result (reason) case base is a finite set of result (reason) cases.

If confusion is unlikely to arise then we may simply speak of a case (base) rather than of a
result or reason case (base).

Intuitively, a result case (X, s) represents a decision that the factors in X(s) outweigh the
factors in X (3). A reason case (X, U, s) contains an additional reason U, which represents
that the pro-s factors in U were already sufficient to outweigh the con-s factors in X. For
the sake of comparison we restate the definition of constraint and consistency for the subset
representation of cases.

Definition 2.27. Let € be a case base for the result model, then the outcome of a fact
situation X is forced for outcome s by €, denoted €, X s, when there is a case (Y,s) € €
such that Y (s) € X(s) and X(5) € Y (5). A case base for the result model is inconsistent if it
contains a case (X, s) € € such that €, X E §, and consistent otherwise.

A case base € is inconsistent when it contains a case (X, s) that was decided for side s,
while also containing a precedent (Y, §) that forces a decision of X for the other side 5. Note
that this witnessing precedent case will, by definition, have its own outcome forced for s by
the case (X, s). This shows that inconsistency can be quantified in terms of inconsistent
pairs, as shown in the following proposition.

Lemma 2.28. A case base € for the result model is inconsistent iff it contains a pair of
cases (X, s),(Y,3) € € such that X(s) € Y(s) and Y (5) € X(3).

The inconsistency of a reason-model case base is defined somewhat differently, at least
in form. It relies on a preference relation on reasons, induced by a case.

Definition 2.29. Any case ¢ = (X, U, s) for the reason model induces a preference relation
<., which is defined on reasons V, Wby V<. Wif VS X(§) and U< W.

Definition 2.30. Any case base € for the result model induces a preference relation <¢
on reasons V, W, defined by V < W when V <. W for some case c€ 6.

Definition 2.31. A case base ¥ for the reason model is consistent if its induced preference
relation <¢ is asymmetric, and inconsistent otherwise.
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Indeed, at first sight Definitions 2.27 and 2.31 do not have much in common, with
one relying on a notion of outcome forcing, and the other on asymmetry of an induced
preference relation on reasons. However, the following lemma shows that the notion of
inconsistency of the reason model is closely related to that of the result model.

Lemma 2.32. A case base 6 for the reason model is inconsistent iff it contains two cases
(X,U,5),(Y,V,5) €6 such that U S Y (s) and V < X(3).

Proof. We begin by proving left-to-right; let W, Z be reasons such that W <¢ Z and
Z <« W. The assumption W <« Z tells us that there is a case (X, U, s) with W < X(3) and
U c Z; likewise, Z <¢ W means there is a case (Y,V,§) suchthat Z< Y(s) and VS W.
This means U< Z < Y (s) and V <€ W < X(3) as desired. For right-to-left, we note that
UcY(s)and V<V means U <(y,v5 V and so U <¢ V. Similarly, we can conclude
V <¢ U from V <(x,uy,s) U, which means the case base ¥ is indeed inconsistent. O

Lemmas 2.28 and 2.32 show us that both notions of consistency are about pairs of
cases that are in a certain relation, with the only difference being that the reasons of the
reason model take the place of the complete set of factors favoring the case outcome. This
observation can further be made precise by interdefining both notions, as follows: let

f:(X,U,s)— (X(HuU,s), 2.7.1)

this operation makes a result-model case from a reason-model case (X, U, s) by removing all
the ‘redundant’ pro-s factors from its fact situation X, i.e. it removes the factors in X (s)\ U.
Given a case base €6 for the reason model we thus get a case base f[€]={f(c) | c€ €} for
the result model.

Proposition 2.33. A case base € for the reason model is inconsistent iff f[€] is.

Proof. By definition, f[¥] is inconsistent iff it contains a case (Y (s) UV, 3) € f[€], for
some (Y, V,s) € €, such that f[€],Y(s) UV Es. This in turn means f[%¥] contains a case
(X(5)uU,s), for (X,U,s) € €, such that U < Y(s) and V < X(5). This condition is, by
Lemma 2.32, equivalent to the inconsistency of €. O

The above shows that reason-model consistency can be defined in terms of result-model
consistency. Of course, the converse can also be done. To show this, we define a function
g:(X,$) — (X, X(s),s) which turns a result-model case (X, s) into a reason-model case
(X, X (s), s) by taking all pro-s factors X(s) in X as the reason for the decision for s; again
we define g[€] ={g(c) | c€ 6}.

Proposition 2.34. A case base € for the result model is inconsistent iff g[€] is.

Proof. By Lemma 2.32, g[¥] is inconsistent iff it contains (X, X(s), s), (Y, Y (3), ), for
some (X, s),(Y,3) € €, such that X(s) € Y(s) and Y (§) < X(5), which coincides with the
definition of inconsistency for €. O

Example 2.35. We consider the factors in (2.1.1) to exemplify the correspondence
between the result and reasons models. Suppose that a fact situation Y with Y E
{Male, Education, Married, Age} was deemed a low recidivism risk, so that we have a
case (Y,0). The result-model interpretation of this decision is that the pro-O factors
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{Education, Married, Age} outweigh the con-0 factor Male. According to Definition 2.3 of
result-model constraint, the precedent case (Y,0) constrains any subsequent fact situation
that assigns true to the pro-0 factors {Education, Married,Age} and false to the con-0
factor Record to the outcome 0.

The reason-model representation of cases also allows for this case to include a subset
of the pro-0 factors which were already sufficient to outweigh the con-0 factor Male.
Suppose this reason was the subset {Education,Age}. Reason-model constraint dictates
that new decisions should be made that are consistent with the precedent, in the sense of
Definition 2.27. Therefore, the case (Y, {Education,Age},0) constrains any subsequent
fact situation that assigns true to the pro-0 factors {Education, Age} and false to the con-0
factor Record to the outcome 0.

Applying the function f in (2.7.1) to this situation we have

f({Male, Education, Married, Age}, {Education, Married;}, 0)
= ({Male} U {Education, Age}, 0)
= ({Male, Education, Age}, 0).

In other words, f deletes the pro-O factor Married from Y. Proposition 2.33 tells
us that the reason-model case ({Male, Education, Married, Age}, {Education, Married}, 0)
induces the same constraint as the result-model case ({Male, Education, Age},0). This
means that the reason model can be thought of as constituting a specific way of using the
result model: when a fact situation X has been decided for outcome s based on a reason
U, simply record the case as (U U X(3), s) rather than as (X, s). The resulting result-model
case base will induce exactly the same constraint as its reason-model counterpart.

2.8 Conclusion: Moving from factors to dimensions

In this chapter we considered the RM, which formally describes what it means to make
decisions in accordance with an a fortiori principle. We recalled its notion of constraint as
formulated by Horty (2004), and adapted the model to operate on the basis of incomplete
information. We then discussed the associated notion of consistency, and showed that
this form of reasoning is monotonic in both the addition of cases and in the addition of
information to fact situations. Lastly, we compared the result model to its close relative—the
reason model. We showed that their associated notions of consistency are interdefinable, in
an attempt to bring work on these models closer together.

The rM operates on the basis of a knowledge representation using factors: binary fact
patterns that may or may not apply and are of significance to case outcomes, in that they
tend to favor one side or the other. Since its introduction, Horty (2019) has expanded
his model to operate on the basis of dimensions, where a dimension is understood as “an
ordered set of legally significant values, where the ordering among values reflects the extent
to which that value favors one side or the other.” This adaptation is particularly relevant for
Al applications, because the features of machine learning data are almost always non-binary.

In the next chapter, we will focus on this dimensional extension of the result model. We
recall its definitions, and adapt it to operate on partial fact situations in the same way we
did for the RM. Additionally, we view it through order-theoretic and logical perspectives,
which will help us build a software implementation in Part II.
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Modeling Dimensional Constraint

UILDING ON EARLIER WORK, Horty (2019) presented an adaptation of the
result model (RmM) that models a fortiori reasoning with dimensional infor-
mation. We will refer to this as the dimensional result model (brRM). In
this chapter, we discuss this model, and extend it to operate on the basis
of partial fact situations, in the same way we did for the rRM.!

We start in Section 3.1 by adapting our running example from Section 2.1 to incorporate
dimensional information. We then give Horty’s formalization of dimensions as a knowledge
representation framework in Section 3.2, and his accompanying notion of constraint in
Section 3.3. Then, in Section 3.4, we modify the knowledge representation to allow fact
situations to be partial, and give a corresponding notion of constraint. We refer to the
resulting model as the “dimensional result model” (DrRM). In Section 3.5 we discuss the
concept of case base consistency, and introduce a closely related notion of case base
completeness. Then, in Section 3.6, we show that the brM (like the RM) is monotonic in the
addition of cases to the case base as well as in the addition of information to the focus fact
situation. In Section 3.7 we show that the DRM is a conservative extension of the RM. As
the last of our considerations on this topic, and as a step towards our data analyses in Part II
of this thesis, we relate the DRM to order theory and many-sorted logic in Sections 3.9
and 3.10, respectively. We then end with some concluding remarks in Section 3.11.

3.1 An example of dimensions

A factor can be thought of as an abstract binary property of situations, which either applies
to a particular situation or not (regardless of whether this status is known to the court). A
dimension, on the other hand, is a property of situations which can take a value from some
set of possible values. In this sense, a factor is a special case of a dimension—one which

IThe material on the presentation of the dimension-based model, its adaptation to partial fact situations, the
comparison to the factor-based version of the model, and the monotonicity property, stem from (van Woerkom
et al., 2025). The discussion on consistency and completeness, landmark cases, and the relation of the model to
order theory and logic, were published in (van Woerkom et al., 2022a, 2024a).

25
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takes a value from a two-element set. Usage of this terminology in the field of A1 & law
dates back to CATO’s predecessor HYPO (Ashley, 1991).

For an example of dimensions, we return to our running example from the previous
chapter. Consider the following illustration of some dimensions affecting an assessment of
recidivism risk:

Recid

/ ‘ \\\ (3.1.1)

Priors Male Age

Previously, the Age factor represented whether the defendant was over the age of 21.
Viewed as a dimension, Age can take any value above 0. Similarly, we replace the Record
factor with a dimension Priors, indicating the number of previous convictions. The Male
factor remains as it was, but is now regarded as a binary dimension.

Generally we do not say directly of a dimension whether it favors one of the two
outcomes of a case. Instead, we require the dimension to come with a relation expressing
the relative preference the values have for the final judgment. Research on recidivism has
pointed out that in general older people tend to recidivate less, and so for the Age dimension
we can say that the value 30 is less indicative than the value 21.

In (3.1.1) above we have again used solid and dotted links to indicate whether higher
values of the dimension are suggestive of high or low risk of recidivism. Dimensions with
two values, such as the Male dimension, generally correspond to factors as in the RM. The
polarity of the links chosen here is in line with research on the topic of recidivism risk, see
for example the data analysis by Angelino et al. (2018).

3.2 Knowledge representation

We now describe the knowledge representation of the bRM as used by Horty (2019). A
dimension is a nonempty set; we denote dimensions by lower case letters d, e, f, etc. The
domain is modeled by a finite set of dimensions D. A fact situation X is a choice function
on D, i.e. a function X : D — [JD such that X(d) € d for every d € D.

Remark 3.1. Note that some care should be taken to avoid dimensions “collapsing” in
the set-theoretic foundations of the theory. For example, in our running example in the
criminal justice domain, we could have two dimensions Priorsy;sq and Priorsg|, which
respectively model the number of prior misdemeanor offenses and the number of prior
felony offenses. With respect to influence on a high/low judgment of recidivism risk, these
would both be modeled as the set of natural numbers ordered by the less-than relation,
and therefore would become equal as sets—so Priorsy,jsq = Priorsg|. To avoid this we
should ensure that they are treated as distinct sets, even if they have the same underlying
set of values. This can be achieved in a variety of ways, such as by using tagged sets or
indexed sets to distinguish between the two dimensions. For the sake of simplicity we will
henceforth leave such distinctions implicit.

Cases are again decided for one of the two sides 7 or . As before (cf. Section 2.2) we
will also use the numbers 0 and 1 to denote the two possible case outcomes. We again
assume that specific values of dimensions have a preference for either of these sides, but
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this is now modeled by a binary relation on the dimension. More specifically, we assume
there is for each dimension d € D a preference relation < on d, which we require to be a
partial order.

Definition 3.2. A partial order < on a set P is a relation satisfying the properties:

(1) a<aforall ae P;
2) ifa<sband b<cthena<cforall a,b,ce P,

(B) ifa<sband b<athena=Dbforall a,beP.

These properties are respectively called reflexivity, transitivity, and antisymmetry. We say
that a partial order is fotal, or linear, if for all a,b € P we have that a< b or b < a.

Given values v, w € d such that v < w, we say w prefers outcome 7 relative to v, and v
prefers outcome 6 relative to w. We often want to compare preference towards an arbitrary
outcome s, so to do this we define for any dimension (d, <) the notation <, ==<if s=nx
and < = > if s = 4. Note that by definition we have < = >; (where § denotes, as before,
the outcome opposite to s).

3.3 Constraint

The notion of constraint for the DRM can now be stated succinctly as follows.

Definition 3.3. The decision of a fact situation X is forced for m by a case base ¢, denoted
€6,X E n, if there is a case (Y,7) € € with Y(d) < X(d) for all d € D. Similarly, the
decision is forced for §, denoted €, X E 9, if there is (Y, ) € € such that X(d) < Y (d) for
alldeD.

Example 3.4. We consider an example to demonstrate the behavior of Definition 3.7, based
on the set of dimensions illustrated in (3.1.1). These dimensions are given by the sets:

Priors = {0,1,2,...},
Male = {0, 1},
Age ={18,19,20,...}.

The associated orders are the usual less-than relation < on the natural numbers for the
Priors and Male dimensions, while for Age we take its inverse =. Compare this to the
factors of the previous chapter in Section 2.1. Rather than having a binary criminal records
indicator Record, we now have a dimension Priors specifying the number of previous
convictions. In the same vein Age can now be specified as a number. The Male factor is
still present, but now in the form of a binary, linearly-ordered dimension.

Suppose that based on these dimensions a judgment is made about a defendant being at
high (i) or low (6) risk of recidivism. Let (Y, ) be a case with a fact situation Y given
by Y (Priors) = 10, Y(Male) = 0, and Y (Age) = 20. What constraint does the case base
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{(Y,m)} induce on a focus fact situation X? Applying Definition 3.3 we find:

{(Y,m}L, XEm

iffforallde 2: Y(d) < X(d)

iff Y (Priors) < X (Priors), Y (Age) < X (Age), and Y (Male) < X (Male)
iff 10 = X (Priors), 20 = X (Age), and 0 < X (Male)

iff 10 = X (Priors) and 20 = X (Age).

In other words, any defendant which is 20 or younger and has 10 or more prior offenses is
constrained to be judged at a high risk of recidivism by the earlier decision (Y,7). The
value that X assigns to the Male dimension is inconsequential to this judgment, because
whatever value it assigns will be above 0 in the order.

Horty (2019, Definition 12) used a shorthand to phrase Definition 3.3, called the strength
order on fact situation.

Definition 3.5. Given fact situations X and Y we say Y is at least as strong as X for an
outcome s, denoted X <; Y, if it is at least as strong for s on every dimension d:

X =Y ifandonlyif X(d)=;Y(d)foralldeD.

Using this notion, we see that €, X F s if and only if 6 contains some case (Y, s) such
that Y <; X. We have opted to phrase constraint in Definition 3.3 without reference to
the strength order to facilitate a comparison to the definitions of constraint of the other
versions of the result model that we discuss. Nevertheless, we mention the strength order
here because it will feature prominently in the forthcoming Sections 3.9 and 3.10.

Remark 3.6. Note that the brRM (as well as the RM) contains an independence assumption
between dimensions: if X(d) < Y (d) holds for fact situations X and Y, then Y is considered
stronger for the plaintiff along dimension d, regardless of its values in other dimensions.
This need not always hold in practice—Prakken and Sartor (1998) give the following
example: “even if rain and heat are individually reasons not to go jogging, then the
combination of these two factors might very well be instead a reason to go jogging.’
In situations where this assumption is violated the result model may incorrectly impose
constraint.

>

The factors of the knowledge representation for the RM can be modeled in the DRM
as two-element dimensions. More specifically, given a factor p € F for some set of
factors F, we can construct a dimension dj, = {fy, t,} which contains exactly two elements
corresponding to whether p applies or not. If p € Pro(rr) then we define a relation < on d),
by £, <t,, and if p € Pro(6) then we define < by t;,, <f,. This procedure gives us a method
to turn an instance of the RM into an instance of the bRM, and we will show in Section 3.7
that the notion of constraint in the DRM behaves on these translated instances just as the
notion of constraint of the RM behaves on the untranslated instances.

3.4 Partial fact situations

As in the previous chapters, we consider a modification of the brRM by allowing fact
situations to be partial. A partial dimensional fact situation is a partial choice function
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on the set of dimensions, i.e. a function X : E — (JD such that X(d) € d for every d € E,
where E is some subset E < D. We denote this domain E of X by dom(X).

Again this raises the question of whether, and if so how, Definition 3.3 of constraint
should be modified to account for this. In Section 2.4 we outlined our position regarding
constraint induced by partial cases, and it can be applied in the same way to constraint for
the DrRM: if the value of the precedent case in a dimension added strength to the side for
which it was decided, then the focus fact situation should have equal-or-greater strength
along that dimension for that side.

Consider, for example, a precedent case (Y,7) and a focus fact situation X; what
conditions need to be met in order for (Y, ) to constrain the decision of X to s? If d
is a dimension such that Y (d) is undefined, then the value of Y on this dimension did
not add strength to the side of the plaintiff and so no restrictions should be placed on
X(d). If, instead, d is a dimension on which Y (d) is defined, then it is difficult to quantify
whether Y (d) added strength for the plaintiff, and so we should require that Y (d) < X(d).
In particular, if X(d) is undefined then X does not have equal-or-greater strength along this
dimension, and so no constraint should be induced. There is, however, one edge case to
take into account: when Y (d) is the least element of d—meaning it satisfies Y (d) < v for
every v € d—then any value of X (d) will match or exceed the strength for the side of the
plaintiff in that dimension. Therefore, we should allow (Y, ) to induce constraint for X
in this scenario. This is similar to the situation in the third row of Table 2.1: if p € Con
and Y E p, then regardless of whether p applies in the focus fact situation X or not, it will
match the strength of Y for the plaintiff for that factor, and so constraint is not excluded.

To capture these considerations in the definition of constraint we introduce the following
shorthands:?2

supp(Y) ={d e dom(Y) | Y(d) is not the least element of dj}, (3.4.1)
opp(Y) = {d edom(Y) | Y(d) is not the greatest element of d}. (3.4.2)

We now define constraint as follows, which is similar to the approach taken by Prakken
(2021, Section 7).

Definition 3.7. The decision of a partial fact situation X is forced for 7 by a case base
€, denoted €6, X E m, if there is a partial case (Y, ) € € such that for all d € supp(Y):
Y (d) < X(d). Similarly, the decision is forced for §, denoted €, X E 9, if there is (Y,0) € €
such that for all d € opp(Y): X(d) <Y (d).

As in Chapter 2 on the result model without dimensions (Definitions 2.1 and 2.3),
Definitions 3.3 and 3.7 coincide for complete fact situations. In what follows we focus on
partial fact situations and leave the treatment of complete fact situations implicit.

Example 3.8. We reconsider Example 3.4 with respect to Definition 3.7. Let Y be as

2This notation is shorthand for “support” and “opposition.” Function support is a set-theoretic notion, where the
support supp(f) of a function f: X — R from a set X to the real numbers R is defined as the subset of X that is
not mapped to 0 by f;i.e. supp(f) = {x € X | f(x) #0}.
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before; unfolding the definition of constraint we find:

Y, mh XEen

iff for all d € supp(Y): Y(d) < X(d)

iff Y (Priors) < X (Priors) and Y (Age) < X(Age)
iff 10 < X(Priors) and 20 = X (Age).

The answer is the same as before, because Y (Male) is the least element of the Male
dimension, and so Male ¢ supp(Y). This means that if X is undefined on this dimension,
Y can still induce constraint on X.

3.5 Consistency and completeness

As we did for the RM in Section 2.5, we now turn to the notion of consistency, which arises
as a result of the definition of constraint.

Definition 3.9. A case (X, s) is said to be inconsistent with respect to a case base ¢ when
€, X F §, and consistent otherwise. A case base is said to be weakly consistent when all of
its cases are consistent, and strongly inconsistent otherwise.

Definition 3.10. A case base € is weakly inconsistent if there exists a fact situation X such
that €, X E m and €, X E 8, and strongly consistent otherwise.

Remark 3.11. Note that if a case base has only complete fact situations, then the presence
of an inconsistent case with outcome s implies the presence of an inconsistent case with
outcome §. To see why, consider an inconsistent case (X, s) € €; so €, X E 5. This means
there is a case (Y, §) € € such that Y <5 F. But then, by definition, X <¢ Y and so €6,Y E s;
which is to say that (Y, 5) is inconsistent. In practice, this means that in order to check
whether such a case base is consistent, it suffices to check whether all of its cases with a
specific outcome s are consistent. This may save work, for example when the distribution
of outcomes is heavily skewed towards one of the two outcomes.

Consistency, as thus defined, is a binary property: a case base is either consistent or
it is not. It can be made a quantitative property by considering the relative frequency of
consistent cases in the case base, and we will do so in our experiments to come in Part II.

Definition 3.10 of strong consistency states that there is no fact situation that has
both outcomes forced. This phrasing has a natural counterpart which—to the best of our
knowledge—has not yet appeared in the literature, and which is defined as follows.

Definition 3.12. A case base is complete when every fact situation has an outcome forced.

Remark 3.13. The terminology we propose in Definition 3.12 is inspired by the notion of
completeness of a set of formulas in logic: a set of formulas T is consistent if there is no
formula ¢ such that both T & ¢ and T F ¢, and it is complete if for all formulas ¢ either
T E ¢ or T E ¢ (Bradley & Manna, 2007, Section 3.1). Compare this with our definitions
here: a case base € is consistent if there is no fact situation F such that both €, F = 0 and
%,F F 1, and it is complete if for all fact situations F either €,FE 0 or ¢,F E 1. The
similarity is somewhat superficial, though, as there are important differences between these
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Table 3.1: An example case base for the Age and Priors dimensions, which is neither consistent nor
complete. See Figure 3.1 for a graphical representation. The second, third, and fifth row correspond
respectively to the fact situations X, Y, and Z from Example 3.14.

Age Priors Label

30 1
X 35 5 0
4 0

notions; for instance, an inconsistent set of logical formulas is necessarily complete by the
ex falso principle, while for case bases this implication does not hold.

Example 3.14. An example case base for our recidivism example can be found in Table 3.1.
This case base is neither consistent nor complete. It is not consistent because the case
(X,0) with X(Age) = 35 and X (Priors) = 5 has its outcome forced for 1 by the case (Y,1)
with Y (Age) =40 and Y (Priors) = 3. It is not complete because there are (infinitely many)
fact situations that do not have their outcome forced for either O or 1, such as the listed fact
situation Z with Z(Age) =45 and Z(Priors) =7.

A case base might become complete, or inconsistent, through the addition of new cases.
Conversely, a case base can be made incomplete, or consistent, through the removal of
cases. Any set of dimensions D trivially admits a sound case base; namely the empty case
base @. It would also trivially admit a complete case base if not for our requirement that
case bases are finite: simply decide all fact situations for outcome 0, or 1, or any mix
thereof. Since the choice of dimensions D may give rise to an infinite number of fact
situations, this may be impossible, and in fact it is impossible for our running example—as
we now show.

Proposition 3.15. There is no complete case base for the Age and Priors dimensions.

Proof. Let €6 be any case base for the Age and Priors dimensions; we prove the proposition
by constructing a fact situation X which does not have its outcome forced by 4’

X(Age) =1+ maxy,ye¢ Y (Age), X (Priors) = 1 + max(y,pjec¢ Y (Priors).

This fact situation X exists because the case base € is finite. The claim is that X does not
have its outcome forced by €. Suppose, to the contrary, that X were forced for O; then
there is a case (Z,0) € € such that X < Z. This means that X (Priors) < Z(Priors), and so
X (Priors) = 1+ max(y,ge¢ Y (Priors) < Z(Priors) (note the order used here). This implies
that maxy,g)e¢ Y (Priors) < Z(Priors), contradicting (Z,0) € €. If X had its outcome
forced for 1 then a similar contradiction occurs with the definition of X (Age). O
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This proposition demonstrates that there are sets of dimensions D which—from the
onset—do not admit any complete case base, because of the requirement that case bases
are finite. We maintain this requirement because real-world datasets are necessarily finite,
and because it allows us in general to construct logical formulas describing the forcing
behavior of the case base, which we will make use of in Section 3.10.

3.6 Monotonicity

Like the factor-based models, the DRM is monotonic in the case base.
Proposition 3.16. If € <9 then €,X E s implies 9, X E s for s € {m,6}.

Proof. Suppose s =, and let X be a fact situation such that €, X E 7, then this means
there is a case (Y, ) € € satisfying the required conditions of Definitions 3.7, and so since
€ <D we get (Y,n) €2 and 9, X E m as desired. The case for s =0 is similar. O

Fact situations are again modelled by functions, so we can define the addition of
information to fact situations in terms of function extension in the sense of Definition 2.15.

Proposition 3.17. If X C Y then €,X & s implies €,Y & s for s € {n,0}.

Proof. Suppose s =m. Since €, X F m there is (Z, 1) € € such that Z(d) < X(d) = Y (d)
for all d € supp(Z), and so €,Y E & as desired. The case for s = § is similar. O

3.7 Relation to the result model

We will now show that the DRM is a conservative extension of the RM, in the sense that
when the DRM is restricted to binary dimensions with linear orders, it reduces to the RM. To
show this, we construct a translation f that maps instances of the RM to instances of the
DRM, and prove that this translation respects Definitions 2.3 and 3.7 of constraint.

Definition 3.18. A set of dimensions D is binary if each d € D has cardinality 2 and is
ordered linearly.

Let F = Prou Con be a factor partition, for each p € F we define a binary dimension
dy = {tp,fp}. The associated order for d, is the reflexive closure of f, < t, if p € Pro,
and that of t, <f), if p € Con. We write f[F] = {d, | p € F} for the set of dimensions
corresponding to the factor partition F. Next, we extend f to operate on fact situations,
cases, and case bases. Given a fact situation X for the Rm (with respect to the factor
partition F) we translate it to a fact situation f(X) for the brRM (with respect to the set of
dimensions f[F]) by defining f(X) on d,, for p € dom(X):

t, ifXFp,
f0@) =1 " P
p i XE-p.

Similarly, a case (X, s) is translated to a case (f(X), s), and given a case base ¥ for F we
let f[¥] denote {(f(X),s) | (X,s) € €}.
The translation f preserves and reflects constraint, in the following sense.
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Theorem 3.19. Given a case base € for a factor partition F = Prou Con and a focus fact
situation X we have

CXEriff fl€l,fX)En and €,XESIif fl€],f(X)ES.
Proof. We consider the first equivalence. Spelling out Definition 3.7 we get

fl€L,fX)Em
iff there is (Y, 7) € f[€] such that for all dj, € supp(Y): Y (dp) < f(X)(dp)
iff there is (Y, 7) € € such that for all dj, € supp(f(Y)): f(Y)(dp) = f(X)(dp)
iff there is (Y, ) € € such that for all p € dom(Y):
if f(Y)(d)p) is not the least element of d), then f(Y)(dp) < f(X)(dp).
Now either p € Pro or p € Con. In the former case, d), is ordered by f,, < t,, and so the least
element of d, is f,,. The latter case is dual. We can thus continue with:
iff there is (Y, ) € € such that:
« for all p € dom(Y) N Pro: if f(Y)(dy) # £, then f(Y)(dp) =< f(X)(dp), and
e for all p € dom(Y)nCon: if f(Y)(d)) #t, then f(Y)(dp) < f(X)(dp).
If p € dom(Y)NPro then f(Y) is defined on d, and so f(Y)(d) # £, implies f(Y)(dp) = tp,
and furthermore f(Y)(dp) =t, < f(X)(dp) reduces to f(X)(dy) =t,. Applying similar
reasoning to the case for p € dom(Y) n Con we obtain:
iff there is (Y, ) € € such that:
e for all p € dom(Y)nPro: if f(Y)(dy) =t, then f(X)(dp) =t,, and
e for all p € dom(Y) N Con: if f(Y)(dp) =f, then f(X)(dp) =fp
iff there is (Y, ) € € such that:
o for all p e dom(Y) NnPro: if Y(p) =tthen X(p) =t, and
o for all p e dom(Y) N Con: if Y(p) =fthen X(p) =£.
Intersecting with dom(Y) is redundant because for undefined values Y (p) the implication
over which is being quantified holds trivially. Furthermore, Y (p) = t just means the same
as Y E p, and likewise for Y (p) =fand Y F —p, so we have:
iff there is (Y, ) € € such that:
o for all p e Pro: if Y = p then X k p, and
e forall pe Con: if Y E -pthen X E -p
iff €, XEm.

The derivation of €, X 6 iff f[€], f(X) E 6 is very similar, so we omit it. O

3.8 Landmark cases

Of particular interest with respect to the forcing relation are what we call landmark cases.
The motivating idea is that when a case has its outcome forced by another, it is—by
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transitivity of the strength order—rendered superfluous as a precedent. As such, the most
salient cases are those that do not have their outcome forced by another case.

Definition 3.20. A case (X, s) € € is called a landmark case if € \ {(X, s)}, X I 5. Cases
that are not landmarks are called regular. We let £ < € denote the subset of € containing
just its landmark cases.

Intuitively speaking, a case is a landmark when the decision of its fact situation is not
forced for its outcome by the rest of the case base. Do note, however, that a case (X, s) can
be a landmark while €\ {(X, s)}, X E 3.

The relevance of landmarks is described by the following proposition.

Proposition 3.21. For a case base €, a fact situation X, and an outcome s, we have
€, XEFs<— £, XFs.

The direction from right to left is just an instance of monotonicity, but the other direction
is somewhat more difficult to justify. We defer a proof until Section 3.9.3, as we will
develop some notation in the meantime that will ease this task.

Remark 3.22. Note that Definition 3.20 applies equally well to the RM. We have introduced
it here because it will play a role in the coming two sections.

3.9 An order-theoretic perspective

The mathematical tools used in Horty’s model of a fortiori reasoning have been studied more
generally, as part of a branch of mathematics known as order theory: the study of binary
relations on sets that correspond intuitively to the notion of order (as in Definition 3.2). In
this section, we recall some notions from order theory and relate them to Horty’s model.
We do this because they help clarify the formal aspect of Horty’s model, and because we
will make use of them in Section 3.10 where we relate the model to (many-sorted) logic.
See the work by Davey and Priestley (2002) for a detailed introduction to order theory and
its connection with logic.

In order not to overcomplicate things we will restrict our attention to complete fact
situations—i.e. those X for which dom(X) = D—throughout this section and the one
thereafter.

3.9.1 The product order and its up- and down-sets

Given a set P of sets, the product of P, denoted by [] P, is the set containing all choice
functions on P;
[1P=tf:P—JPIf(A) e Aforall Ac P}.

If every set A € P comes with a partial order < 4, then P can itself be partially ordered. In
fact, this can be done in multiple ways, but we will use what is called the coordinatewise
order or product order <y, which is defined for f,g € [[P by f =<qj g if and only if
f(A) =4 g(A) for all Ae P (Davey & Priestley, 2002, p. 18).



3.9. An order-theoretic perspective 35

We have seen a particular instance of this construction in Section 3.2; given a set of
dimensions D we let & =[] D denote the set of fact situations, and write < for the product
order on &', which in the theory of precedential constraint is known as the strength order.

A case base is a finite subset € € Z x {0, 1}, but we can also think of € as comprising
two designated subsets of &'; one 6y = ¥ containing the fact situations of cases with
outcome 0, and one 6, € & with those that received outcome 1. Given a case base €, we
identify these subsets with the notation €s = {X € Z | (X, s) € 6}.

A concept from order theory that we will use extensively is that of up-sets and down-sets.
Given an ordered set (P, <) and a subset A < P, we define its up- and down-sets TA, | A by

TA={beP|a<bforsome ac A}, |A={beP|b<aforsome ac A}

If A is a singleton {a} we may write Ta instead of T{a}; note that TA =g Ta. These
operations satisfy the closure operation conditions (Davey & Priestley, 2002, Chapter 7):

Lemma 3.23. Let (P, <) be a partially ordered set. The upset operation T on P is a closure
operation, meaning it satisfies the following properties for all subsets A,B < P:

e« ACTA;
e if ABthen TA<1B;
* TTA=TA.

The same holds for the down-set operator |.

Working with fact situations we are also interested in the opposite of the product order,
for which we use the notation <3 = < if s=1 and < = > if s =0. We will do the same for
the up- and down-set notation: Jg =Tif s=1and Ty =] if s=0.

3.9.2 Forcing as up- and down-set membership

This concept of up- and down-sets is useful because it is closely related to the definition of
case base forcing. The following is just a simple rephrasing of definitions, but we state it
explicitly because we will use it frequently.

Lemma 3.24. 6, X E s is equivalent to X € ;6.

Proof. We have €,XEFs < Y <; X forsome Y € €, < X € ;6. O]

Example 3.25. We consider again the case base of Example 3.14, listed in Table 3.1.
The dimensionality of & =N x N is low and so we can visualize it—see Figure 3.1. The
up-sets of the cases are also shown, which we will call forcing cones. For instance, for
the case (X, 1) with X (Age) = 30 and X (Priors) = 2, any fact situation Y with Y (Age) < 20
and Y (Priors) = 2 will have greater strength for outcome 1 than X, and so will be forced
for side 1.

The visualization in Figure 3.1 shows that concepts of interest can be phrased in terms
of the forcing cones; for instance, we can see landmarks as cases that are not within a
forcing cone of a case with its own outcome. Furthermore, inconsistency corresponds to
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Figure 3.1: An illustration of the case base in Table 3.1. Green dots are cases with outcome 0, red
dots are cases with outcome 1, and the shaded regions indicate their up- and down-sets in the strength
order, which we call forcing cones. The blue dot is a counterexample to completeness.

overlapping cones of cases with opposite outcomes, and completeness corresponds to areas
that are not covered by any cones. If there are no overlapping forcing cones of different
outcomes, then the case base is consistent; likewise, if the whole space of fact situations is
covered by the forcing cones, then the case base is complete. This is stated formally by the
following lemma.

Lemma 3.26. A case base 6 is consistent iff |6oN 161 = @, and complete iff |6y U 16 =
Z.

Remark 3.27. As mentioned in Remark 3.11, for consistency it also suffices to check
either of the equations 6y N 161 =@ or €, N |6y = D.

The visualization of Figure 3.1 is possible because our example has only two dimensions—
with more than two such a visualization becomes impractical. However, in the general
case we can still usefully visualize the forcing cones using Euler diagrams. For example,
Lemma 3.26 relates consistency and completeness to the sets | 6y 16, and X'\ (| GoUTE1)
being empty. So, the four possible situations with regards to the status of consistency and
completeness of a case base can be visualized using Euler diagrams; see Figure 3.2. We
will make use of such visualizations for our data analysis in Chapter 7.

3.9.3 Landmarks as minimal and maximal elements

Another useful concept from order theory is that of minimal and maximal elements. Given
a partially ordered set (P, <) and a subset A < P, we say an element a € A is minimal in A if
there is no b € A such that b < a. We denote the set of minimal elements of A by min A.
Dually, we say a € A is maximal in A if there is no b € A such that a < b. We denote the
set of maximal elements of A by max A. Again, we define some notion to account for the
two sides: ming = min if s =1 and min; = max if s=0.
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16 | L6onT6 | 16

(a) Neither (b) Complete
(¢) Consistent (d) Both

Figure 3.2: Euler diagram representations of the consistency and completeness properties.

This notion makes it easier to understand the set of landmarks £ of a case base 6:
XeY —= (X,9)e&
= E\{(X, )L X¥Es
— Y £, X forall (Y,s)€€
<= X € min; 6;.

This means that £ = ming %, or more explicitly, that £, = max%, and £ = min%).
This is a useful fact in combination with the following (well-known) lemma.

Lemma 3.28. If (P, <) is a partially ordered set then any finite A < P satisfies TA=Tmin A.
Proof. We prove the inclusions separately, using the properties listed in Lemma 3.23.

(c) First we note that since A is finite, there is for every a; € A a finite descending chain
ay > ap > --- > a, within A, so a; = a, by transitivity, for some a, € min A. This is
to say that A < Tmin A, and therefore TA< 7T min A= | min A as desired.

(2) It follows from min A< A that Tmin A< TA. O
Corollary 3.29. For any case base € we have ;6 = Ts Zs.
Proof. Immediate from Lemma 3.28 and the fact that £ = min €. O

Proposition 3.21 now also follows immediately from Corollary 3.29 and Lemma 3.24.
Proof of Proposition 3.21. €,XEs < Xe;6; — Xe; & — £, XEs. O

Intuitively, what Proposition 3.21 tells us is that when a fact situation is forced by a
case base then it is also forced by a landmark case of that case base. This means that in
order to get an understanding of the behavior of the strength order of a case base, it suffices
to consider the landmark cases. This can be a very useful reduction in practice—we will
see some datasets that contain thousands of cases but only some handfuls of landmarks.
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3.10 A logical perspective on a fortiori reasoning

In this section, we phrase the brRM from the point of view of logic. To do this we use
many-sorted logic, so we begin in Section 3.10.1 by describing this general framework, and
then proceed in Section 3.10.2 to demonstrate that the DRM can be phrased as an instance
of this framework. There are many works in the literature giving such descriptions; see for
example the work by de Moura and Bjgrner (2009) and Manzano and Aranda (2022).

We use many-sorted logic, as opposed to e.g. Liu et al. (2022) who use modal logic, as
it is the type of logic used in contemporary SMT solvers. This means that the rephrasing in
logic allows us to use the machinery of SMT solvers to reason about specific instances of
the DRM. We describe how this can be done in Chapter 7, and use this implementation in
Part II to evaluate the DRM on several datasets.

3.10.1 Many-sorted logic

Many-sorted logic is very similar to unsorted logic—it revolves around questions of
satisfiability of formulas built from the familiar logical connectives as well as function and
relation symbols from some signature. The difference is that these symbols have some
sort, which can be thought of as a datatype in programming. Examples of such sorts are
those corresponding to integers, rationals, or boolean values.

More formally, we assume there is a finite set of sorts S = {sy,...,s,}.3 A signature X
over S is a set of function and predicate symbols, together with a map ar: X — S where
S is the set of n-tuples of elements of S for all 7 = 1. The map ar associates each element
of £ with an arity. For a function symbol f € £ we write f:s; x...x s, — s instead of
ar(f) =(s1,...,Sn, 8). If n=0 we say f is a constant. Similarly, for a relation symbol R € X
we write R: s; X ... x s, instead of ar(R) = (sy,..., ). In addition, we assume there is a set
of variables X, each of which is associated with a sort; we write x: s to denote that x € X
isof sort se S.

Any signature X over a set of sorts S induces a set T* of terms, each of which again
has a specific sort. We write ¢ : s to mean that ¢ € T* is of sort s € S. These terms are
inductively defined as the smallest set #* such that:

* any variable x: s is a term of sort s;
* given a function symbol f:s; x...x s, — s of X and terms # : s1,..., t; : S, there is

aterm f(ty,...,%,): s of sort s.

Formulas of many-sorted logic are built using the terms T* together with the usual
logical symbols T, L, A, Vv, 1, —,«, and with an equality symbol =;: s x s for every sort
se S. In practice, we will usually omit the subscript s and let the context determine which
of the equality symbols is used. Using these we build the set Lazt of atomic Z-formulas with:

LT,
e 1) =5t forevery sort s€ Sand terms £ : s, £ : 5;

* R(ty,..., ty) for every relation symbol R: sy x...x s, and terms f; : Sy,..., Iy : Sp-

3The notation s; for sorts clashes with the notation for case outcomes—we let the context disambiguate.
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From the atomic X-formulas we now inductively build the full set of Z-formulas L* as the
smallest set such that:

e LZcL*

s if ¢ € L* then "¢ e L%;

o if g, e L* then AW, PV Y, — >y € LF;

e ifpe L* and x: s is a variable then (Vx: S)p,(3x:s)p e L=

Furthermore, given an indexed set of formulas {¢; | i € I} < L* for a finite set I we define:

Nic1Gi =dbi ANy, Vier®i=diu v---Vi,.

The formulas in L* can now be interpreted in structures assigning meaning to the sorts
and symbols. More specifically, a Z-structure A = ((As) ses, I) associates to each sort s€ S a
set Ag; to each function symbol f: 57 x...x s, — s€ X afunction fj: Ag x...x As, — Ag;
and to each relation symbol R: 51 x...x s, € Z arelation Ry € Ay, x...x Ag,. Anassignment
a is an assignment of meaning to the variables, according to their sort. More specifically,
an assignment a is a function on X such that a(x:s) € A; for x: s € X. Such an
assignment can be extended to operate on the set of terms T* by recursively defining
a(f(ty,...,tn) 1 8) = fila(t),...,a(ty)).

Given a Z-structure A and an assignment a we can now define what it means for a
formula ¢ € L to be true in A. We do so by induction on the complexity of formulas:

A, a = L is never true,
A,a E T is always true,
Akl = = alh) =alh),
A,akE R(ty,...,t;) < Ri(a(ty),...,alty),
AakEp —= Aal P,
A,aEdAYy < AjaEdand A,akFvy,
AakEpvy < A,aEdorAakvy,
AaEd—v — if A,aE¢dthen A, a kv,
AaEd =y < AakE¢ifandonlyif A,a k.

Given some set T < LZ, often called a theory, we write A,a E T if A,a = ¢ forevery pe T.

A notion of central importance in logic is satisfiability. A formula ¢ is said to be
satisfiable if there exists a model A and an assignment a such that A, a E ¢, and unsatisfiable
otherwise. Computer scientists (as opposed to model theorists) are often interested in a
more restricted notion of satisfiability, which fixes the structure A. For this reason, we may
also say a formula is A-satisfiable if there is some assignment a such that A, a E ¢. Often
we are particularly interested in the satisfiability of a formula ¢ relative to some set of
background restrictions given by a theory T. To this end, we say a formula is A-satisfiable
modulo a theory T, denoted A, a E7 ¢, if A,a E T U{¢p}.

In the remainder of this work, we will be working with satisfiability for some fixed
structure A, modulo some background theory T. Therefore, in order not to clutter notation,
we will simply speak of satisfiability when we mean A-satisfiability modulo T, and write
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A, a E ¢ when we mean A, a E1 ¢p. The particular structure A and background theory T
relative to which we are referring to will either be irrelevant or clear from the context.
We conclude this section with some notions closely related to satisfiability. Two
formulas ¢,y € L* are said to be equivalent, denoted ¢ = v, when for all assignments a we
have A, a = ¢ if and only if A, a = . A formula ¢ is valid if A, a = ¢ for all assignments
a. We define the semantics [¢] of a formula ¢ as the set of all satisfying assignments a;
ie. [¢] ={a| A, aF ¢}. These notions are all related, as the following equivalences show:

¢ is valid < —¢p is unsatisfiable
= ¢$=T,
¢ is unsatisfiable <= ¢ =1,
¢—yisvalid = ¢p=vy
= [$l =lyl.

3.10.2 A logical formulation of the a fortiori model

We now show how precedential constraint can be framed in terms of many-sorted logic.
For a given set of dimensions D, we take D as the set of sorts and define a signature Z(D):

2(D)={cylvedeDiu{c,|de D}

In other words, we introduce for every dimension d € D the following set of symbols: a
constant ¢, with ¢, : d for every value v € d, and a relation symbol =, with =, : d x d for
the dimension order of d. For the variables we take a set Var with precisely one variable
x4 with x; : d for each dimension d; so Var={x; | d € D}.

We now fix a structure D = (D, I) for this signature: the domains are given by the set of
dimensions D, and the interpretation I simply interprets the symbols according to their
intended meaning: I(c,) = v and I(=,4) = <4. Due to this fixed interpretation—and to
avoid notational clutter—we may henceforth, by abuse of notation, write v where we
mean ¢, and < where we mean C;. So for instance, for v, w € d we will simply write
v < w where, strictly speaking, we should write ¢,, E4 ¢,. We will also use the subscript s
notation as we did before.

Now, an assignment « of this language is a function on Var that maps a variable to a
value of the type of that variable, i.e. a(xy) € d. Since the variables correspond one-to-one
with the dimensions, this means that an assignment for this language is essentially the same
thing as a fact situation. Therefore, we will henceforth treat the two as interchangeable and
use X,Y,Z,... as variables to denote assignments.

Lastly, we need a background theory T relative to which we phrase satisfiability. For
instance, T should specify precisely how the elements of the dimensions are related to each
other in their respective orders or other axioms related to the dimensions. For instance,
for the Age dimension (N, =) we need a theory T that includes the theory of the natural
numbers, in order to interpret, e.g., the constants that will appear in the formulas. Bradley
and Manna (2007, Section 3) and Bjgrner and Nachmanson (2020) give many examples of
such theories.

Example 3.30. We consider the structure and language for our running example with
dimensions (Age, <age) = (N, =) and (Priors, <priors) = (N, <). For some fact situation X
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we can now form a formula Xage Eage Cx(age) A CX (Priors) EPriors XPriors- What does it mean
for this formula to be satisfiable? Let Y be any assignment, then

D,YE Xage EAge Cx(Age) N CX(Priors) EPriors XPriors
<= D, Y F xpge Eage Cx(age) and D, Y E cx(priors) EPriors XPriors
> I(Eage) (Y (xage), Cx(age)) and I(Epriors) (Cx(Priors), XPriors)
< Y(xage) = X(Age) and X (Priors) < Y (Xpriors)

— X=Y.
So, an assignment Y satisfies this formula if and only if X < Y. In other words,

[[xAge EAge Cx(Age) N\ CX (Priors) =Priors Xpriors] = TX.

Example 3.30 shows that the semantics of formulas in L) can correspond to subsets of
interest. In general, since assignments correspond to fact situations, the semantics function
associates each formula ¢ € L*P) to some subset [¢p] € Z of satisfying assignments.

Lemma 3.31. The following equations hold for the semantics function [-] : L*'P) — P(Z):

[Ll=9,
[Tl=%,
[v=x4] ={XeX|v=X(d)}
[v=sx4] ={XeX|v=sX(d)},
[n¢p] =X\ l,
[ Ayl =[] N lwl,
[ vyl =Ilplulyl.

Proof. By a routine induction on the complexity of formulas in L*®), O

Using the semantics function [—] we can now generalize Example 3.30 and show that
questions related to the a fortiori model can be phrased in terms of formula satisfiability in
the structure D. In particular, we will relate the notion of forcing, landmarks, consistency,
and completeness to satisfiability in D.

To start, let X be a fact situation; we define a formula ¢¢(X) € L*®) which states that
the variable fact situation x is at least as strong for side s as X:

¢s(X) = N\ gep X(d) =5 xq. (3.10.1)

Using the equations of Lemma 3.31 we can now easily derive that [¢ps(X)] = Ts X:

[sO1 = [\ gep X (d) < xa]
=Nuep[X(@) = x4]
=\yeplY €Z 1 X(d) =, Y (d)}
={YeX|X=xY}
=1, X.
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Next, using ¢(X), we define a formula ®4(€) € L*D) which states that the variable fact
situation x has its outcome forced for s by the case base €6

D3(6) =V xeq, Ps(X). (3.10.2)

Using the semantics of ¢ps(X), it is easy to see that [@s(€)] = Ts Es:

195 = [V e, 50| = U yerg, [9:001 =Uegs, 16X = 156,

Using this we can relate the notion of satisfiability of ®4(%) and the forcing relation
induced by the case base €, X E s. This result formally establishes the connection between
the a fortiori model and the reformulation we present in many-sorted logic.

Proposition 3.32. D, X E ®(6) if and only if €, X E s.

Proof. Combining the previous results we get:
D,XE®; <= Xe[Ds(¥)] — Xe|s6; — €,XFEs. ]

To make claims about a particular fact situation we need a way to fix the interpretation.
There is no symbol in our language for directly equating a fact situation X to the variable
fact situation x (i.e. X = x is not a valid formula), but we can define a formula X = x
amounting to the same:

X=Zx=N\yepX(d) = xa. (3.10.3)
Again, we can use the equations of Lemma 3.31 to show that this has the intended semantics:

[X = x1=[Agep X(d) = x4]
=Nyep X (@) = x4l
=NyeplY €X' 1 X(d) = Y (d)}
={X}.

This formula can now be used to make claims relating to a specific fact situation X. For
example, for two fact situations X, Y € & the question of whether X < Y corresponds to
the existence of a satisfying assignment for the formula x = Y A ¢(X), as

[x=YAps (X =[x=YIn[ps(X]={Y}nTs X.

In other words, we have that x = Y A¢¢(X) is satisfiable if and only if {Y}n s X is nonempty,
which is another way of saying that X <; Y. In a similar way, we can check whether
%, X £ s for some X by checking satisfiability of the formula x = X A ®(€6).

Next, we consider how to phrase whether (X, s) € € is a landmark case. Let

As(X) =X =x A D (E\{(X, 9)}). (3.10.4)

This formula states that the variable fact situation x is equal to X, and that € \ {(X, s)} does
not force x for s. Again we can use the equations of Lemma 3.31 to show that this formula
has the intended semantics.
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Lemma 3.33. A case (X, 5s) is a landmark iff As(X) is satisfiable.
Proof. As in the previous results, we simply apply the equations for the semantics function:
[As(X)] = [X = x A D (G \ (X, 9)}]

= [X = X1 [~Ds(€\ (X, )D]
={X}n (XN [Ds(€ (X, DD

={XI\ Ts(Es \{XD
_ (X} if XgT15(6:\ (XD,
@ otherwise. O

Remark 3.34. Note that Corollary 3.29 tells us (%) and ®4(%) are logically equivalent:
q)s(cg) = (Ds(g) — H(Ds((g)]] = [[q)s(g)]] — Ts(gs = Tsxs-

This means we can freely interchange these formulas, which can be computationally
advantageous if there are significantly fewer landmarks than regular cases. Of course, this
does incur the overhead of computing the set of landmarks £, which may itself be resource
intensive. In the remainder of this work we may write @ instead of ®4(€) or ®4(Z).

Lastly, we mention that case base consistency and completeness are now easily phrased
using the logical language, as the following proposition shows.

Proposition 3.35. € consistent iff ®g A @y is unsatisfiable, and complete iff Do Vv @ is
valid.

Proof. We apply the semantics function of Lemma 3.31 and then appeal to Lemma 3.26:

Dy AP isunsat < PgADP; =1L — [OgAD ] =[L] < [6ynT6 =9,
Oyvdyisvalid < PgvVP; =T < [OgVv D] =[T] < l(g()UT(glzgg. [

3.10.3 A case base as a binary classifier

As the last of our theoretical considerations we investigate the relation between a case base
and the concept of a classifier from machine learning; i.e. an algorithm that sorts a set of
input data into one or more classes. A case base, together with the notion of forcing of
Definition 3.5, can be considered as a classifier that can assign 0 or 1 to a new fact situation.
This is also the view adopted in the work by Liu et al. (2022) and Odekerken et al. (2023b).
In fact, the a fortiori model has been implemented in a human-in-the-loop decision support
system for web shop classification at the Dutch National Police Force (Odekerken & Bex,
2020). It is therefore of interest to further examine the theoretical relation between the a
fortiori model and binary classifiers in general.

Formally a binary classifier on a set A is a function f: A — {0,1}. The set A contains
the input data, and each element a € A is assigned a label f(a) which is either O or 1.
Set-theoretically speaking, a function f: A — B with domain A and codomain B is a set of
ordered pairs {(a, b) € Ax B| f(a) = b}. In other words, f is arelation f < A x B. However,
not every relation between A and B is a function. In order for a relation R € A x B to qualify
as a function it should satisfy the following criteria.
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Definition 3.36. A relation R < A x B between sets A and B is well-defined if R(a, b) and
R(a,b") implies b = b', and total if for every a € A there is some b € B such that R(a, b).
When R is both well-defined and total we say it is functional, and write R: A — B.

A relation R € A x B is functional if it associates each element in A to precisely one
element of B. Given a case base € we define a relation ¢ € Z x {0,1} by ¢ = {(X, ) |
%, X E s}, so c is the forcing relation between facts and sides for a given case base €.
The question now is under what conditions c is a function ¢: & — {0, 1}, i.e. when is c a
binary classifier? Spelling out the condition of being well-defined of Definition 3.36 for
the relation ¢, we have that c is well-defined iff for a fact situation X, and outcomes s and ¢,
we have that €, X F s and 6, X F ¢ implies s = t. In other words, c is well-defined exactly
when the case base is consistent. Similarly, to say that c is total is just to say that € is
complete.

We have discussed several equivalent formulations of case base consistency and
completeness, corresponding to the different views of the a fortiori models discussed in the
preceding sections, and we summarize them in the following proposition.

Proposition 3.37. The following are equivalent statements about consistency of 6:

(1) <€ is consistent;

(2) There is no fact situation X such that €,XE0and €,X E 1;
(3) [ConT61=0;

(4) ®©y A Dy is unsatisfiable;

(5) The classify relation c is well-defined.

Dually, we have the following list of equivalent statements expressing completeness of 6 :
(1) €6 is complete;
(2) For every fact situation X either €, X =0 or 6€,XE1;
3) lCuler=2;
4) ®gvV Dy is valid;
(5) The classify relation c is total.

When considering classifiers, one is often interested in classification accuracy. When
the set of fact situations & comes with ground truth labels, it is partitioned by two sets
Zo U X1 =% indicating these labels. In such a scenario, we can consider the degree to
which the labels forced by the case base are in agreement with these ground truth labels.
We can visualize this comparison by modifying the Euler diagram representation that we
gave in Figure 3.2. We do this by indicating the subset &y € & as a green shaded area,
and the subset ] € & as ared shaded area, divided by a dashed line; see Figure 3.3.

The Euler diagram corresponding to the general case, when the case base is neither
consistent nor complete, is depicted by Figure 3.3a. If, however, the case base is a proper
classifier (meaning it is consistent and complete), the picture looks as in Figure 3.3b.
We can think of this Euler diagram as a confusion matrix: |6y N % contains the true
negative fact situations, |6y N % the false negative fact situations, 16, N X the true
positive fact situations, and 761 N %y the false positive fact situations. We will return to
this representation for our data analysis in Chapter 7.
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(a) Neither consistent nor complete (b) Both consistent and complete

Figure 3.3: An adaptation of the Euler diagrams in Figure 3.2 for when the space of fact situations
Z is partitioned by X, the green shaded area, and &7, the red shaded area, indicating ground truth
labels 0 and 1, respectively.

3.11 Conclusion: Moving to hierarchical structures

In this chapter we considered the DRM: an extension of the RM that can handle dimensional
data. We recalled its definitions as proposed by Horty (2019), and adapted them to partial
fact situations. We then showed that the RM can be seen as a special case of the DRM. Lastly,
as a step towards our data analysis in Part II of this thesis, we described the DRM in terms
of order theory and many-sorted logic.

A second extension of the RM, which we refer to as the hierarchical result model (HRM),
has been proposed in the literature. It expands on the knowledge representation of the Rm
by assuming that the factors form a hierarchy. In this context, factors do not directly favor a
decision for a decision for the plaintiff or the defendant, but provide support to each other
in a hierarchical fashion. Recognizing this hierarchical structure—as was first done by the
developers of the CATO program (Aleven & Ashley, 1997)—raises the question how the
notion of constraint should be altered. We address this, and related questions, in the next
chapter.



Chapter

Modeling Factor-Based
Hierarchical Constraint

gem===| HE GOAL OF THIS CHAPTER is to develop a version of the RM that accommo-
) @@Q dates additional hierarchical structure on the set of factors, which we do
4 Wk . . . . .
§| p#=y4| based on ideas in earlier work on formal models of precedential constraint
by Roth (2003) and Roth and Verheij (2004).! We begin in Section 4.1 by
discussing some examples of factor hierarchies, one of which is based on
the running example introduced in Section 2.1, and then formalize the notion of factor
hierarchy as a knowledge representation framework in Section 4.2. We then discuss some
possible approaches to adapting the notion of constraint from the RM to this extended
representation in Section 4.3, and subsequently present our variant—the resulting model is
referred to as the “hierarchical result model” (HRM). We contrast our definition of constraint
with that found in the literature through some examples, and then spend the remainder of
this chapter analyzing formal properties of the HRM. In Section 4.6 we show that the HRM
is monotonic in the addition of cases and in the addition of information to a focus fact
situation. Then, in Section 4.7, we show that the RM is a special case of the HRM, or in
other words, that the HRM is a conservative extension of the RM. Finally, we end with some
concluding remarks in Section 4.8.

4.1 Examples of factor hierarchies

We continue our running example on the domain of criminal sentencing. Recall that
in Section 2.1 we discussed some factors influencing a recidivism risk assessment. A
downstream purpose of such an assessment is to determine whether a defendant should
be released on bail. Bail is a sum of money that a defendant must pay to the court as a
guarantee that they will appear at their trial—if the defendant does not appear, the bail is
forfeited. The decision to grant bail, like recidivism risk, is influenced by several factors;

1Al of the material in this chapter, with the exception of some of the examples, stems from van Woerkom et al.
(2023a, 2025).

46
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e.g. a defendant with a high risk of flight is less likely to be granted bail, while one with a
history of appearing to court is more likely to be granted bail.

In other words, determining bail is a domain to which the result model can be applied,
but this time one of the input factors—risk of recidivism—can itself be determined on
the basis of a fortiori reasoning. This situation is described as a factor hierarchy in the
Al & law literature. The hierarchical structure of factors was first recognized by Aleven
(1997, 2003) in his work on the CATO program, and has since become a standard component
of work in A1 & law involving factor-based knowledge representations; see e.g. the work by
Bruninghaus and Ashley (2003), Grabmair (2017), Prakken and Sartor (1998), and Roth
(2003), among others.

We expand the set (2.1.1) from Section 2.1 to a factor hierarchy for a bail decision:

Bail
Recid _ Appear Flight (4.1.1)
/ : h :\ Tl
! o~ - ~~<
Record Male Education Married ~ Age

The Bail node corresponds to a decision to grant bail. The links are either solid or dotted,
which carries the same meaning as it did in our earlier example; for instance, the dotted line
from Recid to Bail indicates that high risk of recidivism suggests bail should be denied.
Two other factors are added: Appear, which represents that the defendant has a history of
always appearing for trial, and Flight, which stands for a low or high risk of fleeing. This
means that in this example we assume that older people are more likely to flee before trial
than younger people. Whether this assumption holds in practice is debatable—it is added
primarily to exemplify that factors can influence multiple higher level factors. The vertical
order in the graph represents the level of abstraction: the lower the position of the factor,
the less abstract it is. Lastly, we stress that the hierarchy is not intended to be an exhaustive
representation of the real-world factors influencing a bail decision.

Aside from our running example we mention the prototypical example of a factor
hierarchy: the hierarchy developed by Aleven (1997) on the domain of trade secrets, used
by his cATO program. A fragment is depicted below (Aleven & Ashley, 1997, Figure 4):

F114 FlOl F120 FllO

\
~
~o

F115 F121 F102 F104 " F105 F111
FlZ& &10%108
F15 F16

Aleven maintains the following terminology regarding this hierarchy. The factors at
the bottom of the hierarchy are at the lowest level of abstraction and are called “base-
level factors.” For example, the factor F1 represents that the “plaintiff disclosed its
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product information in negotiations with the defendant.” The base-level factors link to the
“Intermediate Legal Concerns,” which are more abstract factors representing normative
legal knowledge of the domain. For example, the aforementioned F1 negatively influences
the intermediate legal concern F122, which states that the “plaintiff took efforts to maintain
the secrecy of its information in its dealings with the defendant.” In turn, this factor
positively influences the more general intermediate legal concern F102, which states that
the “plaintiff took efforts to maintain the secrecy of its information.” Finally, at the top of
the hierarchy are the “Legal Issues,” which correspond to the main issues that courts use
to explain their decisions (Aleven, 1997, Section 3.2.2). For example, the intermediate
legal concern F102 positively affects the legal issue F101, which states that the “plaintiff’s
information is a trade secret.” See Aleven (1997, Appendices 1 and 2) for a complete
overview of the factors in the CATO hierarchy and their meaning.

We now proceed to introduce the general framework of knowledge representation that
we will use to formally represent factor hierarchies, and for which we will subsequently
define a notion of constraint.

4.2 Knowledge representation

We now expand the knowledge representation used by the rRM, discussed in Section 2.2, to
one incorporating hierarchical structure on the set F of factors. Horty (2011, Section 7)
discusses a possible extension of his result and reason models of precedential constraint to
account for hierarchical structure. He remarks that in such an extension, the outcomes 7
and 0 can be taken as special factors, and a precedent case as “a linked set of precedent
constituents, beginning with a characterization of the initial fact situation as a set of
base-level factors, proceeding through a series of higher-level legal concepts, and eventually
arriving at a decision [...] for the plaintiff or defendant.” This is very similar to the approach
taken by Roth (2003), who represents cases as sets of factors and links between them
(indicating the hierarchical structure), and in which the case outcome is considered to be
just one of the factors.

We will use a slightly different approach in this work. Firstly, we will not assume that
the set of factors necessarily contains a factor corresponding directly to the case outcome.
This is to accommodate the point of view, as recently advocated by e.g. Bench-Capon
and Atkinson (2021), that precedent cases serve to determine the applicability of legal
issues—the legal questions that need to be answered in order to determine the outcome of
the case. Proponents of this view argue that case outcomes are determined as a logical
function of the legal issues of the domain, and not directly on the basis of precedent; rather,
it is the applicability of the issues that is determined by precedent. In our approach, we
assume that the factor hierarchy of the domain culminates in one or more factors, which
may either correspond to the issues of the domain, or (if there is just one) directly to the
case outcome. For the sake of discussion we will henceforth refer to the top-level elements
of the hierarchy simply as issues, even in the case where there is a single top-level element
corresponding directly to the case outcome.

Secondly, we will not consider the hierarchical structure to be part of individual
cases—as in the representation used by Roth—but rather as a separate structure which the
set of factors is endowed with. More specifically, we model this structure using a relation
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on the set F of factors.

Definition 4.1. A factor hierarchy (F,Pro,Con) consists of a finite set of factors F with two
binary relations Pro and Con on F, such that Pron Con = @, and such that the transitive
closure of their union H = Prou Con is irreflexive.

In other words, a factor hierarchy consists of a set of factors as in the RM, which is given
hierarchical structure by a relation H; given factors p, g € F the relation H(p, g) means p is
directly below g in the hierarchy. The hierarchical structure may not contain loops, and
any link H(p, q) represents either that the presence of p lends defeasible support to the
presence of g—if Pro(p, g)—or that it lends defeasible opposition to the presence of g—if
Con(p, g)—but never both, as Pron Con = @.

All the usual terminology employed in the literature on factor hierarchies can now be
expressed in terms of the structure (F, Pro, Con). An H-minimal factor is called base-level,
and we write B for the set of all base-level factors in the hierarchy. A factor that is not
base-level is called abstract, and the set of abstract factors is denoted by A, and so F
is partitioned by F = AU B. Factors are assumed to support or oppose each other in
hierarchical fashion, as indicated by the relations Pro and Con. When Pro(p, q) holds we
say p is a pro-q factor, and when Con(p, q) we say p is a con-g factor. Note that any
subset G < F of the set of factors, together with H restricted to G, yields a factor hierarchy
(G, Pro,Con).

In the rRM, a fact situation is made a case by pairing it with an outcome. In Definition 4.1
of a factor hierarchy, the distinction between factors and issues, or case outcomes, is
dropped. This means that if we define a “fact situation” X as a valuation X : F — {f, t}
then X will necessarily assign a truth value to the issues of the domain. This definition is
therefore more akin to the notion of a case than to the notion of a fact situation. As such, in
order to be able to speak of a fact situation, we should allow these valuations to be partial
in the sense introduced in the preceding chapters (see Sections 2.4 and 3.4).

More specifically, a fact situation X is a valuation of a subset of F, i.e., a partial fact
situation as before, and again we write dom(X) for the subset of F on which X is defined.
We employ the same notation with regards to the truth values of the factors in X, so for
example X F p means X(p) =t. An important conceptual difference with the rM is that p
may now be an abstract factor, such as an issue. These do not receive their truth values “as
a matter of fact,” but are assigned a truth value by a decision-maker as a result of weighing
the pro- and con-p factors. In other words, if X & p then this means it was decided that p
applies in X—possibly on the basis of precedential reasoning.

Example 4.2. Consider the factor hierarchy depicted in (4.1.1). We can extend the case
(Y,1) from Example 3.4 with Y = {Record, "Male, "Education, Married, 7Age} to a fact
situation for this domain. The outcome 1 of the case (Y, 1), which represents a judgment
that Y poses a recidivism risk, now means that Y assigns true to the Recid factor, so
Y E Recid. Suppose, furthermore, that Y & {Appear, —Flight, Bail}, which means that
Y has a history of appearing to court, is judged to be a low flight risk, and (thus) was
granted bail. Notice the difference between the base-level factors, which correspond to
the “plain facts” of the situation, and the abstract factors, which correspond to judgments
by a decision-maker. Whether Y has had a high school education is a fact about Y which
is pre-determined, while the question of whether Y poses a flight risk is something to be
decided presently, by weighing the pro- and con-Flight factors in the hierarchy.
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In this knowledge representation we also allow cases to be partial. The reason for this is
twofold. Firstly, pragmatically, we want to allow the possibility for cases to be undefined
on factors because in practice a court may not make a decision about every factor of the
domain. Secondly, formally, no further requirements on cases are needed for our definition
of constraint (cf. Section 4.3). This generality allows users of the HRM to further augment
the definition of a case, if needed. For example, in practice it could be natural to require
that a case—by definition—is decided on at least one of the issues of the factor hierarchy.
Furthermore, as a second example of a natural requirement of cases, we could ask that for
each abstract factor p which is assigned true in the case, at least one pro-p factor ¢ is also
assigned true in the case. However, we stress once more that neither of these requirements
is necessary for defining a notion of constraint in our framework, and so we omit them.

4.3 Approaches to hierarchical constraint

The introduction of the hierarchical structure poses the question how it should influence
the notion of constraint, and we will now consider some approaches. As an example to
guide this discussion we will consider the following modification of the hierarchy depicted
in (4.1.1). The PFTA factor corresponds to whether the defendant has previously failed to
appear to court.

Bail
— NY
Appear Recid (4.3.1)
PN N
Employed PFTA Priors Age

The first question we consider is whether constraint should work only on the top level
factors in the hierarchy, or also on the abstract factors. For example, in the hierarchy depicted
by (4.3.1), should previous decisions about the recidivism risk factor Recid constrain future
decisions about this factor? Or should constraint be limited to function only on the ultimate
decision about granting bail, represented by the Bail factor? Bench-Capon (2023) argues
that the abstract factors appearing in factor hierarchies in the literature do not form part
of the law in the domain they are describing; therefore, there is no suggestion that judges
would acknowledge them. In this view, decisions about abstract factors should not induce
constraint, at least in the legal setting. In related work on hierarchical constraint, Canavotto
and Horty (2023a) argue in response to Bench-Capon’s objections that formal work on
hierarchical constraint describes normative reasoning more generally, and have wider
potential applicability than just to the domain of law. Indeed, the notion of hierarchical
constraint put forth by Canavotto and Horty (2023b, Definition 9) functions on the abstract
factors, in addition to the issues of a factor hierarchy. We agree with this more general
view, and will define constraint to operate on abstract factors.

The second question we consider is whether the status of the abstract factors of a
precedent case should play a role in the constraint that is induced, or whether it should be
only the status of the base-level factors that influence whether constraint is applied. The
definition of constraint developed by Roth (2003, Section 3.6.6) takes this second stance,
and a similar form of constraint is studied by Canavotto and Horty (2023b, Section 5).
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Following terminology of Canavotto and Horty (2023a, 2023b), we will refer to this as flat
constraint. This involves successively adding connections to the hierarchy from lower level
factors to higher level ones, in order to ultimately be able to say whether the base-level
factors support or oppose abstract factors that they are not directly connected to in the
hierarchy. This then gives rise to an instance of the regular RM, so that its notion of
constraint can be applied as before.

To exemplify these approaches we consider the factor hierarchy depicted in (4.3.1).
Since the base-level factors in this hierarchy do not directly connect to the bail decision
issue, we can not apply the RM to constrain bail decisions on the basis of truth values
of the base-level factors. However, there are (by definition) paths in the hierarchy from
the base-level factors leading up to the issues (in this case the bail factor) through the
intermediate abstract factors. The idea of flat constraint is to successively add missing
links on the basis of the polarity of these intermediate links. For instance, in (4.3.1), the
base-level factors do not have links directly to the Bail issue, but do have links to the
intermediate abstract factors Appear and Recid. Since Employed supports the abstract
factor Appear, which in turn supports the Bail issue, we can see that the presence of the
Employed factor also supports a decision to grant bail. Therefore, we could extend the
hierarchy to include a direct link of support from the Employed factor to the Bail factor.
Similarly, the Priors factor is a pro-Recid factor, which is itself a con-Bail factor. So, we
can conclude that prior offenses indirectly suggest bail should not be granted, and this can
be encoded as a negative link from Priors to Bail. In the end, we obtain:

Bail
/ e N \\ (4 3. 2)
Employed PFTA Priors Age

This method of successively adding links from the base-level factors to the issues can
be described by the following four patterns:

- 4.3.3)

4

$
$

When the factor hierarchy is more than two levels high, such as the one in (4.1.2), the
newly added links can then be recursively subjected to the same rules until only direct
links between base-level factors and the issues remain. The rules in (4.3.3) correspond to
the clauses of Definition 2 of Canavotto and Horty (2023b) when translated to our setting.
Roth’s (2003) Definition 6 works similarly, but only includes the two patterns on the left.

This flattened hierarchy in (4.3.2) constitutes a factor partition in the sense considered
in Section 2.2, and so the notion of constraint of the RM can be applied to it. We thus see
that, in the resulting notion of constraint for factor hierarchies, the status of the intermediate
factors in the constraining precedent case becomes inconsequential.

An alternative to flat constraint is what is called hierarchical constraint by Canavotto
and Horty (2023a, 2023b). In this approach, the constraint is induced directly on the basis
of the status of the abstract factors in the precedent case. The idea underlying this approach
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is that it is the status of the factors that is consequential (with respect to connected higher
level factors), rather than the reason for their status (resulting from weighing connecting
lower level factors). For example, looking again at (4.3.1), this approach argues that
when it comes to a decision about granting bail, what matters is whether someone poses a
recidivism risk or not. Once it has been established that someone poses a recidivism risk,
it becomes irrelevant whether this was because they were young, or because they had many
prior offenses.

In the subsequent section we implement hierarchical constraint by use of recursion.
Each abstract factor p in the hierarchy, together with its direct subordinate pro- and con-p
factors, is taken as an instance of the regular RM. Constraint is then applied recursively,
each step involving the citation of a precedent case. This allows for the notion of constraint
to involve several precedent cases, successively building up constraint on the more abstract
levels of the hierarchy. To illustrate, we again consider the factor hierarchy depicted
in (4.3.1). Suppose there is a precedent case X in which it was determined that a defendant
over the age of 21 with prior convictions was deemed at high risk of recidivism. In other
words, the Priors factor outweighs the Age factor when it comes to determining risk of
recidivism. Furthermore, suppose there is a second precedent case Y in which it was
determined that a high risk of recidivism is reason enough to deny bail, even when the
defendant has a high chance of appearing to court. This means it was determined that the
Recid factor outweighs the Appear factor. In the presence of these two precedent cases,
any fact situation containing the Priors factors should therefore be forced for the outcome
of having bail denied: first X constrains the decision for a high recidivism risk judgment,
and then, on the basis of this high recidivism risk, Y constrains a decision for bail denial.

To define constraint we write Pro(p) for the pre-image of p under the relation Pro, so
Pro(p) ={g € F | Pro(q, p)}, and similarly Con(p) for its pre-image under Con. We now
define two relations €, X = p and €, X E —p of constraint for the HRM by mutual recursion.

Definition 4.3. Let p € F, X a fact situation and ¥ a case base, then the decision of X for
p is forced by €, denoted €, X E p, if and only if either
* XEp,or
e p€ Aand there is acase Y € € with Y F p and
— for all g€ Pro(p): if Y E g then ¢, X & g, and
— for all g€ Con(p): if Y E—q then €, X E gq.
Likewise, the decision of X for —p is forced by €, denoted €, X = —p iff either
* XE-p,or
* pe Aand thereis acase Y € ¢ with Y E-p and

— for all g€ Pro(p): if Y E—q then 6,X E —q, and
— forall g€ Con(p): if Y E g then €,X E q.

Remark 4.4. Definition 4.3 of constraint differs from that proposed by van Woerkom et al.
(2023a), who use the implication “if €, X k= g then Y = g” for the con-p factors g, whereas
Definition 4.3 uses the implication “if Y E —1q then €, X E —q.” This is entirely analogous
to the differences discussed in Section 2.4 and corresponds to the two options (1) and (2)
discussed in Remark 2.4.
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Remark 4.5. Note that, according to this definition of constraint, in order for a fact situation
X to induce constraint on an abstract factor p we should have p € dom(X), meaning X
should be defined on p. Therefore, in order to serve as a precedent in the usual sense of the
word, a fact situation X should be defined on at least one abstract factor.

We note two simple consequences of this definition. Firstly, any factor p € F that is
deemed to hold in a fact situation X, so X F p, continues to hold in the presence of a case
base 6.

Lemma 4.6. If X E p then €, X E p. Likewise, X E ~p implies €, X E —p.
For base-level factors—i.e. those in B = I\ A—the converse of Lemma 4.6 holds too.
Lemma 4.7. If p € B then €, X E p implies X = p, and €, X E ~p implies X E —p.

Proof. As p € B we have p ¢ A, and so spelling out Definition 4.3 gives:

€, XFp
iff e« XE p, or
e pe Aandthereis Y € ¢ with Y F p and
—for all g € Pro(p): if Wk g then 6, X E gq, and
— for all g € Con(p): if W E =g then €, X E ~q
iff X & p. O

Example 4.8. To illustrate Definition 4.3 we work through an example based on the factor
hierarchy depicted in (4.1.1), which is formally specified by (F, Pro, Con) where

F = {Bail, Recid, Appear, Flight, Record, Male, Education, Married, Age},
Pro = {(Record, Recid), (Male, Recid), (Appear, Bail), (Age, Flight)},
Con = {(Education, Recid), (Married, Recid), (Age, Recid), (Recid, Bail),
(Flight, Bail)}.

Let X and Y be two fact situations for this hierarchy, defined by

X F {?Bail, ?Recid, Appear, Flight, Record, "Male, Education, "Married, Age},
Y k {Bail, "Recid, Appear, Flight, "Record, Male, Education, Married, "Age}.

We consider whether the decision to grant bail to the defendant in fact situation Y induces
constraint for the decision to grant bail to the defendant in the focus fact situation X:

{Y}, X E Bail
iff ¢« X = Bail, or
e Bail € A and there is W € {Y} with W = Bail and
— for all g € Pro(Bail): if W & g then {Y}, X F g, and
— for all g € Con(Bail): if W E =g then {Y}, X F g
iff {Y}, X E {Appear, “Recid}.
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As X E Appear, and so {Y}, X E Appear, this simplifies to {Y}, X E —“Recid, but

{Y}, X E —Recid
iff « X E —Recid, or
e Recid € A and there is W € {Y} with W E —Recid and
— for all g € Pro(Recid): if W E g then {Y}, X F =g, and
— for all g € Con(Recid): if WE g then {Y}, X E g
iff {Y}, X E {-Record, Married, Education},
iff X F {-Record, Married, Education;}.

The last equivalence follows from Lemma 4.7. By definition X F Record and so X ¥
—Record and thus {Y}, X i Bail, meaning there is no constraint induced by Y.

The case Y does not constrain X in this example, because in Y it was decided that the
defendant was not at risk of recidivism while X is undecided on this factor. Furthermore,
Y does not force a low risk of recidivism assessment in X. However, due to the recursive
call in Definition 4.3, a second precedent case may be used to force a decision in X for
—Recid. To illustrate this, we now supplement the case base {Y} with a case Z such that

Z & {—Recid, Record, "Male, Education, "Married, —"Age}.
This new case base {Y, Z} does constrain X on the recidivism factor:

{Y, Z}, X E = Recid
iff « X F - Recid, or
e Recid € A and there is W € {Y, Z} with W E —~Recid and
— for all g € Pro(Recid): if W E =g then {Y, Z}, X F —q, and
— for all g € Con(Recid): if WE g then {Y,Z}, X E g
iff {Y, Z}, X E {"Male, Education},
iff X = {—-Male, Education}.

We thus find that {Y, Z}, X E —Recid. So, as X = Appear we have {Y, Z}, X F Appear by
Lemma 4.6 and similarly {Y, Z}, X E Flight which means that {Y, Z}, X  Bail by the earlier
line of reasoning.

Note that we have not specified the values of Z on the other factors influencing the
decision to grant bail. This was done intentionally—to demonstrate that the values of
Z on those factors is irrelevant with respect to its role in constraining the decision of X
for —=Recid. In fact, the line of reasoning of this example would still work just as well if
Z & —Bail, which means that a case can contribute to forcing an outcome which it itself was
not decided for: we would have both Z F —Bail and {Y, Z}, X E Bail (while {Y}, X i Bail).

Lastly, this example has served to demonstrate that more than one precedent case can
be involved in forcing an outcome in a focus fact situation—a feature which results from
our use of recursion in Definition 4.3. In contrast, the flat version of constraint, which we
discussed in Section 4.3, necessarily involves only a single precedent case.
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Table 4.1: A description of some factors influencing a decision of whether a dismissal can be voided,
as used by Roth and Verheij (2004). The factors are based on the Dutch Civil Code. See (4.4.1) for a
representation of the hierarchical structure between these factors.

Factor  Description

T The dismissal can be voided.

F1 The dismissed person has always behaved like a good employee.
F2 The dismissed person committed a serious act of violence.

F3 The working atmosphere has not been affected by the dismissal.
F4 The employee has a criminal record.

F5 The dismissed person always arrived on time for work.

F6 The dismissed person once insulted a superior.

F7 The dismissed person was always dressed properly.

4.4 Discussion of related research

Example 4.9. Next we compare our notion of constraint to that used by Roth and Verheij
(2004, Section 3), by examining their example on the domain of Dutch dismissal law. The
associated hierarchy is shown below, and a description of the factors is given in Table 4.1:

T .
; \\\\\\\\
F1 /FIZ\ F3 " F4 44.1)
N
F5 F6 F7

The case outcome corresponds to whether or not the dismissal can be voided, and relevant
factors are considered such as whether the dismissed person has always behaved like a
good employee (F1). We consider a precedent Y and a focus fact situation X satisfying
Y & {n,F2,—F3,F4,F5,F6,7F7} and X F {?x,?F1,F2,F3,~F4,F5,-F6,F7}. Unfolding
Definition 4.3 we see that {Y}, X E & if and only if Y = F1:
(YL XExiff e XEx, or
o7 € A and there is Z € {Y} with Z E o and
—for all p € Pro(s): if ZE p then {Y}, X F p, and
—for all pe Con(x): if ZE —pthen {Y},XE-p
iff {Y}, XEF1
iff « X EF1, or
*F1 € A and there is Z € {Y} with Z EF1 and
—for all p € Pro(F1): if ZFE p then {Y},X F p, and
—forall pe Con(F1): if ZE = pthen {Y},XE—p
iff Y = F1.

In other words, whether F1 applies in Y or not entirely determines whether Y can constrain
the decision of X for 7.
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We contrast this with the framework of Roth and Verheij. Recall from Section 4.3
that they use the flat version of constraint. More specifically, applying the two leftmost
transformations of (4.3.3) to the dismissal hierarchy in (4.4.1), we obtain the following set
of factors directly favoring or opposing dismissal voidance:

n\
- \ SN
e \ >~
e \ S~a
F5 F6 F7 F2 F3 " F4

Now we can simply apply the rRM, i.e. Definition 2.3 of constraint, and find:

YL XEn

iff o for all p € Pro(or): if Y E p then X E p, and
e for all p e Con(sr): if Y E-pthen X E-p

iff X EF5.

As we assumed that F5 applies in X, this means that according to flat constraint we indeed
have {Y}, X E m—regardless of whether F1 was deemed to apply in Y or not. In the words
of Roth and Verheij (2004, adapted to our notation): “there is more dialectical support for
conclusion 7 in X than in Y, so that the conclusion 7 can follow in X as well. Note that
for concluding to the outcome that there is more dialectical support for st in X, it does not
matter how the conflict with regard to the intermediate F1 is to be resolved.”

In the previous example, we saw that there is an essential difference between flat and
hierarchical constraint on an abstract factor p: for flat constraint, the truth values of the
abstract factors below p are irrelevant with respect to the constraint induced by precedent on
p, while for hierarchical constraint these truth values play an essential role. The differences
between flat and hierarchical constraint are treated extensively by Canavotto and Horty
(2023b, Section 5) in the context of the reason model, and Bench-Capon (2024) argues that
flat constraint is more faithful to legal practice than the hierarchical variant. The following
example illustrates his point of view.

Example 4.10. Bench-Capon (2024, Section 3) has argued that flat constraint is a more
appropriate notion than hierarchical constraint. His argument is guided by an example on a
treat domain, in which parents use several factors to decide whether their children should
be given treats or not.2

The factor hierarchy of this domain is given by (a) below:

I
/ AN '{\\
(a) Q R (b) RN
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P ! ' \\\ \\ \\\
| : \\ AN / \\ AN
F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

An overview of the meaning of the factors can be found in Table 4.2. Bench-Capon

2This non-legal example is also used by Canavotto and Horty (2023a), continuing a tradition of Twining and
Miers (2010).
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Table 4.2: The factors of the treat domain, in which parents decide whether or not to give their child
ice cream, used by Bench-Capon (2024) and Canavotto and Horty (2023a).

Factor  Description

I Deserved ice cream.

P Tidied room.

Q Behaved well at home.
R Behaved well at school.

F1 Folded clothes.

F2 Made the bed.

F3 Threw toys.

F4 Handed in homework.
F5 Was inattentive in class.
F6 Interrupted the teacher.

considers several cases for this domain, one of which is called MaxMonday, which we will
denote by X, given by X F {F1,7F2,~F3,-F4,F5,7F6,P,Q, R, I}.3 As we can see, in the
case X the child was given ice cream, based on the presence of the factors F1 and F5, and
the absence of the rest of the base-level factors. The parents deemed that the child tidied
their room, (and thus) behaved well at home, but did not behave well at school because
they were inattentive in class.

Bench-Capon then discusses two possible interpretations of the decisions by the parents
regarding X. The first is the hierarchical interpretation that the factor Q of good behaviour
at home outweighs the factor =R of bad behaviour at school. Bench-Capon argues that this
is a quite sweeping judgment, and that it is inappropriate to generalize this single decision
by the parents to mean the parents find that good behaviour at home always outweighs bad
behaviour at school. He favors a second interpretation, which is that the base-level factor
F1 outweighs F5 (granted that no other base-level factors apply).

It is our interpretation of the factor hierarchy (a) above that the decision in MaxMonday
indeed represents a decision that Q outweighs —R. This is based on our interpretation of
the meaning of a “factor hierarchy:” what is relevant with respect to constraint is whether a
subordinate factor applies and not why it applies. This can be seen in the more realistic
hierarchy of (4.1.1)—with respect to a Bail decision, it is relevant to know if the recidivism
risk factor Recid applies or not. We regard the factor hierarchy of (4.1.1) as encoding an
assumption that it is relevant for a Bail decision to know whether Recid does or does not
apply, and that it is not relevant for a Bail decision to know why Recid does or does not
apply. If the specific circumstances of the causes influencing the application of Recid were
directly influential to a Bail decision, then this should be encoded in the hierarchy by direct
links to the Bail issue from the base-level factors subordinate to Recid.

Another consideration with respect to hierarchical constraint that touches on this is
whether the decision-maker wants to be consistent with respect to decisions about the
application of intermediate abstract factors. Bench-Capon mentions that the parents of
Max want to be consistent with respect to the issue I of granting treats or not, and thus
opt to apply a fortiori case-based reasoning. However, he does not specify whether they
also want to be consistent with respect to decisions on the intermediate facotrs P, Q, and R.

3Bench-Capon only implicitly states the truth values of the abstract factors.
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Hierarchical constraint takes consistency of intermediate factors into account, whereas flat
constraint does not—we will discuss this more generally in Section 4.5.

Finally, we note that the HRM can be used by proponents of either the hierarchical or flat
constraint view. This is because when the HRM is applied to a flat hierarchy such as (b)
above, it acts exactly as the RM would, as we will show in Section 4.7. In fact, the HRM can
be more generally applied because the flattening procedure of (4.3.3) may produce factors
that are simultaneously pro and con an issue; this is why Canavotto and Horty (2023b,
Definition 3) only consider hierarchies for which this cannot occur.

4.5 Consistency

As with the rRM, the definition of constraint also gives rise to a notion of (strong) consistency
of case bases. The difference is that there are now multiple factors on which constraint is
induced, rather on just the outcome. As a result, we have a notion of inconsistency for each
of the abstract factors.

Definition 4.11. Let p € A be an abstract factor, and ¥ a case base. A fact situation
X is p-inconsistent with respect to € if both €, X = p and €6, X E —p; otherwise, X is
p-consistent.

Example 4.12. To give an example of p-inconsistency we return to the setting of
Example 4.8. Suppose we had, in addition to the fact situations X, Y, Z, a fourth fact situation
W such that W  {Recid, Record, "Male, Education, Married, Age}. We can compute that
{W}, X E Recid, and so (by Proposition 4.13 below) we have {W,Y, Z}, X E Recid and
{W,Y, Z}, X E —Recid, which means X is Recid-inconsistent with respect to the case base
{W,Y, Z}. This need not imply that X is also inconsistent with respect to more abstract
factors above Recid, such as in this case the Bail factor. If, for example, we had Z & Bail
and W kE Bail while leaving the truth values of the other factors the same, then X would be
Recid-inconsistent and Bail-consistent.

4.6 Monotonicity
The HRM, like the RM, is monotonic in the addition of new cases.

Proposition 4.13. Let p € F, € <2 be two case bases, and X some fact situation; then
€,X F pimplies2,X E p, and €,X E ~p implies 2,X E —p.

Proof. We proceed by mutual induction on the position of p in the hierarchy H. For the
base case, when p is H-minimal (so p € B) Lemmas 4.6 and 4.7 tell us

¢, XEp iff XEp iff 2,XEp,

and similarly €, X E ~p iff 2, X E —p. In the induction case, when p € A, we know that
for all g € Pro(p)uCon(p): €, X = g implies 2, X E q, and €, X E ~q implies 9, X = q;
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therefore:

2,XEp
iff e XEp,or
e peAandthereis Y €2 with Y E p and
—forall gePro(p): if YEgthen 9, X E g
—for all g€ Con(p): if Y E —g then 9, X F ~¢q
if e Xk p, or (%)
e pe Aandthereis Y € € with Y E p and
—forall ge Pro(p): if Y = g then €, XEq
—for all g€ Con(p): if Y F —g then €,X E g
iff €, Xk p.

Step (*) follows from € < 2 and the induction hypothesis: if there is Y € € satisfying
the conditions described of (), then Y € 2. Furthermore, given g € Pro(p), if Y & g, then
%,X E g and so 9, X E g by the induction hypothesis; the case for g € Con(p) follows the
same pattern. By similar reasoning we can show €, X F —p implies 2, X = —p, which
completes the induction case and thus the proof. O

Just as the RM, the HRM is also monotonic with respect to the extension of fact situations.
The proof of this is just as in Proposition 2.16, so we omit it.

Proposition 4.14. If X € Y then €,X E p implies €,Y & p, and €,X = ~p implies
€,Y Ep.

Remark 4.15. We mention, as in Remark 2.18, that the differences between options (1)
and (2) lead to different results regarding monotonicity. In fact, with option (2), the HRM is
nonmonotonic with respect to both the addition of cases to the case base, and to addition of
information to the focus fact situation, the former of which was shown by van Woerkom
et al. (2023a, Proposition 4.18).

4.7 Relation to the result model

We will now show that the HRM is a conservative extension of the RM, in the sense that
when the HRM is restricted to hierarchies with only one abstract factor, and case bases
which are defined on this factor, it reduces to the RM. To show this, we will construct a
translation f that maps instances of the RM to instances of the HRM, and prove that this
translation respects Definitions 2.3 and 4.3 of constraint.

Definition 4.16. A factor hierarchy is flat if its set of abstract factors is a singleton.

Any factor partition F = Prou Con can be mapped to a flat hierarchy f(Pro,Con). To
do this, we first introduce a new factor p; (so p; € F), and then define

f(Pro,Con) = (F U {px},Pro x{pz}, Con x{py}).
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It is easily checked that f(Pro,Con) satisfies the requirements of Definition 4.1, and that
the set of abstract factors of f(Pro,Con) is the singleton {p;}. Next, we extend f to operate
on fact situations, cases, and case bases. Given a fact situation X for the RM (with respect
to the factor partition (Pro,Con)) we translate it to a fact situation f(X) for the HRM (with
respect to the factor hierarchy f(Pro,Con)) by defining f(X)(p) = X(p) if p € dom(X),
and leaving it undefined otherwise. Similarly, a case (X, s) can be translated to a case
f(X,s) by defining f(X,s)(p) for p € Fu{n} by

X(p) if pedom(X),

fX,8)(p) =<t if p=pyand s=m,

f if p=pyand s=96.

Lastly, given a case base € we write f[€]={f(X,s)|(X,s) € €}.
The translation f preserves and reflects constraint, in the following sense.

Theorem 4.17. Given a case base 6 for a factor partition F = ProU Con and a focus fact
situation X we have

CXEniff fl6),fX)Epr and €,XEJIiff fI6), f(X)E py.
Proof. We consider the first equivalence. Spelling out Definition 4.3 we get

fI€), f(X)E pa
iff o f(X)E py, or
* p; € A and there is a case Y € f[¥] with Y F p; and
—for all g € Pro(py): if Y E g then f[€¥], f(X) E g, and
—for all g € Con(py): if Y E g then f[€], f(X) Eg.
By definition, f(X) ¥ px, and so only the second disjunct in this statement remains.
The requirement that p, € A = {p;} holds, and so can be removed. We also know that
Pro(ps) = Pro and Con(p;) = Con, so these can be substituted. Further filling in the shape
of Y € f[¥] as f(Y,s) for some (Y, s) € € we can thus continue with:
iff there is a case (Y, s) € € with f(Y,s) E p, and
—for all g € Pro: if f(Y,s) E g then f[€], f(X)E g, and
—for all g € Con: if f(Y,s) E g then f[€], f(X) Egq.
By definition of f(Y,s), the requirement that f(Y, s) E p, just reduces to s = 7; and, again
by definition, f(Y,s) E g holds iff Y E g. Since the hierarchy is flat, the factors over
which the ‘for all’ statements are quantifying are base-level, and so the statement that
fI€], f(X) E g reduces to f(X) E g by Lemma 4.7, which is in turn equivalent to X F g
by definition of f(X). We thus continue with:
iff there is a case (Y, 7) € € such that
—for all g € Pro: if Y & g then X E g, and
—for all g€ Con: if Y g then X E g
iff €, XEs.

The proof of the second equivalence is very similar to the above, so we omit it. O
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4.8 Conclusion: Moving to hierarchical structures

In this chapter we considered the hierarchical result model (HRM): an extension of the
result model (Rm) that operates on a knowledge representation framework based on the
concept of factor hierarchies. We developed a notion of “hierarchical” constraint for this
setting, and constrasted it with its “flat” counterpart which has been considered in the
literature. We then showed that our notion is monotonic in both the addition of new cases
and the addition of new information to a fact situation, and can be seen to extend the notion
of constraint of the RM when the hierarchy under consideration is flat. Lastly, we discussed
the evident adaptation of case base consistency to this version of constraint.

So far we have discussed the RM, in Chapter 2, and subsequently two of its extensions:
the dimensional result model (DRM), in Chapter 3, and the HRM, in Chapter 4. Our main
goal in studying and further developing these variations of the RM is to apply them to build
explanation methods for data-driven decisions, such as those made by machine-learned A1
systems. To do this, it is important that we use a knowledge representation framework that
uses dimensions rather than factors, because the data used for machine learning system
is almost always non-binary. This raises the question: can we adapt the HRM so that it
operates on the basis of “dimension hierarchies,” and thus unify the HRM and the DRM?
The next chapter is dedicated to developing this unification.



Chapter

Modeling Hierarchical
Dimensional Constraint

XTENDING THE KNOWLEDGE REPRESENTATIONS of Chapters 3 and 4, this
chapter unifies them, along with their associated notions of constraint, by
introducing a set of dimensions which has hierarchical structure—we call
this a dimension hierarchy.! We start in Section 5.1 by extending the running
example from Section 2.1 to incorporate both dimensional and hierarchical

information. The notion of dimension hierarchy is then formalized in Section 5.2, and its

associated notion of constraint is given in Section 5.3. As before, this induces a notion of
consistency, which we define in Section 5.4. We refer to the resulting model as the DHRM
and the rest of the sections are dedicated to investigating some of its formal properties. In
particular, in Section 5.5, we show that the DHRM is monotonic in both the addition of
cases to the case base and in addition to information to a focus fact situation. Then, in
Section 5.6, we show that the DHRM is a conservative extension of both the HRM and the
DRM, respectively. Finally, we end with some concluding remarks in Section 5.7.

5.1 An example of a dimension hierarchy

A major difference between the DRM and the DHRM is that dimensions can now be subordinate
to multiple more abstract factors. This raises the question whether the dimension preference
orders < should be specified per dimension or per link in the hierarchy. Additionally,
dimensions are now subordinate to other dimensions, rather than to a (binary) case outcome
or legal issue. What does it mean for a dimension to influence a more abstract dimension?
We will illustrate these differences through some examples to build intuition, before
continuing to the formal definitions.

'The formalism described in this chapter was first presented by van Woerkom et al. (2023b). The results related
to monotonicity, as well as the formal comparison to the variants of the Rm discussed in the preceding chapters,
are from van Woerkom et al. (2025).
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Consider the following modification to the factor hierarchy of (4.1.1):

Bail
Recid Flight Appear (5.1.1)
Priors Male Age

In the setting of a dimension hierarchy we can consider recidivism risk as a dimension,
for instance as a score ranging from 1 to 10. Additionally, Bail can now be considered a
dimension, specifying the amount of bail in, say, usD. Note that denial of bail can still
be modeled as an ‘infinite’ amount of bail. Appear, too, can be considered a dimension,
indicating the relative frequency of past trial appearances by the defendant.

To begin building some intuition for an appropriate notion of constraint in this setting we
illustrate a difference with the DRM, which is that dimensions now affect other dimensions
instead of the case outcome directly. To this end, we consider the subgraph of (5.1.1)
consisting of just the dimensions Recid, Priors, Male, and Age, and the fact situations
X, Y, and Z, listed in Table 5.1. The situation Z concerns a 25-year-old female with
2 prior offenses. What recidivism risk score may be consistently assigned to Z, given
the previous judgments that a 30-year-old female with 1 prior offense received score 5
(situation X), and that a 20-year-old male with 4 prior offenses received score 8§ (situation
Y)? Comparing the situation Z to X we see that Z is dimension-wise equal or more
indicative of recidivism risk than X: Z is younger, both Z and X are female, and Z has
more prior offenses. Since X received a recidivism risk score of 5, it seems sensible to
require that Z would get at least a score of 5, but possibly higher since Z is indicative of
higher risk on some dimensions. This exemplifies one of the key differences between the
DHRM and the previous models—decisions are not forced exactly, but constrained to lie
within an interval. Comparing Z to the situation Y we get the opposite picture; Y has
received a risk score of 8, but Z is dimension-wise equal or less indicative of recidivism
risk than Y. Therefore, we expect Z to receive a score of at most 8. In sum, {X, Y} should
produce the constraint that 5 < Z(Recid) < 8.

We now turn our attention to the full hierarchy, depicted by graph (5.1.1), involving a
downstream judgment of bail amount. In such a scenario, we can apply a recursive notion
of constraint as in the HRM. Consider, again, the fact situations listed in Table 5.1. We have
seen that X and Y bind the recidivism score of Z to the integer range [5, 8]. In addition, we
now have two situations V and W for which a bail amount was determined on the basis
of their recidivism risk assessment, risk of flight, and relative frequency of previous trial
appearances. We omit the information that led to the recidivism score assignment for
these fact situations. This is a general feature of the hierarchical models—once an abstract
dimension has been given a value it can be used for downstream reasoning regardless of the
reason behind the value’s assignment. Defendant V was granted a bail amount of $2,500,
on the basis of a recidivism risk score of 2, a perceived low risk of flight, and an 80%
appearance rate at previous trials. Defendant Z has a lower appearance rate at previous
trials and is similarly perceived as unlikely to flee, but is not yet assigned a definitive
recidivism risk score. However, since we know that Z should receive a risk score of at least
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Table 5.1: Five example fact situations V, W, X, Y, and Z for the bail domain.

Age Male Priors Recid Flight Appear Bail

X 30 0 1 5 - - -
Y 20 0 4 8 - - -
v - - - 2 0 0.8 $2,500
W -2 Lo 0.3 $20,000
zZ 25 0 2 ? 0 0.5 ?

5 it will in any case be higher than V’s score of 2. Therefore, we would ultimately expect
Z to receive a bail amount which is equal or greater than that of V—so $2,500 < Z(Bail).
Similarly, we can deduce from the case W that, since Z should receive a risk score of at
most 8, the amount of bail for Z should not exceed $20,000—so Z(Bail) < $20,000. In
sum, the case base {V, W, X, Y} should produce the constraints $2,500 < Z(Bail) < $20,000.

This use of recursion is useful, because it allows the use of the forcing relation despite
some dimensions not having been assigned an exact value. Consider, for instance, the
decision support system implemented by the Dutch National Police Force (Odekerken
& Bex, 2020). It is argued by Odekerken et al. (2023b) that determining the values of
dimensions for a specific case can be costly, and the aforementioned use of recursion can
alleviate this need for abstract factors.

5.2 Knowledge representation

We now adapt Definition 4.1 of a factor hierarchy to that of a dimension hierarchy.

Definition 5.1. A dimension hierarchy is a triple (D, Pro,Con), where D is a finite set of
dimensions, and Pro and Con are relations on D such that Pron Con = @, and such that the
transitive closure of H = Prou Con is irreflexive.

We maintain the same terminology as in the HRM for factors with respect to their
position in the hierarchy—a dimension is base-level if it is H-minimal, and the set of base
level dimensions is denoted by B; if a dimension is not base-level then it is abstract, and
we write A for the set of abstract dimensions. A fact situation X is a choice function on a
subset of D; we denote its domain by dom(X). Lastly, we assume each dimension d € D is
assigned a partial order < on d.

The way we define a dimension hierarchy in this section is with a fixed order for every
node of the hierarchy; outgoing positive links represent a positive correlation with respect to
this order, and negative links represent a negative correlation. The reader may wonder about
the situation when a dimension has an influence on multiple more abstract dimension—but
with respect to different orders. Consider, for example, an Education dimension, with
three possible values: none, high school, and higher education. With respect to
influence on risk of recidivism, we may order these values by higher education <
high school < none; but Education may also influence other dimensions with neither
this nor its inverse order. For example, a judge may take into account the defendant’s
societal ties when determining flight risk. Having had a form of education could be
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taken as reducing flight risk, without differentiating specifically between a high school
diploma and higher education. So, with respect to flight risk we could use an ordering
with none <high school and none < higher education, but with high school and
higher education mutually incomparable.

One way to deal with this would be to associate orders with links, rather than with
dimensions directly. In the previous example, this would mean that the Education
dimension has one outgoing link with respect to the linear order higher education <
high school < none, and one with respect to the order in which high school and
higher education are incomparable. The difficulty with this approach is that, if a
dimension does not have a single order with which it is associated, it becomes cumbersome
to specify what it means for two dimensions to be positively correlated. For example, we
would like to interpret a positive link of the form d — e in a hierarchy to mean that “a higher
value for d tends to imply a higher value for e,” but the meaning of this statement would
be unclear in a scenario where there are multiple orderings associated to the dimension
e. To deal with that, each link of the form d — e in the hierarchy would need to specify
a dimension order on d and on e, and thus incur an additional bookkeeping cost. The
resulting notion of constraint would seem to become more complex than the one we will
shortly propose in Definition 5.2.

We thus opt for a simpler solution: Fix one order for every dimension, and let the
dimension influence, and be influenced, only according to this fixed order. To deal with
cases where a dimension has an influence with respect to multiple different orders, such as
the aforementioned Education dimension, we require the dimension to be added multiple
times to the hierarchy, with one instance for each of the orders with which it has an
influence on other dimensions. We think the price of the redundancy in this representation
is compensated by a simpler definition of constraint.

5.3 Constraint

As in the HRM we define Pro(d) = {e € D | Pro(e,d)}. Using this, together with the
definitions of support and opposition of (3.4.1) and (3.4.2), we now define by mutual
recursion two relations € E v < X(d) and 6 F X(d) < v, indicating constraint in the form
of lower and upper bounds for X(d) in a focus fact situation X.

Definition 5.2. Given a case base € and a value v in some dimension d, a fact situation X
is lower bounded by v and €, written 6 F v < X(d), if and only if either

e v=<X(d),or
¢ de Aandthereis Y € € such that v < Y (d) and

— for all e€ Pro(d) nsupp(Y): € F Y(e) < X(e), and
— for all e€ Con(d) nopp(Y): € E X(e) <Y (e).

Similarly, the upper bound by v, written € F X(d) < v, is defined to hold iff:

e X(d)=<v,or
¢ de Aand there is Y € € such that Y (d) < v and
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— for all e€ Pro(d) nopp(Y): € E X(e) < Y(e), and
— for all e € Con(d) nsupp(Y): € Y(e) < X(e).

The idea behind the recursive clause is that there is a precedent Y which, by the a
fortiori principle, forces X (d) to take a value which is at least Y (d), and therefore v < X (d)
follows by transitivity from v < Y (d) < X(d). Note that, by definition, € F v < X(d) is
always false when X is undefined on d.

Analogous to Lemmas 4.6 and 4.7 we have some simple consequences of Definition 5.2.

Lemma 5.3. v =< X(d) implies € E v = X(d), and X(d) < v implies € = X(d) < v.

Lemma 5.4. If d € B then 6 F v < X(d) implies v < X(d) and € E X(d) < v implies
X(d)=v.

Example 5.5. To verify Definition 5.2 correctly captures the intuition of the example in
Section 5.1 we now consider a dimension hierarchy (D, Pro, Con) as depicted in (5.1.1), so
D = {Priors, Male, Age, Recid, Flight, Appear, Bail},
Priors ={0,1,2,...},
Male = {0, 1},
Age = {18,19,20,...},
Recid ={1,2,...,9,10},
Flight = {0, 1},
Appear = [0, 1],
Bail = {$x| x€{0,1,2,...}},
Pro = {(Priors, Recid), (Male, Recid), (Age, Flight), (Recid, Bail),
(Flight, Bail)},
Con = {(Age, Recid), (Appear, Bail)}.
The dimension orders are all just given by the usual less-than order <. We let W, Y, and
Z be as listed in Table 5.1. The question is now whether {W, Y} E Z(Bail) < $20,000. To
check this, we first verify that {W, Y} E Z(Recid) < 9:
{W,Y} E Z(Recid) <9
if there is T € {W, Y} such that T (Recid) <9 and
o for all d € Pro(Recid) nopp(T): {W,Y}E Z(d) < T(d), and
o for all d € Con(Recid) nsupp(T): {W,Y}E T(d) = Z(d).

We may now substitute 7 =Y as Y (Recid) =8 < 9:

if o for all d € Pro(Recid) nopp(Y): {W,Y}E Z(d) < Y(d), and
o for all d € Con(Recid) nsupp(Y): {W,Y}EY(d) < Z(d).

Note that Pro(Recid) nopp(Y) = {Priors} (Male ¢ opp(Y) as Y (Male) =1 is its greatest
element) and Con(Recid) N supp(Y) = {Age}, so this evaluates to

if {W, Y}k Z(Priors) < Y (Priors) and {W, Y} F Y (Age) < Z(Age).
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All dimensions subordinate to Recid are base-level so this simplifies by Lemma 5.4 to:
if Z(Priors) <4 and 20 < Z(Age).

Indeed, defendant Z of Table 5.1 satisfies these conditions and so {W, Y} & Z(Recid) < 9.
Next, we proceed in the same fashion to confirm that {W, Y} £ Z(Bail) < $20,000:

{W, Y} E Z(Bail) < $20,000

if there is T € {W, Y} such that T (Bail) < $20,000 and
o for all d € Pro(Bail) nopp(T): {W,Y}E Z(d) < T(d), and
o for all d € Con(Bail) nsupp(T): {W,Y}F T(d) < Z(d)

if o for all d € Pro(Bail) nopp(Y): {W,Y}E Z(d) < Y(d), and
e for all d € Con(Bail) nsupp(Y): {W,Y}E Y (d) < Z(d)

if {W,Y}E Z(Recid) <9, and {W, Y} E 0.3 < Z(Appear)

if {W,Y}E Z(Recid) <9 and 0.3 < Z(Appear).

We have established that {W,Y} E Z(Recid) <9, and so as 0.3 < 0.5 = Z(Appear) we
indeed have {W, Y} E Z(Bail) < $20,000 as desired.

Remark 5.6. A dimension hierarchy, like a factor hierarchy, can contain positive and
negative links. It is worth noting that the polarity of these links can be switched by reversing
the dimension order associated with the subordinate dimension. Consider, as an example,
the negative link between Age and Recid in (5.1.1). The order associated with Age is the
usual order < on natural numbers, and so, since older people tend to recidivate less, the
Age dimension has a negative link to the Recid dimension. However, if we choose to pair
Age with the = order on the natural numbers, then this same relation between age and
recidivism would be represented by a positive link. Of course, changing the order of Age
in this hierarchy would mean that the polarity of the link from Age to Flight would have to
be flipped as well.

5.4 Consistency

As before, the notion of constraint comes with a notion of (strong) case base consistency,
and just as in the HRM (Definition 4.11) this notion can be applied to any abstract factor p,
because we have defined constraint as working on all abstract factors.

Definition 5.7. Let € be a case base for a dimension hierarchy (D, H), d € A an dimension,
and X a fact situation; X is d-inconsistent with respect to € if there are values v < we d
such that both € E X(d) < v and € F w < X(d); otherwise X is d-consistent.

Example 5.8. To illustrate this definition we once again turn to our running example.
Consider the hierarchy in (5.1.1), and the fact situations X and Z listed in Table 5.1.
Following the line of reasoning in Example 5.5 we have that {X} = Z(Recid) < 9. Suppose
that the decisionmaker of this domain does not follow this constraint and assigns Z(Recid) =
10, which also means that {X} = 10 < Z(Recid). This means that ~Z is is Recid-inconsistent
with respect to €, according to Definition 5.7 because we have values 9 < 10 € Recid such
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that {X} E Z(Recid) <9 and {X} E 10 < Z(Recid). In this example Z is Recid-inconsistent
because it assigns a value to Recid which violates the constraint induced by the case base.
Do note that Definition 5.7 also allows fact situations to be inconsistent on dimensions on
which they are undefined.

5.5 Monotonicity

Like the other models, the DHRM is monotonic in both the addition of new cases and in the
addition of information to fact situations.

Proposition 5.9. Let € € D be case bases, d a dimension, v € d a value, and be case
bases; then € F v < X(d) implies 2 F v =< X(d) and € E X(d) = v implies 2 = X(d) < v.

Proof. The proof (just as that of Proposition 4.13) proceeds by induction on the position of
d in the hierarchy H. The base case, when d € B, follows from Lemmas 5.3 and 5.4. When
d € A the induction hypothesis is that for all e € Pro(d) u Con(d) and any value w € e:
€ F w = X(e) implies 2 F w < X(e) and € F X(e) = w implies 2 E X(e) = w. Now,
assume 6 F v < X(d). If this is due to v < X(d) then 2 E v < X(d) follows immediately.
So, suppose that it is due to Y € € with v < Y (d) with

— for all e € Pro(d) nsupp(Y): € E Y(e) < X(e), and
—for all e € Con(d) nopp(Y): € X(e)<xY(e).

Applying the induction hypothesis we can conclude that

—for all e € Pro(d) nsupp(Y): 2 E Y(e) < X(e), and
—for all ee Con(d)nopp(Y): 2k X(e) <Y (e).

which is to say that 2 E v < X(d). By the same reasoning we can show € = X(d) <v
implies 2 £ X(d) =< v, which completes the induction case and thus the proof. O

Proposition 5.10. If X € Y then € F v < X(d) implies € E v < Y(d), and similarly
€ EX(d)=vimplies €EY(d) <.

Proof. We proceed by induction on d. In the base case we have by Lemmas 5.3 and 5.4
that if € F v < X(d) then v < X(d) = Y(d), and so € F v < Y(d); and similarly for
%6 E X(d) < v. The induction case proceeds just as in the proof of Proposition 5.9. [

5.6 Relation to the other models

In this section, we show that the DHRM is a conservative extension of the HRM in the sense
that when the DHRM is restricted to dimension hierarchies with only binary dimensions, it
reduces to the HRM. We then proceed in the same fashion to show that it is a conservative
extension of the DRM.

Beginning with the HRM, we construct a translation f that maps instances of the
HRM to instances of the DHRM, and prove that this translation respects Definitions 4.3
and 5.2 of constraint. Of course, the DHRM constrains fact situations to take values within
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intervals, rather than forcing them to take specific values, but forcing specific values is
easily expressed, for instance by defining € E X (d) = v as the conjunction of € F v < X(d)
and € F X(d) < v. If v is a maximal element of a dimension d, meaning there is no w in
d satisfying v < w, then it suffices to require that € F v < X(d). This is how we encode
HRM-style forcing in the DHRM—Dby defining a binary dimension d), = {fy, t,} with f, <t,
(as in the translation in Theorem 3.19), and requiring € k t, < X(d)), which amounts to
the requirement that X (d),) takes the value t,,.

Definition 5.11. A dimension hierarchy (D, Pro, Con) is binary if each d € D has cardinality
2 and is ordered linearly.

Let (F,Con,Pro) be a factor hierarchy; for any p € F we define a binary dimension
dy = {fp, tp}, linearly ordered by the reflexive closure of f, <t,. We now translate
(F,Con, Pro) to a binary dimension hierarchy f(F,Con, Pro) by

f(E,Con,Pro) = (D, Con/,Pro’),

where D = {d,, | p € F}, Pro'(d), d) iff Pro(p, ¢), and similarly Con'(d,, dy) iff Con(p, 9);
so Pro’(dy) = {d, € D| g € Pro(p)}, and similarly Con'(d),) = {d, € D | g € Con(p)}. Next,
we extend f to operate on fact situations and case bases. Given a fact situation X for the
HRM (with respect to the factor hierarchy (F,Pro,Con)) we translate it to a fact situation
f(X) for the DHRM (with respect to the dimension hierarchy f(F,Pro, Con)):

t, if XEp,
FXdp) =11y if XE-p,
undefined otherwise.

As before, we write f[€]={f(X)| X € €} for a case base €.
The translation f preserves and reflects constraint, in the following sense.

Theorem 5.12. Given a case base € for a factor hierarchy (F,Pro,Con), a focus fact
situation X, and a factor p € F, we have

CXEpif fI€1Et, < f(X)(dy) and €,XE-pif fI€]F f(X)(dy) =1fp.
Proof. We begin by noting that for a partial valuation Y of F we have

dom(f(Y)) = {dg € D| g€ dom(Y)},
supp(f(Y)) = {d4 € dom(f(Y)) | f(Y)(dg) is not the least element of d}
=1{d, € D|qedom(Y) and f(Y)(d,) #f;}
={dseD|YFq}, (5.6.1)
opp(f(Y)) ={dseD|Y E~q}. (5.6.2)

We proceed by induction on the position of p in the hierarchy H. In the base case, p is
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base-level and therefore so is d),, we thus have

€, XkFp

iff XEp (Lemmas 4.6 and 4.7)
iff f(X)(dp) =t (def. of f(X))
iff t, < f(X)(dp) (def. of < on dp)
iff € Ft, < f(X)(dp). (Lemmas 5.3 and 5.4)

The other equivalence follows the same pattern.
In the induction case, when p € A, we know that €, X F g iff f[€]Ft; =< f(X)(d,) and
€, X Eqiff f[€]F f(X)(d,) <f, for every g € Pro(p) u Con(p); now,

fIE1Et, < f(X)(dp)
iff o t,, < f(X)(dp), or
e there is Y € f[%€] such that t,, < Y (d)) and
—for all d, € Pro’(d,) nsupp(Y): fI€]F Y(dy) = f(X)(dg),
—for all dg € Con’(dp) Nnopp(Y): fI€]FE f(X)(dg) =Y (dg)
iff o t, = f(X)(d)p), or
o there is Y € € such that t, < f(Y)(dp) and
—for all d, € Pro’(d,) nsupp(f(Y)): fI€]FE f(Y)(dg) = f(X)(dy),
—forall dg e Con'(dp) nopp(f(Y)): fIB]kE f(X)(dg) = f(Y)(dg).

We now apply Equations (5.6.1) and (5.6.2), and fill in f(Y)(dy), to continue with:

iff e Xk p, or
o there is Y € € such that Y = p and
—for all d4 € D such that g € Pro(p) and Y F g: f[€]Fty = f(X)(dy),
—for all d4 € D such that g € Con(p) and Y E ~q: f[€]F f(X)(dy) <f;.

This means we can apply the induction hypothesis to obtain:

iff e XEp,or
e there is Y € € such that Y E p and
—for all g€ Pro(p): if Y E g then ¢,X F q,
—for all g€ Con(p): if Y E g then 6€,X E—q
it €,XEp.

The other equivalence can be derived in the same manner, which completes the induction
case and thus the proof. O

We now show that the DHRM is a conservative extension of the DRM, in the sense that
when it is restricted to flat dimensions hierarchies, with only one ‘outcome’ issue, it reduces
to the DRM. To show this, we will construct a translation f that maps instances of the DRM
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to instances of the DHRM, and prove that this translation respects Definitions 3.7 and 5.2 of
constraint. As in Section 5.6, we use the notion of lower bounding to a maximal element
(or upper bounding to a minimal element) to play the role of forcing specific outcomes. In
other words, a decision for an outcome dimension dj; is lower bounded to t in the translated
DHRM instance if and only if the decision was forced for 7 in the original DRM instance.

Definition 5.13. A dimension hierarchy is flat if its set of abstract dimensions is a singleton,
and issue binary if its issues are binary dimensions in the sense of Definition 3.18.

Let D be a set of dimensions. We define an ‘outcome dimension’ d,; = {t,f}, ordered by
the reflexive closure of f < t, and relations Pro and Con on D U {d,} by Pro = D x {d} and
Con = @, so that we have a flat, issue binary dimension hierarchy f (D) = (DuU{dy},Pro, Con)
(the choice of link polarity is arbitrary here, cf. Remark 5.6). Next, we extend f to operate
on fact situations, cases, and case bases. Given a fact situation X for the DrRM (with respect
to the set of dimensions D) we translate it to a fact situation f(X) for the DHRM (With
respect to the dimension hierarchy f(D)) by defining f(X)(d) = X(d) if d € dom(X), and
otherwise leaving f(X)(d) undefined. For a case (X, s) we extend f(X) to a choice function
f(X,s) on DU {dy} by:

X(d) ifdedom(X),
fX,9)d=1t ifd=d; and s =,
f if d=d; and s =6.

As before, we write f[€] ={f(X,s)|(X,s) € €}.
The translation f preserves and reflects constraint, in the following sense.

Theorem 5.14. Given a case base € for a factor partition F = ProuCon and a focus
fact situation X we have €,X E n iff fI€] Et= f(X)(dy); and similarly, €,X E J iff
fI61E f(X)(dn) =1L

Proof. We begin by noting that for a case (Y, ) € € we have

dom(f(Y,n)) =dom(Y)U{dy},
Pro(d;) = D,
Con(dy) = @, and so
Pro(dy) nsupp(f(Y,x)) =supp(Y),
Con(dy) nopp(f(Y,m) = @.
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We now derive the equivalence €, X E m iff f[€]Ft= f(X)(dy):

fI61 == f(X)(dr)
iff e t=< f(X)(dy), or
e dy € A and there is Y € f[€] such that t < Y (d,) and
—for all d € Pro(d;) nsupp(Y): fI€]F Y(d) < f(X)(d),
—for all d € Con(dy) nopp(Y): fI€]E f(X)(d) =Y (d)
iff there is (Y, s) € € such that t < f(Y, s)(d,) and
—for all d € Pro(dy;) nsupp(f (Y, s)): fI€]E f(Y,s)(d) = f(X)(d),
—for all d € Con(dy) nopp(f(Y,s)): fI€1E f(X)(d) = f(Y,s)(d)
iff there is (Y, ) € € such that
—for all d e supp(Y): fI€1E f(Y,9)(d) < f(X)(d)
iff there is (Y, ) € € such that for all d € supp(Y): Y(d) < X(d)
iff €, XEmn.

The derivation of €, X F 6 iff f[€]F f(X)(dy) =fis very similar, so we omit it. O

5.7 Conclusion

In this chapter we considered the dimensional hierarchical result model (DHRM): a version
of the result model (RM) that operates on a knowledge representation framework build
around the concept of a dimension hierarchy. We developed a notion of hierarchical
constraint for this setting, and illustrated it on our running example on criminal sentencing.
As we did for the other models, we showed that this form of constraint is monotonic and
induces a notion of case base consistency. Furthermore, we showed that the DHRM extends
the dimensional result model (DRM) and the hierarchical result model (HRM).

This completes Part I of our work, which is primarily theoretical in nature. In Part IT we
will work towards applying the theory of the result model to the development of explainable
Al techniques, and to the analysis of data-driven decisions.
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Applications in Artificial
Intelligence and Law

Tho Alisaunder say this,
Herith what he saide, ywis,
Hit is ywritein, Every thyng,
Himseolf schewith in tastyng.

—Kyng Alisaunder, early 14th century

75 AVING DEVELOPED a theory of a fortiori reasoning in the first part, we now
turn to applying it to artificial intelligence and law in this second part.
In particular, we investigate how it can be used to justify and analyze
data-driven decisions. In Chapter 6 we review the a fortiori case-based
=d| argumentation method of explanation developed by Prakken and Ratsma
(2022) We show how the theory of precedential constraint can be used in this context to
develop formal notions of justification, compensation, and citability. Then, in Chapter 7, we
show that the connection between the DRM and many-sorted logic, which was established in
Chapter 3, can be used to implement the model of precedential constraint in the SMT solver
73 (de Moura & Bjgrner, 2008). This implementation is put to work by analyzing the
consistency of several machine learning datasets. In particular, a logical analysis of several
datasets with labels determined by logical formulas showcases the full capabilities of the
sMT-based implementation. Lastly, in Chapter 8, we show how the implementation can be
extended to compute constraint as defined by the DHRM model which was introduced in
Chapter 5. This lets us analyze the internal consistency of decisions made by the COMPAS
program. The results of this analysis contradict theoretical predictions, which bring to light
a flaw in the dataset that has thus far received little attention in the literature. This indicates
that case base consistency can be a useful measure for analyzing data-driven decisions.




Chapter

Explaining Data-Driven
Outcomes

G| RAKKEN AND RAaTSMA (2022) developed a case-based reasoning method to
”—“% explain data-driven automated decisions for binary classification, based
; e on the theory of precedential constraint introduced by Horty (2011, 2019),
g‘”ﬂ which we discussed in Chapters 2 and 3.! This method, which we will
A0 refer to as “A Fortiori Case-Based Argumentation” (AF-CBA), is motivated
by an analogy between the way in which a machine learning system draws on training
data to assign a label to a new data point and the way in which a court of law draws on
previously decided cases to make a decision about a new fact situation, because in both of
these situations the precedent that has been set must be adhered to as closely as possible.
The theory of precedential constraint, which has been developed to describe the type of a
fortiori reasoning used for legal decision making on the basis of case law, can therefore be
applied to analyze machine-learned decisions that are made on the basis of training data.

More specifically, the method of Prakken and Ratsma (2022) formally models the kind
of dialogue in which lawyers cite precedents to argue in favor of their preferred outcome of
the new fact situation. These citations, and the way in which they attack the opponent’s
citation, are formalized using an abstract argumentwation framework (Dung, 1995). A
winning strategy in the grounded argument game on this framework, starting with an initial
citation of a suitable precedent case, is taken as the explanation of the decision of the new
fact situation.

In this chapter we examine the explanation model of Prakken and Ratsma (2022) in
detail and make various suggestions and modifications for improvement. Particularly close
attention is paid to the subject of compensation; the way in which important differences
between a new fact situation and a precedent case can be compensated for by features of the
focus case. We make the formal nature of this subject more explicit, and specify various
desirable properties it may have.

Subsequently, we show that the model can be equivalently viewed as extending the

All the material in this chapter has previously been published by van Woerkom et al. (2022b).
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theory of precedential constraint with notions of justification and citability which, together
with the notion of forcing, constitute the explanations produced by the model. This
equivalent formulation only uses the simple notion of relations (in the set-theoretic sense),
thus simplifying the specification of the model. The resulting view may be more broadly
applied to the type of downplaying attacks seen in similar systems such as CATO (Aleven &
Ashley, 1997).

We begin by summarizing the relevant aspects of the theory of precedential constraint
in Section 6.1.1. In Section 6.1 we give a description of the explanation method of Prakken
and Ratsma (2022). In Section 6.2 we revisit the definition of best citability, suggest
some improvements, and demonstrate their potential experimentally. Then, in Section 6.3,
we reconsider the compensation relation and formulate desirable properties. These
considerations lead us to giving an equivalent formulation of the model just in terms of
relations, which we do in Section 6.4. We conclude the chapter in Section 6.5 with some
final thoughts and remarks.

6.1 A case-based reasoning explanation method

In this section we detail the workings of the dimension-based AF-cBA method of explanation
developed by Prakken and Ratsma (2022), which was inspired by the work by Cyras
et al. (2019). A more detailed comparison between the similarities of these, and other
related works, was given by Prakken and Ratsma (2022, Section 8). The AF-cBA method is
built upon Horty’s (2019) DRM, and conceptually tries to mimic the arguments relating
to precedent used by lawyers with respect to case law. In such discussions, precedent
cases are cited by both sides as a means of arguing that the present (focus) case should be
decided similarly as the precedent. Both sides may attack the other’s citations, by pointing
to important differences between the citation and the focus case; and they may defend
themselves against such attacks, by pointing to aspects of the focus case which compensates
for these differences. Each of the elements of such a discussion—case citations, pointing to
differences, and compensating for differences—has its counterpart in the AF-CBA method.

A key idea underlying the approach is that a tabular dataset for binary classification can
be interpreted as a case base 6. The method assumes access to the training data used by the
system, and interprets each of the features in the data as a dimension. The corresponding
dimension orders may be determined by knowledge engineering, statistical methods, or
a combination thereof. This gives us a body of precedents ¥ upon which the machine
learning system bases its decisions.

Under this interpretation the machine learning system can be seen as deciding new
fact situations for one of two sides. The goal is to explain a particular decision of a fact
situation X for a side s, called the focus case (X, s). This explanation is provided in the
form of a best citable precedent (Y, s) € € together with an explanation dialogue in which
the choice for this case (Y, s) is justified. Such an explanation is formalized as a winning
strategy in the grounded argument game of a particular abstract argumentation framework,
which we recall below in Definition 6.7.

Before we can apply the theory of precedential constraint, we need a method of
determining the dimension orders. Prakken and Ratsma (2022) have developed a statistical
method of doing so, of which a modified version is used by van Woerkom et al. (2024a).
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Given a dataset that we would like to interpret as a case base, these methods apply concepts
from statistics to the dataset in order to estimate the influence of the values of the dimensions
on the outcomes. We will give a detailed description of these methods in the next chapter
in Section 7.1.1.

Once the dimension orders are determined, the data can be interpreted as a case base,
on the basis of which explanations can be generated. Any explanation dialogue should start
with the citation of a best citable case. A suggestion for the definition of this notion is given
by Prakken and Ratsma (2022) and we recall it in Section 6.1.2, after which we explain
and motivate the presence of the arguments occurring in the argumentation framework in
Sections 6.1.3 and 6.1.4. We are then ready to give the formal definition of the framework
in Section 6.1.5, explain what it means to have a winning strategy in the argument game it
induces, and as such what constitutes an explanation according to the model.

6.1.1 Recalling the dimension-based result model

A dimension d is a nonempty set together with a partial order < on d; we denote dimensions
by lower case letters d, e, f, etc. The domain is modeled by a finite set of dimensions D. A
fact situation X is a choice function on D, i.e. a function X : D — |UD such that X(d) € d
for every d € D. A case (X, s) is a fact situation X paired with an outcome s € {0,1}. A
case base is a finite set of cases.

We will frequently omit explicit reference to the dimension order < and instead refer
to just the set d when we speak of a dimension. The order < of a dimension d specifies
the relative preference the elements of d have towards either of two outcomes 0 and 1.
More specifically, if v < w for v, w € d this means w prefers outcome 1 relative to v, and
conversely v prefers outcome 0 relative to w. Usually we want to compare preference
towards an arbitrary outcome s, so to do this we define for any dimension (d, <) the notation
<s;=<ifs=land =x;,=>=if s=0.

Next we recall Definitions 3.3 and 3.5. Given fact situations Y and X we say X is at
least as strong as Y for an outcome s, denoted Y <; X, if it is at least as strong for s on
every dimension d:

Y =<,X ifandonlyif Y(d)=;X(d)foralldeD.

The decision of a fact situation X is forced for an outcome s by a case base ¢, denoted
%,X ks, if there is a case (Y, s) € € with Y < X.

Lastly, we will add some notation needed for the rest of the definitions of the AF-CBA
method, which is related to partial fact situations. Recall from Section 3.4 that a partial fact
situation is a partial choice function on D. Given a function f: X — Y and a subset Z < X
we write f[Z for the function f[Z:Z — Y satisfying (f[Z)(z) = f(z) forall ze€ Z.

Let X and Y be fact situations, and s an outcome. We define

Wi(Y,X)=X{deD|Y(d) £s X(d)},
Bs(Y,X)=X[{deD|Y(d) =5 X(d)}.
In other words, W (Y, X) is X restricted to the set of dimensions on which it is worse than

Y with respect to outcome s. Similarly, Bs(Y, X) corresponds to the part of X on which X
is at least as good as Y with respect to outcome s. Note that W(Y, X) UBs(Y, X) = X.
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Example 6.1. Continuing Example 3.4, we consider the recidivism related dimensions:

Age = ({18,19,20,...},>),
Priors = ({0,1,2,...},<),
Male = ({0, 1}, <).

Suppose we have two cases (Y, 1) and (X, 1) with fact situations defined by

Y (Age) =45, Y (Priors) =4, Y (Male) =1,
X(Age) =50, X (Priors) =5, X (Male) = 1.

Now we can compute that W, (Y, X) = {(Age,50)} and B; (Y, X) = {(Priors, 5), (Male, 1)}.

6.1.2 Case citability

An important aspect of AF-CBA is the selection of the precedent case (Y, s) with which
it initiates its explanation of the outcome of the focus case (X, s). We will now describe
how this selection procedure works; later in Section 6.2 we return to this topic to suggest
improvements. We begin with the notion of case citability.

Definition 6.2. A case (Y, s) is citable for a case (X, s) if Bs(Y, X) is nonempty.

Since this is a quite weak requirement there may in general be very many citable cases
(Y, s) for any given focus case (X, s). For this reason the notion is strengthened by requiring
that (Y, s) should have a minimal number of relevant differences with (X, s), according
to some suitable notion of minimality. To formalize this we first recall the definition of
relevant differences used by Prakken and Ratsma (2022, Definition 11).

Definition 6.3. Given fact situations X, Y and an outcome s, the set D(Y, X) of relevant
differences between Y and X, with respect to outcome s, is given by

Dy(Y,X)=Y[{de D|Y(d) £s X(d)}.

In other words, the relative differences between Y and X, with respect to s, correspond
to that part of Y on which X is not at least as good as (or better than) Y. The set Ds(Y, X)
is comparable to the set W (Y, X), except that the former is a restriction to Y and the latter
is a restriction to X.

Now a best citable precedent is defined as a citable precedent which additionally
minimizes this set of differences, in the following sense.

Definition 6.4. A case (Y, s) is a best citable case for a case (X, s) if

(a) (Y,s) is citable for (X, s), and
(b) any other case (Z, s) which is citable for (X, s) satisfies Ds(Z, X) ¢ Ds(Y, X).

6.1.3 Compensation of relevant differences

An idea central to the explanation dialogues is that when a precedent (Y, s) does not force a
focus case (X, s), i.e. it does not hold that Y < X, the values W (Y, X) on which X is worse
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than Y for s can be compensated for by the values Bs(Y, X) on which X is better than (or
equal to) Y. This idea is often encountered in the literature on case-based reasoning; in
the words of Aleven (2003), these compensations “[show] that at a more abstract level, a
parallel exists between the cases, arguing in effect that the apparent distinction is merely a
mismatch of details.”

In our context we assume the existence of a relation SC on partial fact situations V, U,
where SC(V, U) says that V compensates for U. This is used in practice as follows. Consider
a precedent (Y, s) and a focus case (X, s). If (Y, s) forces the decision of (X, s) then Y < X,
so @ = Wi(Y, X), or equivalently Bs(Y,X) = X. If (Y,s) does not force the decision of
(X, s), then @ c W (Y, X), or equivalently B;(Y, X) < X. In order for the precedent case
(Y, s) to be said to justify the outcome of (X, s) we should have that Bg(Y, X) compensates
for Ws(Y, X), as determined by whether the relation SC(B;(Y, X), W,(Y, X)) holds.

6.1.4 Opposing citations and case transformations

The last component of the explanation dialogue generated by the AF-CBA method is that
of opposing citations. The idea is that a proponent of the decision of (X, s), who cites
a precedent case (Y, s) to argue for its outcome s, can have their citation countered by
the citation of a case (Z, §) by a proponent, where § denotes the opposite outcome of s.
This counter-citation corresponds to the claim that the precedent case (Z,5) is a more
appropriate precedent to draw on with respect to the focus case (X, s). This is analogous to
the argument between lawyers in a legal case.

Definition 6.5. A case (Y, s) can be transformed into a case (Z, s), relative to a focus
case (X,s) and a compensation relation SC relative to a compensation relation SC, iff
Y=Zor U= WY,X) # @ and there exists V < Bs(Y,X) such that SC(V,U), and
Z={Y\Y[dom(U))uU.

The goal of these transformations is to change (Y, s) into a case (Z, s) that forces the
outcome of (X, s). It does so by replacing the values of the precedent case with those of
the focus case, on those dimensions on which the focus case is not at least as strong as the
precedent.

6.1.5 An abstract argumentation framework for explanation

We are now ready to give a formal account of AF-CBA through the use of an abstract argu-
mentation framework—a concept introduced by Dung (1995). An abstract argumentation
framework AF = (Arg,Attack) is a directed graph, in which the nodes are interpreted as
arguments and the edges as an attack relation between them.

A particular argumentation framework (Arg, Attack) is used by Prakken and Ratsma
(2022) that combines the types of arguments defined in the preceding Sections 6.1.2, 6.1.3,
and 6.1.4, relative to a focus case (X, s). To do so we first define, for a particular precedent
(Y, s) that may be cited in defense of the decision of X for s, a subset A(y,5) < Arg as follows:

A, =J{tworseqy, () | U = W,(¥, X) £ 2, ©6.1.1)
{compensatesy  (V,U) | worsey,s) (U) € A(y,s), V € Bs(Y, X), SC(V,U)},
{transformedy,5)(Z) | (Y, s) can be transformed into (Z, s) with Z <; X}}.
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Definition 6.6. Given a finite case base ¥, a focus case (X,s), and a compensation
relation SC, an abstract argumentation framework for explanation with dimensions is a
pair AF = (Arg, Attack) where the arguments Arg are given by

Arg=€ U|J{A,9 | (Y,5) €6},
and for arguments A, B € Arg we have Attack(A, B) if and only if either:

e (V,s),(Z,5e€and {deD|Y(d) £; X(d)} £{deD| Z(d) £; X(d)};
* (Y,s) € € and A is of the form worse(y, (U);
* B is of the form worse(y,s)(U) and A is of the form compensatesy  (V, U); or

* (Z,5) €€ and A is of the form transformedy 5 (W).

A dialogue now takes the form of a grounded argument game played on (Arg, Attack).
For the sake of brevity we only give an intuitive explanation of how this works, the reader
is referred to Prakken and Ratsma (2022) for a detailed treatment of the subject.

An argument game on an AF (A, R) is a two-player game, in which the players take turns
playing arguments from A which must attack the previously played argument according
to the attack relation R. A player can win the game by moving an argument to which the
other player cannot reply, and a winning strategy for a player is a method of playing that
ensures a win regardless of how the opponent plays.

We can now formally define the explanations generated by the AF-CBA method.

Definition 6.7. An explanation of a focus case (X, s) is a winning strategy in the grounded
argument game starting with the citation of a best citable precedent (Y, s) € €, played on
the abstract argumentation framework for explanation with dimensions (Arg, Attack).

The winning strategies may be viewed as trees and have the following general shape:

worsey,s) (U) (Z1,9) \ (Zn, 9)
compensatesy o (V,U) transformedy, ) (Y;) . ‘ . transformed y, ) (Y;,).

6.2 Best citable cases

We now turn to some suggestions for modifications of Definition 6.4 that might be closer
to the intuitive notion of a most closely related case (Y, s) of our focus case (X, s).

Firstly, since Definition 6.3 does not gather just the dimensions on which (X, s) is
worse than (Y,s) but also the value of (Y,s) at that dimension, a situation can arise
where there is some case (Z,s) with {de D | Z(d) Z; X(d)} c{d e D | Y(d) Zs X(d)}
but Z[{deD|Z(d) £ X(d)} ¢ Y [{de D|Y(d) Zs X(d)}, just because there is some
dimensiond € {d € D| Z(d) £; X(d)} with Z(d) # Y (d). It does not seem correct to dismiss
(Z,s) as a good citation simply because it disagrees with (Y, s) on a single dimension,
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especially when {d € D | Z(d) Zs X(d)}is only a very small subsetof {d € D | Y (d) £; X(d)}.
Let us look at an example to illustrate this point.

Example 6.8. We consider three cases (Y, s),(Z, s), (X, s) (so they were all judged a high
risk of recidivism) in the recidivism scenario of Example 6.1:

Y (Age) = 20, Y (Male) =M, Y (Priors) = 3,
Z(Age) =50, Z(Male) =M, Z (Priors) =1,
X (Age) = 40, X(Male) =M, X (Priors) = 2.

We have that Dg(Y, X) = {(Age,20), (Priors,3)} and D(Z, X) = {(Priors, 1)}. Therefore,
even though there are fewer dimensions on which (Z, s) has relevant differences with
(X, s)—as {Priors} c {Age, Priors}—this does not prevent (Y, s) from being considered a
best citable precedent for (X, s)—as {(Priors, 1)} £ {(Age, 20), (Priors, 3)}.

This consideration suggests the definition should require minimality of {d € D | Y (d) #;
X(d)} instead of Y [ {d € D| Y (d) #; X(d)}. However, this modification leaves room for a
second type of scenario where there is some precedent (Z, s) which is intuitively much
closer to the focus case relatively to some other (Y, s), without hindering (Y, s) from being
considered best citable. To see why we consider a set of n+ 1 dimensions {dy, ..., d,}. Now
we may have that {d € D | Z(d) £; X(d)} ={dp} and {d € D | Y(d) £s X(d)} = {dy,...,dn}.
This means that the presence of (Z, s) does not hinder (Y, s)’s being considered a best citable
precedent for (X, s), even though (X, s) is worse than (Y, s) on n times as many dimensions
as it is worse on than (Z, s). To remedy this, we could require minimality of the number of
dimensions rather than the set of dimensions itself, i.e. of [{d € D | Y (d) £s X(d)}|.

In addition to looking just at differences between the precedent and focus case it may be
beneficial to also consider their similarities, since after all, the stare decisis doctrine states
that similar cases must be decided similarly. To achieve this we can require the best citable
precedent to subsequently maximize |{d € D | Y (d) = X(d)}|, so that it both minimizes
differences and maximizes similarities. In all, this leads us to the following definition.

Definition 6.9. A case (Y,s) is a best citable case for a case (X, s) if it satisfies the
conditions

(a) (Y,s) is citable for (X, s);

(b) there is no other (Z, s) satisfying (a) with [{d e D | Z(d) Z; X(d)}| < {d € D | Y (d) &,
X(d);

(c) there is no other (Z, s) satisfying (a) and (b) with {d e D | Z(d) = X(d)}| > |{d € D |
Y(d) =X}l

The experimental results of Prakken and Ratsma (2022) showed that there are in general
many cases satisfying Definition 6.4 for any (X, s). Measured on three datasets, the mean
and standard deviation of the number of best citable cases were respectively 82 + 123.6,
76+134, and 106 +116.5 (Prakken & Ratsma, 2022, Table 5). Recalculating these statistics
for the same datasets with Definition 6.9 instead results in respectively 5.6 + 2.0, 2.1 £ 2.6,
and 2.6+2.5 average number of best citable cases; a substantial decrease. Still, the definition
remains somewhat ad-hoc, and more research is needed to assess its adequacy in actual
applications.
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6.3 Specifying the compensation relation

Prakken and Ratsma (2022) do not make further explicit assumptions of the compensation
relation SC—which is why their method is considered top-level. However, in order for
this relation to function according to our intuitions it may be necessary to do so, and we
now consider a few such requirements. Let us first illustrate SC through a continuation of
Example 6.8.

Example 6.10. We saw two example cases (Y, s),(Z, s) where (Z, s) was worse than (Y, s)
on the dimensions Age and Male, but better on Priors. Suppose that for a number of priors
higher than 4, we no longer care about values besides the number of priors. Then we may
define

SC(V,U) ifandonlyif V(Priors)=4.

In this case the worse values Ws(Y, Z) would indeed be compensated for by the better
values Bs(Y, Z), since Z(Priors) = 5.

Another point to consider is whether the compensation relation should itself adhere
to an a fortiori principle. That is to say, if a set V is capable of compensating for a set
U, should a superset W 2 V be capable of compensating for U as well? This property is
captured by the following definition.

Definition 6.11. A compensation relation SC is monotone if for any partial fact situations
U, V,W it holds that SC(V, U) implies SC(V U W, U).

The same goes for values that are being compensated for; if a set V can compensate for
a set U then we might require of it to compensate any subset W < U as well.

Definition 6.12. A compensation relation SC is antitone if for any partial fact situations
U, V,W it holds that SC(V, U) implies SC(V,UnW).

In the factor-based version of AF-CBA, i.e. in the special case where the dimensions are
all two-element sets with a linear order, it is possible to compensate for a set of worse values
in parts through the use of a pSubstitutes(V, U, X, s)&cCancels(V', U’, X, s) move (Prakken
& Ratsma, 2022, Definition 5). We can translate this to the dimensional setting as follows.

Definition 6.13. A compensation relation SC is linear if for any partial fact situations
T,U,V,W it holds that SC(T, U) and SC(V, W) imply SC(T uV,UU W).

A more fundamental question regarding the compensation relation is that of context
dependence; should the compensation of two sets be allowed to depend on the context in
which it takes place? This question and its consequences are the subject of Section 6.4.

6.4 Justification as an extension of forcing

An interesting way to think of the compensation relation is as an extension of the notion
of forcing between cases (Definition 3.5). In essence a compensation says that while a
precedent (Y, s) might not force the decision of some other case (Z, s), the obstructing
relevant differences can be compensated, and so the precedent (Y, s) may still be said to
Jjustify the outcome of (Z, s).
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6.4.1 Context-dependent compensations

A downside of the formal specification of this compensation relation is that it is defined
on partial fact situations, rather than just fact situations. This makes it impossible for
compensations to take the values of the precedent into account when allowing compensations
to be made.

Example 6.14. In Example 6.1 the difference in age between (Y, s) and (Z, s) is only 5,
and we may want to say that Bs(Y, Z) compensates for W;(Y, Z) in this case if we find
this difference small enough to be insignificant. To make this compensation possible
formally we would need to postulate SC({(Age, 50)}, {(Priors,5), (Male, M)} but this would
inadvertently sanction compensations where the age of the precedent case is, say, 20, in
which case we may find the difference in age large enough to be significant.

Modifying SC so that it takes the precedents’ values into account yields a relation on
full fact situations. A natural requirement of any such relation is that it extends the strength
order =< of Definition 3.5. This is akin to saying that any set can compensate for the empty
set. This leads us to the following definition.

Definition 6.15. A relation = on cases is called a justification relation if it extends the
forcing relation <, i.e. if < cLC.

Note that any compensation relation SC gives rise to a justification relation Egc:
(Y,s)Esc (Z,s) ifandonlyif Y =;Z or SC(Bs(Y,Z), Ws(Y, Z)). 6.4.1)

The converse does not hold, precisely because a justification relation takes into account
the context of the compensation. To see this, consider the naive approach of obtaining a
compensation relation SCc from a justification relation C:

SCc(V,U) ifandonlyif (Y,s)E(Z,s)forY,Z with U=W(Y,Z),V =B, Z).
(6.4.2)

The problem is that this definition is not necessarily well-defined, meaning that the truth
value of SCc(V,U) may depend on the particular representatives Y and Z that are used
for its evaluation. This leads us to define the notion of a context-independent =, requiring
exactly that the relation SCc above is well defined.

Definition 6.16. A justification relation = is context-independent with respect to an
outcome s, if for any four fact situations Y,Z, W, X with W(Y,Z) = W(W, X) and
By(Y,Z) = B(W, X) it holds that (Y,s) = (Z, s) iff (W, s)E (X, ).

6.4.2 Winning strategies and justification

The terminology of Definition 6.15 is inspired by Prakken and Ratsma (2022), where
an argument is said to be justified if and only if the proponent has a winning strategy
in the grounded argument game about the argument. We will now formally justify this
comparison by showing that for any compensation relation SC the proponent of an initial
citation (Y, s) has a winning strategy in the game on the argumentation framework if and
only if (Y, s) Egc (X, s) (of Eq. (6.4.1)).
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We fix a precedent case (Y, s) and a focus case (X, s), and introduce some terminology
for convenience. We will say a case (Y, s) has a winning strategy if the proponent has a
winning strategy in the grounded argument game on the explanation AF (Arg, Attack) of
Definition 6.6, starting with a citation of (Y, s). Following Prakken and Ratsma (2022) we
distinguish between nontrivial winning strategies for (Y, s), in which (Y, s) can be attacked
by a worse(y,s)(U) move, and trivial winning strategies for (Y, s), in which there is no
worse(y,s) (U) attack possible. This means a winning strategy for (Y, s) is nontrivial if
worse(y,s)(U) € A(y,s) and trivial if worse(y,s (U) € A(y,s), with A(y,5) as in Eq. (6.1.1).

Proposition 6.17. There is a trivial winning strategy for (Y, s) if and only if Y <5 X.

Proof. Note that worse(y,5) (U) € A(y,s) iff W(Y, X) = @ iff Y <; X. Hence left to right is
immediate. For right to left we note in addition that any citation made by the opponent can
be attacked with a transformedy ) (Y, s) move, and so since there is no reply possible to a
Transformed move the proponent has a (trivial) winning strategy for (Y, s). O

Proposition 6.18. There is a nontrivial winning strategy for (Y, s) ifand only if Ws(Y, X) # @
and SC(B,(Y, X), W,(Y, X)).

Proof. Suppose the proponent has a winning strategy. Since worse(y,s)(U) € A(y,s) attacks
the initial citation of (Y,s) there should be a compensatesy ) (V, U) response to the
worse(y,s) (U) move available to the proponent, with V = B¢(Y,Z). This implies that
SC(Bs(Y, X), W(Y, X)).

For the other direction we begin by noting that because Wi(Y,Z) # @ there is
worse(y,s)(U) € Ay,s), and so the assumption SC(B,(Y, X), W,(Y, X)) guarantees that
there is C = compensatesy ;) (V,U) € A(y,s). Now, there are two types of moves available
to the opponent to which we need a reply.

1. The first is worse(y,s (U) € A(y,s). As mentioned we have a reply C available, and
since a compensation move cannot be replied to the game is won by the proponent.

2. The second is the citation of a case (Z,5) € € for which it holds that {d € D |
Z(d) s X(d)} ¢{d e D|Y(d) Z5 X(d)}. By Definition 6.5 we have that (Y, s) can be
transformed into (Y, s), and so we can reply to the citation with transformedy, ) (q) €
A(y,s)- There are no more moves available to the opponent and so the proponent
wins the game. O

Corollary 6.19. There is a winning strategy for (Y, s) if and only if (Y, s) Csc (X, $).
Proof. Applying Eq. (6.4.1) and then Propositions 6.17 and 6.18 we get
(Y,8) Esc (X, 9) iff Y <5 X or SC(Bs(Y, X), Ws(Y, X))

iff (Y, s) has a (non)trivial winning strategy
iff (Y, s) has a winning strategy. O
Under this view of the winning strategies, and employing a fully general definition of

compensation through a justification relation =, we can now rephrase Definition 6.7 of
explanations in the following way.

Definition 6.20. An explanation of a case (X, s) is a best citable precedent (Y, s) € € with
(Y,s) = (X,s).
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The theory of precedential constraint describes how the outcome of a fact situation
can be forced by precedent. However the collection of precedents may not be sufficient to
force the outcome of all possible new fact situations. If such an undecided fact situation
presents itself there may still be a precedent which, on the basis of additional reasoning,
can be argued to justify an outcome for the fact situation. This is the view suggested by
Corollary 6.19; a justification relation goes beyond the forcing relation by sanctioning
citations of precedents that do not strictly force the outcome of the focus case.

6.4.3 A relational description of the explanation model

Corollary 6.19 shows that a justification relation corresponds to winning strategies under-
lying the explanations of AF-CBA, and this allows us to give a succinct description of the
explanation method just through the use of relations on cases. Let us think of citability as a
relation <, then those (Y, s) € € related to the focus case through the intersection & N <
with (X, s) are said to explain the focus case (X, s), i.e. those (Y, s) with (Y, s) E (X, s) and
(Y,5) 1 (X, 9).

The AF-CBA model is top-level as it does not give explicit definitions of these notions,
apart from suggesting a definition for the citability relation < as in Definition 6.4, and a
method for determining < on the basis of Pearson correlation coefficients. In its running
example and the experiments of Prakken and Ratsma (2022, Section 6) all compensations
are allowed, so that = N <O = <. These inputs are summarized through the relations as:

1. The forcing relation =, determined by specifying the dimensions and their orders.
2. The justification relation =, determined by specifying the compensations.

3. The citability relation <, determined by the definition of a best citable precedent.

This view considerably simplifies the presentation of the model as it does not rely on the
concepts of argumentation frameworks and winning strategies.

6.5 Discussion and conclusion

We have described the AF-CBA explanation model of Prakken and Ratsma (2022) in
Section 6.1, which provides explanations as winning strategies on the grounded argument
game of an abstract argumentation theory. In Section 6.4 we showed that this model admits
an equivalent rephrasing in terms of the justification, citability, and forcing relations. In
this view, explanations are provided as cases that are related to the focus case through these
relations. Most notably this shows that the explanation model can in some sense be seen
as adding a notion of justification to the theory of precedential constraint as a relation =
extending the forcing relation <.

As mentioned, the AF-CBA method discussed in this chapter is motivated by an analogy
between the way in which a machine learning system draws on training data to assign a
label to a new data point and the way in which a court of law draws on previously decided
cases to make a decision about a new fact situation. In the next chapter, we will take a
closer look at this analogy, by fitting the various versions of the result model which we
studied in Part I of this thesis to datasets. We then consider how well the analogy matches
up to the data by examining various statistics such as consistency.



Chapter

Case Base Consistency

SING THE DIMENSIONAL RESULT MODEL (DRM, cf. Chapter 3), Prakken and
Ratsma (2022) developed a case-based reasoning method for explaining
data-driven decisions, which was the topic of the previous chapter. In
addition, they studied whether the DRM is useful as a tool for modeling Al
datasets. The present chapter will be spent performing similar analyses, by

concretely applying the DRM to various datasets and evaluating the degree to which the

model fits the data, as measured in terms of case-base consistency—the relative frequency
of consistent cases.

To do this we first use the reformulation of the model in terms of many-sorted
logic, described in Section 3.10.2, to write a Python implementation on the basis of the
Satisfiability Modulo Theories (SMT) solver Z3 (de Moura & Bjgrner, 2008). In Section 7.1,
we describe how this implementation works, and then use it to fit the model to various
datasets. We measure this fit in terms of consistency. In addition we evaluate various
questions such as: Is the dataset consistent and/or complete? If not, what is causing the
inconsistency or incompleteness? If the dataset is inconsistent, how many of its cases are
inconsistent? How many landmarks does the data contain, and what do they look like? We
also compare different ways of automatically determining the dimension orders and the
effect that they have on the aforementioned statistics. Some of these datasets have known
ground truth labels, which allows us to analyze exactly how well the model fits the data.

After having presented our sSMT-based implementation, we put it to work in Section 7.2
and 7.3 by fitting the brRM to the well-known comPAs recidivism dataset published
by Angwin et al. (2016), as well as on several variations of this dataset. This dataset
consists of real-world data which is representative of the domain on which we would like
to apply XA1 methods based on the a fortiori model. As such, the results of this experiment
are indicative of the feasibility of such xAI methods.

Subsequently, in Sections 7.4, we consider datasets used by Steging et al. (2021, 2023).
We use these because they have known ground truth labels, which allows us to precisely
evaluate the model’s fit to the data. An overview of our findings is given in Table 7.1. We
end with some concluding remarks in Section 7.5.
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Pearson Corr. Logistic Regr.

Dataset Size

|| Cons. || Cons.
Churn 7,010 1,259 59.2% 6,009 95.6%
Admission 500 41  80.2% 90 91.2%
Mushrooms 8,124 23 98.8% 23 100%

compas (full) 5,873 88  8.1% - -
COMPAS (simp.) 1,342 12 42% - -

(CORELS | N7 6 100% S -
Tort 1024 18 98.6% - -
Welfare (full) 99,988 634 71.1% 462 48.5%
Welfare (simp.) 32,876 10 67.3% 5 66%

Table 7.1: An overview of the various datasets used in our experiments. For each dataset we list
its size, number of landmarks, and its consistency percentage. We do this for both the Pearson
correlation and logistic regression methods for determining the dimension orders. In some cases
both methods produce the same dimension orders, which means that all statistics will also be the
same; such duplicate statistics are replaced by dashes.

7.1 Implementing the dimensional result model using Z.3

In this section we describe how the bRM can be implemented in Python using the SMT solver
73 (de Moura & Bjgrner, 2008). In order to be able to compute with the a fortiori model
we require two main components. First—to construct the model—we need a method for
determining the dimension orders. Secondly, we need a way to operationalize it, so that we
can compute, for example, whether some new fact situation has its outcome forced by a case
base. Other necessary ingredients like data representations can be handled with built-in
Python functionality. We describe the method for determining the dimension orders in
Section 7.1.1, and then how we use Z3 to operationalize the model in Section 7.1.2. In
Section 7.1.3 we discuss a preliminary test of the resulting implementation, by recomputing
the statistics reported by Prakken and Ratsma (2022).

7.1.1 Determining dimension orders

Determining appropriate orders for the dimensions is not a straightforward task. They
constitute an assumption that the values along the dimension tend to prefer either of the
binary outcomes. For instance, in our example with recidivism data we have an Age
dimension, and to determine its order is to say whether the elderly are more likely to
recidivate than the young, or vice versa. Knowledge engineering techniques and statistical
methods can be used for this purpose. For instance, for the Age dimension, much has
been written on the interplay between age and recidivism, the conclusion of which is
summarized by the adage that “people age out of crime," meaning that as people age they
become decreasingly likely to recidivate. Another option is to look at statistical trends in
available data, for instance, by considering the sign of the Pearson correlation between age
and recidivism. If it is positive, we can say that likelihood of recidivism increases with age,
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and if it is negative, we can say it decreases.

For our implementation, we employ the statistical method. We will use the same
underlying idea as used by Prakken and Ratsma (2022), which is to use a function c that
associates each numerical feature x with a coefficient c(x) indicating the degree to which
the values of x favor outcome 1. If c¢(x) is positive we order the values of x with the usual
less-than order < on the number line, and if it is negative we order it using the greater-than
order =; so more precisely <:= < if ¢(x) 20 and <:==if ¢(x) <0.

If x is categorical we cannot apply c directly so we use dummy variables. More
specifically, if x is a categorical feature that can take the possible (unordered) values
v1,..., Uy, then we introduce for each value v; a dummy variable d,;, which is a binary
feature indicating whether x = v;. Then we define v; < v; if and only if c(d,,) < c(d,,j).

Prakken and Ratsma (2022) define c on the basis of Pearson correlation, but for the
present work we define ¢ using logistic regression. Supposing we have features x,..., x,
the logistic model has parameters fy, ..., B, and models the probability that a given sample
belongs to class 1 by the formula

1

1+ e Borsibixy (7.1.1)

px1,...,xp) =
We find appropriate values for the § parameters using the scikit-learn implementation of a
maximum likelihood estimation with default parameters (Pedregosa et al., 2011), and after
this is done we can simply put c(x;) := f;.

As mentioned we opt to use logistic regression rather than Pearson correlation. There are
several reasons for this. Firstly, logistic regression seems to be a better choice conceptually,
since it optimizes the coefficients collectively rather than compute them independently of
one another. Secondly, logistic regression seems to perform better in practice, as we will
demonstrate in the coming sections. Lastly, the method using Pearson correlation seems to
work poorly with categorical features, as we will now illustrate.

Given n samples (x1,1),..., (X, ¥») of binary variables x and y, the estimate of the
Pearson correlation r(x, y) between x and y is given by

nley —1.1,
Vnl,—12\/n1,~12’

where 1 is the number of times x takes value 1 in the samples, 1, the number of times y
takes value 1, and 1, the number of times x and y both take value 1.

In order to get a sense of how this function behaves we plot its values for a fixed n
and with 1, := n/2, see Figure 7.1. This plot shows that when 1, is relatively low, or
relatively high, the range of r(x, y) (as a function of 1xy) is not [—1, 1] but some restricted

interval near 0. More precisely, writing s(x) := /nl,— 1%, we can calculate that for
0 <1, < n/2 the range of r(x,y) is [-1,/s(x),1x/s(x)] = [-1,/(n/2),1,/(n/2)], i.e. is
roughly proportional to 1. This is undesirable when x is a dummy variable, as then 1,
simply indicates the number of times the original categorical feature took the value which
the dummy variable represents, i.e. the number of samples we have of that class.

r(x,y) = (7.1.2)

Example 7.1. Let us consider an example to illustrate this point. The original cOMPAS
data includes a Race variable, with possible values including “Asian” and “Caucasian.”
The value Asian occurs much less often than Caucasian (0.4% against 34%), meaning
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n/2 / !
1,y
n/2 n

1’1/4 0 r(x,y)

I—1

1.

Figure 7.1: A plot of Eq. (7.1.2), the Pearson correlation coefficient for binary vectors x and y for
a fixed value of n:=400 and with 1) := n/2. The gray area marks points that violate one of the
inequalities 1x + 1y —n <1y, <1y, and as such could not result from a sample.

that the value of 1, for the dummy variable for Race = Asian is much lower than that for
the Race = Caucasian variable. As a result, its Pearson correlation must land in a very
small interval around 0, while the one for Caucasian has almost the full range available.
Indeed, the order for the Race dimension on the basis of the Pearson correlation method
puts Caucasian in the last position (i.e. comparatively least prone to recidivate), and Asian
a little over halfway in the order. To compare this with a measure that does not place such
great importance on the number of samples that we have of each race, we consider the
relative frequency 1,,/1, of recidivism within that class. The picture is now the opposite
of what we see with Pearson correlation, with Asian ending lowest in the ranking (at 28%
prevalence) and Caucasian a little over halfway (at 40% prevalence).

7.1.2 Using Z3 to operationalize the result model

Satisfiability Modulo Theories (SMT) is about procedurally checking the satisfiability of
formulas over a theory, in the sense described in Section 3.10.1 of Chapter 3. In particular:
given a many sorted signature X, a formula ¢ € L%, a structure A and a theory T < L*, an
SMT solver is concerned with deciding whether there is a satisfying assignment a € [¢p] or
not. Using the equivalence between validity of ¢ and unsatisfiability of —1¢ this means
an sMT solver can also be used to check validity. The decidability and complexity of
answering this satisfiability problem greatly depend on the theories in question. Bradley
and Manna (2007, Section 3) have given an overview of some supported theories and their
complexities.

In this section, we describe how we use Z3—a state-of-the-art SMT solver—to answer
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questions for a given set D of dimensions and a case base €, such as:

(1) Given two fact situations F,G € & does F < G holds?

(2) For a fact situation F and an outcome s, does €6, F = s hold?
(3) Is € consistent and/or complete?

(4) Given a case (F, s) € €, is (F,s) a landmark of €?

Answering these questions with Z3 is a relatively straightforward application of our work
in Section 3.10.2. For instance, to answer question (1) we use the formula G = x A ¢(F) of
Eqgs. (3.10.1) and (3.10.3) because Z3 can determine whether there is a satisfying assignment
in [G = x A ¢ps(F)] = {G}n s F, which is inhabited if and only if F <; G. Similarly, to see
if F is forced by € for s we use the formula F = x A @y, since [F = x A Dg] = {F} N 16 is
inhabited if and only if €, F E s. To answer question (3) we can use Proposition 3.35; the
case base is inconsistent if and only if @ A @ is satisfiable, and incomplete if and only if
—1(®g v d;) is satisfiable. Finally, to check whether a case (F, s) is a landmark of € we can
use the formula A(F) of Eq. (3.10.4), since [As(F)] is inhabited if and only if (F, s) € £.
The full implementation, and the rest of our code, is available online.!

7.1.3 A preliminary test of the implementation

As afirst test of this implementation we repeated the experiments reported on by Prakken and
Ratsma (2022, Section 6) on the Churn,? Mushroom (Schlimmer, 1981), and Admission
datasets (Acharya et al., 2019). We do this so we can compare the output of our
implementation to known results, and so that we can test the logistic-regression method for
automatically learning appropriate dimension orders from the data. Note that all three of
these datasets are, or at least appear to be, largely synthetic. The Churn dataset contains
“information about a fictional telco company that provided home phone and Internet services
to 7,043 customers in California in Q3." The Mushroom dataset contains “descriptions of
hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and
Lepiota Family.” Lastly, the Admission dataset contains information about the chance of
university admission on the basis of data like undergraduate grade point average. Again,
this dataset seems to contain at least some synthetic elements, as its author writes that
it had values “entered manually with no specific pattern. It was random assignment." A
more extensive description of these datasets and their features can be found in the work by
Prakken and Ratsma (2022).

We report the findings of our implementation in Table 7.1, which can be compared to
the results found by Prakken and Ratsma (2022, Table 3). We list the number of landmarks
|Z| as well as the consistency percentage, which is computed as the relative frequency of
consistent cases in the dataset:

_Gon 161 +]€1n |l
[€| '

We find an identical consistency percentage for the Mushrooms dataset, but only
approximately equal percentages for the Churn and Admission datasets. The difference

Cons(€6):=100-(1

thttps://git.science.uu.nl/ics/responsible-ai/van- woekom/afcbr.
2https://community.ibm.com/community/user/businessanalytics/blogs/steven-macko/2019/07/11/
telco-customer-churn-1113.


https://git.science.uu.nl/ics/responsible-ai/van-woekom/afcbr
https://community.ibm.com/community/user/businessanalytics/blogs/steven-macko/2019/07/11/telco-customer-churn-1113
https://community.ibm.com/community/user/businessanalytics/blogs/steven-macko/2019/07/11/telco-customer-churn-1113
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in the percentage for Churn is because Prakken and Ratsma did not delete duplicate
occurrences of cases. We did delete duplicate cases for the sake of our landmark analysis;
if two cases have identical fact situations and outcomes, but are not considered equal, then
they will ‘force’ each other’s outcome and so are not considered landmarks when they
otherwise might have been. The consistency percentage on the Admission dataset also
differs, even though the number of cases there is equal. It is not entirely clear why this is.
Since the difference in percentages is small—only 0.4%—and the results are otherwise in
agreement, we do not further investigate the source of this difference.

As we can see, the approach using logistic regression tends to increase both the number
of landmarks as well as the consistency percentage—in the case of the Churn dataset by as
much as 36.4%. This suggests to us that logistic regression is indeed a better method for
the purpose of automatically assigning dimension orders to the features.

In the next few sections we will perform similar analyses of consistency percentages and
landmark cases of various datasets, starting with the COMPAS dataset published by Angwin
et al. (2016).

7.2 The COMPAS dataset

We turn our attention to the COMPAS recidivism dataset, published by Angwin et al. (2016),
which contains information on convicts and whether they recidivated within two years after
being arrested for an initial charge. We chose this dataset because it consists of real-world
data that is closely related to the type of situations for which we want to develop xAI1
methods: data-driven methods with legal, ethical, or social impact to end users.

For this evaluation we proceed just as we did for the preliminary test in Section 7.1.3
on the Churn, Mushroom, and Admission datasets—we fit a logistic regression model to
the data to determine the dimension orders and subsequently evaluate various statistics
to measure the degree to which the a fortiori model fits the data. However, unlike for the
aforementioned datasets, we need to do more extensive preprocessing in order to get the
data in an appropriate format. This results in a dataset that we will refer to as the “compas
dataset.” In order to get a better understanding of our experimental results, we also make
two variations on this dataset. The first, which we call the “simplified compas dataset,”
contains only a subset of the features of the compas set. Then, we relabel the simplified
version according to a rule found by Angelino et al. (2018) using their Certifiably Optimal
Rule Lists (CORELS) algorithm. We name this last dataset the “CORELS dataset.”

The preprocessing steps we took are described in Section 7.2.1. We then describe
in Section 7.2.2 our results for the compPAs dataset, in Section 7.2.3 our results for the
simplified coMPAS dataset, and in Section 7.2.4 our results for the CORELS dataset.

7.2.1 Data preprocessing

Before analyzing the comPAs data we preprocess it. In particular, we discard features that
are not of interest, delete rows that do not have values for the remaining features, create
new features on the basis of old ones, and finally delete duplicate rows. Below follows a
more detailed description of the steps taken.

First, we discard features that are not of interest. For instance, many of the features in
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Table 7.2: An overview of the compas features of interest. Angwin et al. (2016) did not give a
comprehensive overview of the meaning of all the features used in their analysis, so we should note
that this is only our best attempt at an interpretation.

Feature Description Order
Age Age of the convict at the time of the COMPAS assessment. Descending
Sex Gender as specified when the convict was arrested, can take ~ Female < Male

on the values ‘Male’ or ‘Female’.

ChargeDegree Indicates whether the charge that led to the assessment wasa M <F
felony (F) or a misdemeanor (M).

DaysInJail Number of days the convict spends in jail for the crime, Ascending
computed by comparing (and rounding down) the number of
days between the c_jail_in and c_jail_out fields.

DaysInCustody Number of days the convict spends in custody, computed in ~ Ascending
the same way as DaysInJail but with the c_custody_in
and c_custody_out fields.

Priors Number of offenses committed prior to the one that led to the ~ Ascending
coMPAS assessment. The value of this field is computed as
the sum of the values of juv_fel_count, juv_misd_count,
juv_other_count, and priors_count fields in the original
dataset.

Label The label, indicating whether there was “a criminal offense ~ N/A
that resulted in a jail booking and took place after the crime
for which the person was COMPAS scored [...] within two years
after the first.” (Larson et al., 2016)

the original dataset pertain to the COMPAS system, but presently we are only interested in
the data describing the convicts and whether they recidivated or not, not in the COMPAS
system itself. For example, one of the features describes the recidivism risk score (on a
1-10 scale) which compAs assigned to the individual.

Some features are of interest to us but are not in the right format. For instance, the two
columns c_jail_in and c_jail_out together tell us how many days the convict spend
in prison, but are represented in a date format, so we replace them with a new DaysInJail
feature holding the number of days spent in prison. A complete overview of the resulting
features and their meaning can be found in Table 7.2.

Lastly, we remove any rows that do not have values for any of the relevant features,
or which occur more than once in the data. This last step is necessary for our landmark
analysis; a case ¢ may be a landmark, but if there is a second case d with exactly the same
fact situation and outcome as ¢ but not equal to c, then neither ¢ nor d are landmarks.

We are then left with a total of 5,873 rows and we will henceforth refer to that set when
we say ‘coMpas dataset’. In addition, we will look at two variations on that set. The first
we will call the ‘simplified compas dataset’, which is obtained from the compAs dataset
by omitting all features except Age and Priors, and then deleting all duplicates. The
second we call the ‘CORELS dataset’, and is obtained by changing the labels in the simplified
CcoMPAS dataset according to the recidivism prediction rule found by Angelino et al. (2018,
Figure 1) using their CORELS algorithm, see Figure 7.2.
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if (age =18 —20) then predict yes

else if (age=21-23) and (priors = 2 — 3) then predict yes
else if (priors > 3) then predict yes

else predict no

Figure 7.2: A rule list for the compas dataset found by Angelino et al. (2018) using their CORELS
algorithm. The clause related to sex has been excluded since this feature is omitted from the simplified
coMpas dataset for the sake of visualizability.

Table 7.3: On the left is a summary of the strength order on the compas dataset, and the impact of
the landmarks [ and [; defined in Definition 7.2. On the right is a concrete description of /y and
I. Notice that they are archetypal examples of the opposite class that they belong to; lg is a young
male with many priors, who did not recidivate; while /; is an older female with no priors, who did
recidivate.

Property Label 0 Labell Total d bl hid)
Consistent 76 397 473 gfz ijle Fei,ga]e
Inconsistent 2,783 2,617 5,400 ChargeDegree F M
Forced by Iy 2,271 1,765 4,036 DaysInJail 70 0
Forced by [; 2,296 2,700 4,969 DaysInCustod 70 0
Landmark 70 18 88 ye rHastody

Priors 11 0

7.2.2 Results on the COMPAS dataset

Having selected the dimensions, assigned their orders, and constructed the case base, we
can now evaluate various statistics. We start by looking at the consistency percentage, i.e.
the relative frequency of cases that do not have their outcome disputed by the strength
order on the case base. We find the cOMPAs dataset is only 8% consistent, see Table 7.1.
This low percentage is caused by a small number of landmarks—outliers in the data that
one would expect to have the opposite label of the one they received. We identify two
landmarks Iy and [; as being most impactful, which are defined as follows.

Definition 7.2. Given a finite case base € and an outcome s we define the set L of cases
with outcome s that force the outcome of the greatest number of other cases in €:

Ls:=argmaxpeq, [Ts FN (6o USBL)I.
When L; is a singleton we write [ for its sole element.

By transitivity of the strength order the cases in Lg are also landmarks, i.e. we have
Ls <€ %;. In the datasets we consider in this work the L; sets are singletons, so we will just
refer to their sole elements Iy and /;. The I cases in the COMPAS dataset are shown in
Table 7.3. In Figure 7.3 an overview of the collective impact of the landmarks is shown.

Remark 7.3. The notions of landmark and outlier, while similar, are not quite the same: a
landmark need not be an outlier (cf. Figure 7.5) and an outlier need not be a landmark (for
instance, when there is an outlier even further across the best-fit decision boundary).
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Il Consistent
Il Inconsistent

Number of cases forced

Landmarks with outcome 0 Landmarks with outcome 1

Figure 7.3: A visualization of the impact of the landmarks in the compas data. Each vertical bar
represents one landmark and shows the number of cases for which it forces the decision. The green
area indicates the cases with an outcome equal to that of the landmark, and the red area the cases with
an outcome different from the landmark (and which are therefore made inconsistent by the landmark).
More precisely, for each landmark (F, s) € £ the green area represents |6s N s F| and the red area
represents |65 N 15 F|.

7.2.3 Results on the simplified COMPAS dataset

High dimensional data is difficult to visualize, so in order to get a better view of these
results we repeat our analysis on a subset of the data with only the two most predictive
variables—Age and Priors. We call this the simplified compAs dataset. The resulting
order on the variables remains the same as in the larger version. This lets us visualize the
data, the decision surface of our logistic model, and the landmarks; see Figure 7.4 for the
resulting plot. The landmarks highlight the cause for the inconsistency: there are many
cases that lie on the opposite side of the decision boundary for their class, causing large
overlap in their forcing cones.

7.2.4 Results on the CORELS dataset

The preceding results have shown that the model of precedential constraint is a poor fit on
the compas data. This makes sense intuitively, because when someone of a certain age
and with some number of priors recidivates, we cannot expect this to set a precedent that
future convicts will abide by. For example, when an elderly lady with no prior offenses
recidivates, this will have very little influence on the behavior of convicts thereafter. In
other words, the process underlying recidivism does not respect precedence.

This type of reasoning should be more suited to our running example from Part I in
which we judge risk of recidivism (see e.g. Example 3.4). When a person is assigned low
or high risk of recidivism, we would expect this assignment to obey the a fortiori principle.
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Figure 7.4: Two illustrations of the simplified compAs dataset. The green dots correspond to cases
with outcome 0, and the red dots to those with outcome 1. The enlarged circles indicate the landmarks.
On the left, all cases in the case base are shown, together with a dotted line indicating the decision
boundary associated with the logistic regression coefficients. On the right, only the landmarks are
shown, together with their forcing cones.

To test this hypothesis we change the labels of the simplified compAs data according to
a sensible risk assessment rule, mined from the original coMPAs data by Angelino et al.
(2018, Figure 1), as a demonstration of their CORELS algorithm. This rule is listed in
Figure 7.2, with the only modification being that we omit the clause related to sex from
the first case distinction since we have omitted this feature for the sake of visualizability.
Changing all labels according to this rule, and then removing duplicates, results in a new
dataset that we refer to as the CORELS dataset.

Now, we again fit our model to this data and visualize the decision boundary of the
logistic regression model, along with the forcing cones of the landmarks; see Figure 7.5 for
the resulting plot. As expected, the decision rule of Figure 7.2 does satisfy the a fortiori
principle, and as a result the consistency is very high (in fact the dataset is fully consistent).
The forcing cones of the landmarks are in agreement with the decision boundary determined
by the logistic regression analysis.

In all, our results on the COMPAS datasets suggest that we can think of the phenomenon of
inconsistency in two ways. The first is the mathematical view that the theory of precedential
constraint contains a linearity assumption and that the consistency percentage is a measure
of the degree to which the data is linearly separable. Of each class, the landmarks are then
those cases that lie furthest in the direction of the best fit linear decision boundary, and the
farther they cross it the more inconsistency they cause. The second is the semantic view
that tells us to what degree the labelling process relies on a fortiori reasoning, or the degree
to which we can expect precedent to be obeyed. If this is the case, then the landmarks are
those cases that most reveal the nature of the underlying labelling process.

Our results also suggest that the presence of a small number of landmarks that force the
decision of the rest is what we can expect of an average dataset, because in general a partial
order will have far fewer minimal elements than that it will have elements in total. Two
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Priors

Age

Figure 7.5: Two illustrations of the simplified CORELS dataset. The green dots correspond to cases
with outcome 0, and the red dots to those with outcome 1. The enlarged circles indicate the landmarks.
On the left, all cases in the case base are shown, together with a dotted line indicating the decision
boundary associated with the logistic regression coefficients. On the right, only the landmarks are
shown, together with their forcing cones.

factors that can influence this is the number of dimensions and the way in which we order
them. For instance, if we have a dimension with more than two values and we order them
so that they are all incomparable, it will immediately become impossible for any case to
force the outcome of another, and so every case becomes a landmark.

7.3 A logical analysis of the CORELS dataset

An interesting fact of the CORELS dataset is that its labels are determined by a logical rule,
which can be expressed in the same many-sorted language we used in Section 3.10.2 to
formulate the a fortiori model. More specifically, the rule in Figure 7.2 corresponds to a
formula ¥ € L*P) defined by:

VY:=Civ(CyVv(s, (7.3.1)
C1:=18 < xpge = 20,
Cr:=(21< XAge = 23) A (2 < Xpriors < 3),

C3 := 3 < Xpriors-

A fact situation F is assigned label 1 if @, F £ ¥, and 0 otherwise—i.e. when 9, F = =
Letting 27 = [¥] and Zp = ["V] = X'\ [V¥]. This means we have a situation as described in
Section 3.10.3, in which the set of fact situations & is equal to a disjoint union ZyUZX; =X
indicating binary ground truth labels. Moreover, since these &y and 2 sets are defined in
the logical language of the a fortiori model, we can use Z3 to reason about the relation
between the ground truth labels and the forcing relation induced by the CORELS case base.

Let us illustrate how this works by looking at the @, formulas. The CORELS dataset
contains very few landmarks—only 6 in total—which allows us to write them down; see
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Table 7.4: On the left are the landmarks in the consistent and incomplete CORELS dataset, and on the
right are the landmarks of the modified, consistent and complete CORELS dataset.

Age Priors Label Age.,, Priors Label

o T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 24 3 0

20 0 1 50 0 X
23 2 1

23 2 1

68 4 ! 100+ 4 1
75 5 1

Table 7.4 for an overview. This also means we can write out the corresponding @, formulas:

@p = (24 = xpge N Xpriors = 3) V (21 = Xage A Xpriors = 1), (7.3.2)
®; = (75 = Xage A XPriors = 5) V (68 = Xage A Xpriors = 4) V (7.3.3)
(20 = xage A Xpriors = 0) V (23 = Xage A Xpriors = 2).

Using these we can precisely analyze the degree to which the forcing relation on cases is in
accordance to the ground truth labels. For instance, is it always the case that when the case
base forces a fact situation F for outcome 0, that F has ground truth label 0? In other words,
does the inclusion |6y S Zy hold? And what about the converse, |6y 2 Z;? Recall from
Section 3.10.2 that these questions have logical counterparts. To check |6y = % is the
same as to check that @y < =¥ is valid, and the CORELS dataset is simple enough that this
can be done by hand, using the basic rules for manipulating logical formulas:

¥ 1\/{18 < xage < 20,
(21 < Xage < 23) A (2 < Xpriors < 3),
3 < Xpriors}
— /\{21 < XAge:
(xage =20V 24 < xage) V (Xpriors < 1 V 4 < Xpriors),
Xpriors < 3}
< Af21 < xage,
24 < Xage V Xpriors = 1,
Xpriors < 3}
< (24 = Xage N Xpriors = 3) V (21 = Xage A Xpriors < 1)

— Dg.

In other words, we apply De Morgan’s law to ='W, simplify the resulting expressions,
distribute the conjunction over the disjunction, and then finally simplify the expression
again to obtain ®y. Thankfully, we do not have to do this by hand, as Z3 can quickly
perform such verifications. Any subsequent claims that we make about the validity of
formulas was checked using Z3.
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1€ lGomT€ 1€
1o

(a) CORELS (b) Tort law

Figure 7.6: Euler diagram representations of the relation between the CORELS case base and the
ground truth labels determined by the decision rule of Figure 7.2 (in 7.6a), and of the relation between
the tort law case base and the labels determined by Eq. (7.4.1) (in 7.6b).

Similarly to the derivation above, we can show that ®; — W is valid, which tells us that
16, < &1. However, as we saw in Proposition 3.15, this inclusion is necessarily strict. An
Euler diagram representation for the CORELS case base can be found in Figure 7.6a.

The proof of Proposition 3.15 shows that the problem with making the CORELS case
base complete is that the values for Priors and Age can become infinitely large. Since case
bases are finite by definition, we can always find fact situations on the northeast part of
the (Priors, Age) plane that do not have their outcome forced. If we put a cap on either of
these values it would be possible to make the case base complete. Let Age_,, denote the
dimension equal to the Age dimension with the exception that it has a highest value ‘100+’,
i.e. fact situations have their age represented along this dimension, and any value that would
normally be above 100 gets assigned the 100+ value. More specifically, let Age_,,, be a
dimension consisting of the set {18,19,20,...,99,100+} ordered by =. Now, the CORELS
case base can be made into a complete (and consistent) case base for the Age_,,, and
Priors dimensions by the addition of a case with Age_,,, value 100+ and Priors value 4.
See Table 7.4 for the landmarks of the resulting case base.

7.4 The tort and welfare datasets

In Section 7.3 we saw an example of a dataset that has its labels determined on the basis of
a logical formula W. The set of fact situations & was partitioned in two parts & = [V]
and &y =[] = X \ [¥], indicating the ground truth labels of the fact situations. This
allowed us to precisely measure the fit of the a fortiori model by looking at the relationships
between the sets ;%6 and Zs.

We now turn our attention to two more datasets that come with such a labelling
formula ¥. Firstly, we look at data on a real legal setting, namely the domain of Dutch tort
law (Verheij, 2017). Secondly, we consider the fictional welfare benefit domain introduced
by Bench-Capon (1993), and several variations on this dataset. Both of these datasets were
recently used by Steging et al. (2021) to see if modern machine learning systems can learn
the rules used to label the examples in these datasets. In this section we will essentially do
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Table 7.5: A description of the features appearing in the welfare set together with a description of
their meaning (Bench-Capon, 1993).

Feature Values Description

Age 0-100 The person’s age; should be of pensionable age to be eligible (60
for a woman, 65 for a man).

Sex Male or female The person’s sex, used to determine pension age.

Cony,...,Cons Oorl The person should have paid contributions in four out of the last
five relevant contribution years.

Spouse True or false The person should be a spouse of the patient.

Absent True or false The person should not be absent from the UK.

Resources 0-10,000 The person should have capital resources not amounting to more
than 3,000£.

Type In or out If the relative is an in-patient the hospital should be within a
certain distance: if an out-patient, beyond that distance.

Distance 0-100 Distance to the hospital.

the same but for the a fortiori model, through an analysis similar to the one we performed
for the CORELS dataset in Section 7.3. We perform this analysis first for the tort dataset,
and then for the welfare dataset, in Section 7.4.

Tort law describes when a wrongful act is committed, and when the resulting damages
must be repaired. The label of the training examples in the dataset we consider states
whether such a duty to repair holds according to the law in that particular fact situation.
Fact situations are described along 12 binary features. Examples of these features are vun,
which states that the act was a violation of unwritten law against proper social conduct,
or imp, which states the act can be imputed to the person that committed the act. For a
complete overview of the features and their meaning the reader is referred to the work
by Verheij (2017, Table 1) and Steging et al. (2023).

This duty to repair can be formalized according to the following rule:

¥:=Njcies Cir (7.4.1)
C1 1= Xcau,

C2 1= Xico V Xila V Xift,

C3:= Xyun V (Xvst A 7 Xjus) V (Xvrt A 7 Xus),

Cy:= Xdmg>

Cs := 1(Xyst A 7 Xprp)-

The consistency percentage and number of landmarks for this dataset can be found
in Table 7.1. Since there are only 10 binary features there are only 2!9 = 1,024 possible
fact situations for this domain. The dataset we use contains all 1,024 of them, and so this
case base is necessarily complete. Using Z3, we can furthermore prove that =¥ — ®q and
Y — @ are valid, which means that &y < |6y and &1 < 6. The corresponding Euler
diagram representation can be found in Figure 7.6b.

Next, we turn to the welfare datasets, first used by Bench-Capon (1993) to investigate
whether neural networks can handle open texture in law. They contain data about a fictional
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welfare benefit paid to pensioners to defray expenses for visiting a spouse in a hospital. An
overview of the features appearing in this dataset can be found in Table 7.5. The labels are
determined as a logical function ¥ of these features, defined by:

Y= /\151’56 Ci, (7.4.2)
C1 := (xsex = F A Xage = 60) V (Xsex = M A Xage = 65),

Cri=4s< leiss XCon;>

C3 := Xspouses

Cy 1= T Xabsent,

Cs := XResources < 3,000,

Ce := (X1ype = in A Xpistance < 50) V (X1ype = OUL A XDjstance = 50).

Steging et al. (2021) used several different versions of the original welfare dataset
for their experiments. Amongst these are two datasets each containing 50,000 examples,
randomly sampled in the ranges described in Table 7.5, and each labelled according to
the formula ¥ in Eq. (7.4.2). These were designed to either fail on a random number of
the conditions Cj,..., Cg, or to fail on just one specific condition. For our purposes, this
distinction is not important, so we merge the datasets into one set that we will henceforth
refer to as the welfare dataset. After merging and removing duplicates it contains 99,988
cases; its number of landmarks and consistency percentage can be found in Table 7.1.

Interesting to note is that the Pearson correlation method yields a substantially higher
consistency percentage on this set: 71.1% as opposed to 48.5%. An inspection of the
dimension orders shows that this is arguably the result of chance. The Pearson correlation
and logistic regression methods agree on the signs of the coefficients of all dimensions
except that of the Distance dimension. The Pearson correlation coefficient of this dimension
is 0.001, while its coefficient from the logistic regression analysis is —0.01. We see that
both methods assign a negligibly small value, which is because the Distance dimension
violates the assumption that its values tend to favor either of the outcomes; if Xtype = in
then lower values of the Distance dimension are better for outcome 1, and if xgype = out
then higher values are better for outcome 1. The Pearson correlation method happened to
assign a small positive value to the coefficient, but it could have just as well produced a
small negative coefficient for a slightly different sample; and the same holds for the logistic
regression method.

What about the relation between the @ formulas and W? In fact, none of the possible
inclusions hold, so its Euler diagram is the most general one, depicted in Figure 3.3a.

Remark 7.4. Note that the formulas involved in these situations can become very big:
the Welfare dataset contains 12 features and 99,988 cases, so the forcing formula @ will
contain approximately 12-99,988 = 1.2 million atomic subformulas. Nevertheless, Z3 is
capable of handling big formulas such as these.

Part of the analysis performed by Steging et al. (2021) used a simplified version of the
welfare set containing only a subset of the features of the original set: namely Sex, Age,
Type, and Distance. The labels of this set are determined only by conditions C; and Cg,
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160

Figure 7.7: An Euler diagram representation of the relation between the simplified welfare case base
and the ground truth labels determined by the formula in Eq. (7.4.3).

i.e. its labelling formula ¥ is defined as:

V= /\151’56 Ci, (7.4.3)
C1 := (xsex = F A Xage = 60) V (Xsex = M A Xpge = 65),
Ce := (X1ype = in A Xpistance < 50) V (X1ype = OUL A XDistance = 50).

We refer to this set as the simplified welfare dataset and performed a similar analysis on it
as with the other sets. The results can be found in Table 7.1.

The consistency percentage on this dataset is not great—only about 67.3% for the
Pearson correlation method, and only 66% for the logistic regression method. However,
when we break down this percentage for both classes we see that the situation is more dire
than it at first appears. The consistency percentage for class 0 is 86.4%, but that of class
1 is 0%. This is caused by a single landmark with label O, which forces all cases with
outcome 0 for outcome 1, which means that 7%, < | 6j: any case forced for outcome 1 by
the case base is also forced for outcome 0. Z3 can prove that the case base is complete, and
so0 since T%6) < |6 this means & < |6, all fact situations are forced for outcome 0 by
the case base. Lastly, it can be shown that & < 1%6). The Euler diagram corresponding to
this situation is shown in Figure 7.7.

Why is the a fortiori model such a poor fit for this dataset? The reason, as mentioned
previously, is that the features violate the assumption that their possible values have a
preference for either of the binary outcomes. The way that Distance values prefer outcome
0 or 1 depends on the value of the Type dimension. Similarly, the Type and Sex dimensions
do not themselves prefer outcome 0 or 1; they are just information to be conditioned on in
the labelling formula. The only exception is the Age dimension, for which higher values
clearly prefer outcome 1.

The simplified welfare set isolates almost exactly the variables that violate the dimension
order assumption, which is also indicated by the fact that both the Pearson correlation and
logistic regression methods assign coefficients to these dimensions which are very close
to 0. What if we do the opposite: isolate from the original welfare dataset exactly the
variables that satisfy the dimension order assumption? This means removing the Distance,
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Figure 7.8: Euler diagram representations of the relation between the second simplified welfare case
base and the ground truth labels determined by the formula in Eq. (7.4.4), before (7.8a) and after
(7.8b) running Algorithm 1.

Type and Sex dimensions, and relabelling the data according to the following formula:

V= /\15;‘55 Ci, (7.4.4)
C) := Xage = 60,

Cr:=4< leiss XCon;>

C3 := Xspouse»

Cy 1= " Xpbsent,

Cs := XResources < 3,000.

Performing this modification and subsequently removing duplicates yields a new dataset
with 96,348 cases, which we will refer to as the second simplified welfare dataset. Fitting
the a fortiori model on this set we get a consistency percentage of 100%. Moreover, Z3 can
prove that &y < |6y and & < 1%6,. The Euler diagram corresponding to this situation is
depicted in Figure 7.8a.

We see that the only property missing now is completeness. This means that it might be
possible to add certain cases, so that the result is a consistent and complete case base. To
finish this section on data analysis, we show that Z3 can potentially be used to complete a
case base in such a scenario. This works because in order to prove completeness Z3 tries
to find a counterexample, i.e. a fact situation F € '\ (| 6y U T%61). If it succeeds at finding
such a fact situation, we can determine its label using Eq. (7.4.4) and add it to the case
base, after which we ask Z3 to prove completeness again. This yields an algorithm for
completing a case base, described in Algorithm 1. This algorithm does not necessarily
terminate; e.g. Proposition 3.15 tells us it would loop endlessly on the CORELS dataset. If it
does terminate, this is either because the case base was made inconsistent, or it was made
complete by the addition of the last added case, while retaining the consistency property.

Running Algorithm 1 on the second simplified welfare case base yields a consistent
and complete case base with 19 landmarks; see Figure 7.8b for the corresponding Euler
Diagram visualization.
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Algorithm 1: Completing a case base using Z3.

Data: A consistent, incomplete case base €
1 while € is consistent and incomplete do
2 F « the counterexample to completeness generated by Z3;
3 s « the ground truth label of F according to the labelling formula ¥;
4 | €—CU{FE9Nh,
5 end

7.5 Conclusion

In this chapter, we have explored the application of the dimensional result model (DRM)
to various datasets to evaluate its fit in terms of case base consistency. We implemented
the DRM using the Z3 sMmT solver and tested it on several datasets, including the coMpAS
recidivism dataset, the tort law dataset, and the welfare benefit datasets. Our findings
indicate that the DRM can effectively model datasets where the features have a clear
preference for one of the binary outcomes. However, in cases where this assumption is
violated, the model’s fit is poor. We also demonstrated the use of Z3 to analyze the logical
structure of datasets and to complete case bases while maintaining consistency.

The a fortiori case-based reasoning method of explanation developed by Prakken and
Ratsma (2022), which we discussed in Chapter 7, operates on the basis of the brRM. In
Chapter 5 we presented an extension of this model—the dimensional hierarchical result
model (DHRM)—which is capable of modeling a fortiori constraint of decisions that can
take more than two values. If the explanation method of Prakken and Ratsma were modified
to operate on the basis of the DHRM it would be more broadly applicable, because most Al
systems output real numbers, and not binary values.

This raises the question how the analyses considered in this chapter would look for the
DHRM, as opposed to the DRM, and this will be the topic of the next chapter.
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COMPAS Risk Scores Case Study

AST CHAPTER, we fit the dimensional result model (DRM, cf. Chapter 3) to
M| machine learning datasets.! In particular, we computed the consistency
of the coMpAs dataset with respect to the binary labels indicating whether
a person did, or did not, recidivate within a two-year timeframe of being
compAs scored. However, we did not measure the consistency of the
COMPAS scores themselves, as these are not on binary scales. In this chapter, we extend
our Z3-based implementation to compute constraint of the dimensional-hierarchical result
model (DHRM, cf. Chapter 5), which does allow us to measure the consistency of COMPAS.
The contributions of this chapter are twofold. We prove two formal results on case
base consistency and relate those to compas. In both cases, the consistency of coMpAs
contradicts the theoretical predictions, and we reflect on the causes of these discrepancies.

The first theoretical result states that a large class of popular statistical models, called
generalized linear models, always produces fully consistent case bases. It has been claimed
by the developers of cOMPAS that the program computes its scores based on a regression
model, and so this should mean that the compas risk scores display a high level of
consistency. In contrast, we find that the consistency of the risk scores is actually very low.
We conclude that this can be explained by the fact that there are features missing from the
coMPAS dataset which are used by COMPAS to compute its scores.

The second theoretical result relates case base consistency to binning—the practice of
subdividing a range of values into smaller, consecutive, non-overlapping intervals, which
are called bins. We show that consistency scores should decrease when input features
are binned. Again, an analysis of COMPAS outputs produces results that contradict this
theoretical result. This brings to light an underdiscussed aspect of compas: the use of
norm groups for the interpretation of cCoMPAS outputs. We show that information on these
norm groups can be reverse-engineered from the coMpAs data, by use of a graph coloring
algorithm.

The contents of this chapter are structured as follows. We start by giving some
background information in Section 8.1 on COMPAS, its risk scores, and on the dataset

R s D,
D

N

IThe material in this chapter stems from van Woerkom (2025) and van Woerkom et al. (2024b), with the exception
of Section 8.2.3 which is new.
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containing examples of these scores. In Section 8.2 we recall the DHRM model of constraint
which we use for the analysis, together with a description of its Z3-based implementation.
In Section 8.3 we give the first theoretical result on generalized linear models, and relate
it to the comPas risk scores. Then, in Section 8.4, we give the second theoretical result,
and relate it to the coMPAS recommended supervision level scores. Finally, we end in
Section 8.5 with some concluding remarks.

8.1 The COMPAS risk assessment dataset

The primary outputs of the COMPAS program are its need and risk scale assessments,
computed based on answers to questionnaires; see the Berkman Klein Center for Internet
and Society (2025) for examples. The comPAs need scales measure constructs like
financial problems, substance abuse, and depression, while the risk scales predict factors
like recidivism, violence, and failure to appear (Equivant, 2019). Additionally, compAS
provides a “level of supervision” recommendation, ranging from 1 (lowest) to 4 (highest).

The inputs to these scales are answers to questionnaires about prior offenses, education,
work experience, et cetera. Some data are self-reported. These answers inform the need
scales, which in turn inform the risk scales. The COMPAS risk scales, particularly the
“General Recidivism Risk Score” (GRRS) and the “Violent Recidivism Risk Score” (VRRS),
have been debated. Angwin et al. (2016) published a dataset containing COMPAS risk scores
assigned between 2013 and 2014 in Broward County, Florida, which we discussed in
Section 7.2 of the previous chapter. This dataset includes scores, information on which these
scores were presumably computed, and information about whether a person recidivated or
committed a violent act after being scored (Larson et al., 2016).

The dataset has been criticized for missing features needed to compute the COMPAS
risk scores (Michelle Bao et al., 2021). Rudin et al. (2020a) supplemented ProPublica’s
dataset with probation data from the Broward Clerk’s office to fill in some missing features.
However, some information is still missing (Rudin et al., 2020a, Table 1). The dataset
published by Rudin et al. (2020a) contains data on 9 features used to compute the GRRS
and 13 for the VRRs (Rudin et al., 2020a, Table 1 & Tables A4—-AS8; Engel et al., 2024,
Tables 1-5).

According to Northpointe (2009) the failure to appear risk score “is based largely on
prior history of a failure to appear, current charges for failure to appear, prior recidivism
on community placement, general criminal involvement, and unstable residential ties and
transience.” This score has received less attention in the literature, presumably because the
dataset published by Angwin et al. (2016) does not contain “true label” information on
this scale. Again, we do not have access to most of the features on the basis of which the
failure to appear risk scores are computed. As an approximation we will use the history of
criminal involvement subscale and marital status information, totaling 8 input features.

Lastly, the coMPAs risk scores can be presented in various ways. Initially, COMPAS
produces raw scores, which can take any value, such as —1.54, for example (Equivant,
2019). For interpretability, these raw scores are converted to decile scores by comparing
them to those of a norm group—a representative sample of the target population of the
agency using COMPAS. For instance, a raw score of —1.54 might be converted to a decile
score of 6, indicating it is higher than the lowest 50% but lower than the highest 40% of
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scores in the norm group. These decile scores may then be further represented as “Low”
(scores 1-4), “Medium” (5-7), and “High” (8—10). (According to Nisbet et al., 2018, "a
surprising number of agencies prefer the traditional labels of low, medium, and high risk.")

We will use the extended dataset published by Rudin et al. (2020a) to relate formal
results about case-based reasoning consistency, to our analysis of the COMPAS risk scores.
Before turning to these results, we first recall the model of case-based reasoning and its
associated notion of consistency.

8.2 The model of a fortiori constraint

As the basis of our analysis we use the dimensional-hierarchical result model (DHRM)
which we developed in Chapter 5. We will now recall the definitions, and illustrate their
applicability to the compas risk scores through some examples. However, we note in
advance that we will make some minor modifications to simplify the rest of the analyses.
The essence of the DHRM will remain unchanged, and we will note any deviations from the
definitions of Chapter 5.

8.2.1 Knowledge representation

A dimension d will be a partially ordered set, but in this chapter, we will additionally
require it to be fotal. This means that for any v, w € d, either v < w or w < v. In other
words, we assume that a dimension is linearly ordered. This assumption is made because
non-total dimension orders are uncommon, particularly in the context of Ar1. For instance,
the statistical methods we use to determine dimension orders inherently produce total
orders (see Section 7.1.1 of the previous chapter). Moreover, some of the results we present
and prove rely on the totality property. While we believe that these results could be adapted
to apply to non-total dimensions with appropriate modifications, this remains a subject for
future research.

As before, we may refer to just the set d as the dimension, leaving the reference to its
linear order implicit. Furthermore, in the context of a set of dimensions D, we will, for the
sake of brevity, refer to all the orders of the dimensions by just <, because confusion as to
which dimension order is being referred to is unlikely to arise. For example, given two
dimensions d and e, we will refer to both of the dimensions orders of d and e by <, rather
than introducing separate notations such as <4 and <,.

Definition 8.1. A dimension hierarchy (D, H) is a finite set of dimensions D with a relation
H on D such that the transitive closure of H is irreflexive. A dimension is base-level if it is
H-minimal, and abstract otherwise. We denote the pre-image of a dimension d under a
hierarchical structure H by H(d) ={e € D | H(e, d)}.

Remark 8.2. Note that Definition 8.1—unlike Definition 5.1 of a dimension hierarchy—
does not assume that the links in the hierarchy have a polarity. Link polarity is not strictly
necessary because the constraint induced by a hierarchy with link polarity can always be
reproduced by a hierarchy with only positive links. This is done by adding a copy of each
dimension, corresponding to its inverse order: for any d € D with order <, add a dimension
d' with order =, and replace negative links from d by positive links from d’, so that the
resulting hierarchy contains only positive links.
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A link H(d, e) between dimensions d, e in a dimension hierarchy (D, H) indicates that
there is a positive correlation between the values of d and e, relative to their orders.

Example 8.3. Below is an example of a dimension hierarchy in the context of the coMPAS
risk scores:

SLevel
GRecid VRecid FTA (8.2.1)
Married Age Priors Male Education

The hierarchical structure H is indicated by the lines, where the higher dimensions indicate
an increasing level of abstraction. The associated sets, orders, and meanings of the
base-level dimensions, displayed in the bottom row of (8.2.1), are as follows:

Married = ({0,1},>), is married or not,
Age = ({18,19,20,...},=), the age of the defendant,
Priors = ({0,1,2,...}, <), the number of prior offenses,
Male = ({0, 1}, <), is male or not,
Education = ({0, 1}, =), completed high school or not.
The order = of the MS, Age, and Education dimensions indicates that higher values for
these dimensions should generally lead to lower values for the overlying GRecid dimensions.
Conversely, the < order of the other dimensions, such as the number of priors Priors,
indicates that higher values generally lead to higher values for the GRecid dimension.
Above the base-level dimensions is a row of more abstract dimensions. Note that
VRecid and FTA are technically base-level dimensions in this example—in a more realistic
version of this hierarchy these would also be dependent on less abstract dimensions. We
use the decile scores, ranging from 1 to 10, for this example:
GRecid = ({1,2,...,10}, <), the general recidivism risk score,
VRecid = ({1,2,...,10}, <), the violent recidivism risk score,

FTA = ({1,2,...,10}, <), the failure to appear risk score.
At the top of the hierarchy is the SLevel dimension:
SLevel = ({1,2,3,4}, <), the recommended supervision level.

Definition 8.4. A fact situation X for a set of dimensions D is a partial choice function on
D. We denote the domain of a fact situation X by dom(X). The set of all fact situations
for D is denoted by &' (D), and a case base is a finite subset € < Z (D).

8.2.2 Constraint

Definition 8.5. Given a case base €6 and a value v € d, a fact situation X is lower bounded
in d by € to v, denoted by € F v < X(d), if and only if either
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Table 8.1: Three fact situations X, Y, Z for the example dimension hierarchy for the recidivism risk
domain depicted in (8.2.1). A dash indicates that the fact situation is undefined on that particular
dimension.

MS Age Priors Male Educ GRecid VRecid FTA SLevel

X 1 25 3 0 1 7 4 7 2
Yo 3o 2 0 0 5 R
z 1 20 3 1 — — 9 5 —

(1) v is the least element of d, or
2) v=X(d), or
(3) dis abstract, and there is Y € € satisfying v < Y (d) such that € E Y (e) < X (e) holds
for all e€e H(d) ndom(Y).
The upper bound € = X(d) < v is defined similarly.

Remark 8.6. Note that the role of the supp and opp functions, which we used in Chapters 3
and 5 for the DRM and the DHRM, is now played by disjunct (1) of Definition 8.5. The
difference is minimal: we now have 6 F v < X(d) when X is undefined on d and v is the
least element of d, whereas before this was not necessarily the case.

Example 8.7. An example case base for the dimension hierarchy of Example 8.3 is listed
in Table 8.1.

{X,Y}E5 =< Z(GRecid) (8.2.2)
if {X,Y}E X(e) < Z(e) for all e e H(GRecid) ndom(X) (8.2.3)
if 25 < Z(Age) and 3 < Z(Priors) (8.2.4)
if 25=20and 3 <3 (8.2.5)

Step (8.2.3) corresponds to disjunct (3) of Definition 8.5, and may be applied because
GRecid is abstract and 5 < X(GRecid) = 7. Step (8.2.4) follows from disjuncts (8.2.3)
and (8.2.4), as X selects the least elements of MS, Male, and Education. Step (8.2.5)
simply fills in the definition of Z, and is a true statement, so that we indeed have a
lower-bound constraint {X, Y} E 5 < Z(GRecid). Using this, we can in turn derive:

{X,Y}E 3 =< Z(SLevel)
if {X,Y}EY(e) < Z(e) for all e H(SLevel) ndom(Y)
if {X,Y}E5 =< Z(GRecid) and {X, Y} E 8 < Z(VRecid)

We have already verified that {X, Y} E 5 < Z(GRecid) holds, and {X, Y} F 8 < Z(VRecid)
holds because 8 < Z(VRecid) = 9, and so we indeed have a lower-bound constraint
{X,Y}E3 =< Z(SLevel).

Next, we recall Definition 5.7 of case base consistency.
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Definition 8.8. Given a dimension d, a fact situation X, and a case base ¢, we say X
is d-inconsistent with respect to 6 if there are values v, w € d with v < w, such that
both € E X(d) < v and € F w < X(d); otherwise X is d-consistent. The d-consistency
percentage of €, denoted Cons; (%), is the relative frequency of d-consistent cases in 6:

X €% | X is d-consistent
Cons, (€)= X € lliél consistentj| (8.2.6)

Remark 8.9. Note that the usage of sets in this model is somewhat informal. For instance,
in Example 8.3 we treat GRecid and VRecid as different dimensions, even though they
should strictly speaking be considered identical as sets. We follow the tradition in the
literature and refer to dimensions as sets in spite of these concerns (as e.g. Horty did
in Horty, 2019), but strictly speaking it may be more accurate to speak of multisets, which
are sets that can can contain multiple copies of an element. This will be particularly relevant
for case bases, as the cardinality of a case base appears in the denominator of (8.2.6) in
Definition 8.8, so we reiterate that case bases can contain multiple instances of a case.

Example 8.10. Reconsidering Table 8.1, it can be checked that X and Y are GRecid- and
SLevel-consistent with respect to {X, Y}, so

Consgrecid ({X, Y}) = Consgrevel {X, Y}) = 1.

Now, suppose we assigned a GRecid score of 3 to the fact situation Z, so Z(GRecid) = 3.
We saw in Example 8.7 that {X, Y} E 5 < Z(GRecid), but now we also have {X,Y} F
Z(GRecid) =< 3 by Definition 8.5 as Z(GRecid) = 3. Therefore, since 3 <5 € GRecid, we
see that Z would become GRecid-inconsistent with respect to the case base {X,Y} as a
result of the assignment Z(GRecid) = 3.

The rest of this chapter revolves around Definition 8.8 of case base consistency. To start,
we derive a formal result about what can be expected of the consistency of decisions made
by a program such as compAS, and then compare it to its actual consistency in the data that
is available. For this, we need to expand the Z3-based implementation which we developed
in Section 7.1.2 so that it can compute constraint for the DHRM.

8.2.3 An implementation in Z3

In Chapter 3 we showed that Horty’s dimensional result model (DRM) can be rephrased in
terms of many-sorted logic, and can thus be implemented in the Z3 solver (de Moura &
Bjgrner, 2008). With some small changes the same can be done for the bHRM. Due to the
similarity of these approaches we will only give a brief description.

The basic idea is to phrase the constraint induced by a case base in terms of formulas
of many-sorted logic. More specifically, given fact situations X,Y € &' (D) for some
set of dimensions D, the statements that “X is upper-bounded by Y on d” and “X is
lower-bounded by Y on d” can, respectively, be expressed logically by two formulas:

AKX Y, d) = (A ey Y (0 < X(0)) = Y (@) = X(@), (8.2.7)

VY, d) = (A e X(© = V(@) = X(d) < Y (). (8.2.8)
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Similarly, given a fact situation X € Z (D) a case base € < Z (D), and a dimension d € D,
the A and v formulas can be used to express all the d-constraint induced by € on X:

DX, €,d) = N\ycg MX,Y,d) NU(X, Y, d). (8.2.9)

Note that these formulas do not mirror the recursive aspect of Definition 8.5. This
could easily be implemented by modifying ®(X, %, d) to also include the lower and upper
bounds induced by cases in € for dimensions in e € H* (d), where H* denotes the transitive
closure of H. We do not need this in our implementation because the hierarchies we use
will be flat.

Given a flat hierarchy culminating in d, the d-consistency of the fact situation X with
respect to € is equivalent to the satisfiability of ®(X, %, d) (which, since ®(X, €, d) does
not contain free variables, is just its truth value). An sSMT solver is a program designed to
check satisfiability of formulas, so the Egs. (8.2.7)—(8.2.9) are what allows us to use Z3 to
compute with the model. The full implementation, and the rest of our code, is available
online.?

8.3 Consistency of generalized linear models

It is unknown exactly how the compas program works due to its proprietary nature, but its
developers have previously indicated that the scores it produces are (at least partially) based
on regression models (Brennan & Dieterich, 2018; Brennan et al., 2009; Equivant, 2019;
Jackson & Mendoza, 2020). For example, Brennan et al. (2009) stated that the “Recidivism
Risk Scale is a regression model that has been used in compAs since 2000,” and that
“the compas risk and classification models use logistic regression [...] in [...] prediction
and classification procedures.” Furthermore, the comMPAs Practitioner’s Guide (Equivant,
2019) states that “linear equations are used to calculate the [general recidivism and violent
recidivism] risk scales,” and that the violent recidivism risk score, the VRRS, is computed
as the following weighted sum:3

VRRS = (—w -age) + (—w» - age at first arrest)
+ (ws - history of violence) + (w;, - vocation education)

+ (ws - history of noncompliance)

Despite these claims by the developers of compas, Rudin et al. (2020a) argue, on the
basis of a data analysis of the COMPAS dataset, that the scores assigned by compAs depend
nonlinearly on age. Equivant disputed these claims (Jackson & Mendoza, 2020), and
reiterated that the cOMPAS risk scales make use of logistic regression. Rudin et al. (2020b)
responded that if compAs does operate on the basis of a logistic regression model, the age
variable might first undergo a nonlinear transformation before being fed as input to the
model.

As we can see, the question of whether the risk scores produced by coMpAs are the
output of a relatively simple linear model has been the topic of debate. Indeed, Rudin (2019)

2https://git.science.uu.nl/ics/responsible-ai/van- woekom/afcbr.
3Though Equivant has later stated that this description should not be taken as a complete technical description of
the violent recidivism risk scale (Jackson & Mendoza, 2020).
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has argued that it is always better to use interpretable models, such as linear regression
or logistic regression, for high stakes decision-making, rather than complex black-box
machine learning algorithms. In the case of comPpAs, it might be that it is only a black
box because of its proprietary nature, and not because it makes use of uninterpretable
machine learning algorithms such as neural networks. Ideally, we would be able to verify
whether COMPAS is a linear model without compromising Equivant’s intellectual property
protections.

In this section we will show that the model of a fortiori case-based reasoning, which
we reviewed in Section 8.2, can theoretically be used to falsify the claim that a given set
of outputs was produced by a linear model. More specifically, we show that for a large
class of linear models called generalized linear models (GLMs), introduced by Nelder and
Wedderburn (1972), a case base of model decisions is necessarily consistent in the sense of
Definition 8.8.

We start by recalling the basic definition of a GLM, and give a concrete example in the
form of a logistic regression model trained on the coMPAs dataset. This is a representative
example, since it has been claimed that comPAs is itself a form of logistic regression.
We then prove a theorem stating that a case base of GLM decisions is necessarily fully
consistent. Given this result, we would expect that the consistency of the COMPAS risk score
assignments in the dataset made available by Angwin et al. (2016) and Rudin et al. (2020a)
is high. We will show that quite the opposite is the case, and we discuss some possible
causes of these low consistency percentages.

8.3.1 Regression analysis

Regression analysis is a statistical modeling technique used to predict the expected value of
arandom variable y as a function of a set of observed values x = (x1,...,x;). The simplest
form of regression is linear regression, in which the expected value E(y | x) of y given
x corresponds to the linear combination of x with a vector of coefficients By, B1,-.., Bn,
soE(y|x) =P+ Z;’Zl Bix;. This linear combination of the §; and x; is called the linear
predictor. There are many variations on this idea, such as logistic regression, Poisson
regression, gamma regression, and so forth.

Nelder and Wedderburn (1972) showed that many forms of regression fit in a common
class which they called generalized linear models (GLMs). A GLM assumes that the
random variable y is distributed according to a member of the exponential family of
probability distributions, and that the expected value of y, conditioned on an observed
set of values x, is related to the linear predictor by a monotone link function g, i.e. that
gE(y | x)) = Bo+X!, Bix; (Dobson, 2001). Note that linear regression is obtained as a
GLM by using an identity link function g(x) = x. The inverse of the link function is often
assumed to exist and is called the mean function, denoted by m, as it maps the linear
predictor to the mean of the random variable.

The B; coefficients of the GLM are often estimated from data using techniques such as
maximum likelihood estimation (Dobson, 2001, Chapter 4). Once this is done, the GLM can
be used for prediction. More specifically, given a new observation (xy, ..., X;), the GLM can
estimate a value y of the target random variable y by simply applying the mean function to
the linear predictor: y = m(Bo+ ¥}, Bix;). Note that for the purpose of prediction the
choice of distribution for y is no longer relevant. Since we are primarily interested in the
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application of GLMs to predictive modeling, we will not further consider this aspect of
GLMs in this work, and instead consider an n-ary GLM (m, ) to be parameterized by two
components: a vector of n+ 1 real coefficients g = (B¢, B1,.-.., Bn), and an n-ary monotone
mean function m.

Example 8.11. Logistic regression is obtained as a GLM by choosing the sigmoid o as the
mean function:
m(x)=0(x) = (1+exp(-x) ! (8.3.1)

We will now demonstrate how logistic regression can be used to produce a risk score such
as the compas general recidivism risk scale. We do so by fitting the f coefficients to a
selection of variables from the compas dataset published by Rudin et al. (2020a), where
the target variable is a binary indicator whether the person in question recidivated or not
(see Section 8.1 and Rudin et al., 2020a, for a more detailed description of the data). This
is, presumably, representative of how the actual coMPAs risk scales were developed. For
example, Brennan et al. (2009) stated that “The Recidivism Risk Scale is a regression
model [...] that was trained to predict new offenses in a probation sample.” This is very
similar to the data contained in the coMmpAs dataset published by Rudin et al. (2020a), as
it does not only contain COMPAS risk scores, but also contains labels stating whether the
person in question recidivated or not.

We select five features from the dataset, corresponding to some of the dimensions in
the hierarchy we discussed in Example 8.3: MS, Age, Priors, and Male. Here, the number
of priors is given in the data as the number of offenses committed in the 30 days leading up
to the compAs assessment. The target variable y is the binary label indicating whether the
person committed a new crime within two years after the assessment. We used the default
Python Sci-kit learn implementation to estimate the f coefficients (Pedregosa et al., 2011).

The resulting logistic regression model can be specified as the GLM

(0,-0.04,-0.2,-0.03,0.11,0.55),
which means that its prediction for values of the features MS, Age, Priors, Male is given by
(1+exp(0.04 +0.2MS + 0.03Age — 0.11Priors — 0.55Male)) ! (8.3.2)

Some example rows of the compas dataset, together with their predicted (raw) general
recidivism risk score (according to our example GLM), are displayed in Table 8.2. The
GRecid; values are calculated according to Eq. (8.3.2).

8.3.2 The consistency of GLM decisions

In this section we will prove our first main result regarding case base consistency, which
states that the predictions made by a GLM are always fully consistent in the sense of
Definition 8.8. To do this, we first show that any GLM can naturally be associated with
a dimension hierarchy. Using this associated hierarchy, a dataset of GLM outputs can be
translated to a case base € of which the consistency can be calculated with respect to
its target variable. Theorem 8.16 below states that the consistency of such a dataset is
necessarily equal to 1.

Consider an n-ary GLM (m, ). We may, without loss of generality, assume that
the coefficients f; are all nonzero. This is because if any coefficient ; were zero, the
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Table 8.2: Example general recidivism risk assessments based on rows of the compas dataset,
according to the GLM (0, —0.04,-0.2,-0.03,0.11,0.55), where o is defined in Eq. (8.3.1), and the
parameters are estimated based on the data published by Rudin et al. (2020a). The example recidivism
risk scores, i.e. the values of GRecidys, are computed according to Eq. (8.3.2).

MS Age Priors Male GRecid,

1 25 1 1 0.41
0 21 3 1 0.54
1 67 1 0 0.10
0 18 10 1 0.73
0 46 1 1 0.30

corresponding term f3;x; would not contribute to the linear predictor, and so the model’s
behavior would be the same as if that term were omitted. We define a set of dimensions
D ={dy, |1 =i<n}uidy,}. Each d,; is the set of real numbers R, and is ordered by =< if
sign(B;) = 1, and by = if sign(f;) = —1. Similarly, dy, is the set of real numbers R, and is
ordered by < if m is order-preserving, and by = if m is order-reversing. We order D by the
structure H = {(dy,;,dy) | 1= i< n}:

Definition 8.12. Let (m, B) be an n-ary GLM, and (D, H) its associated dimension hierarchy.
An (m, f)-decision is a fact situation X € &'(D) with dom(X) = D, and X(dy) = m(Bo +
Y, BiX(dy,). An (m, B)-case base is a case base € < Z (D) of (m, B)-decisions.

Example 8.13. Consider the GLM (0, —-0.04,—-0.2,—0.03,0.11,0.55) of Example 8.11, and
note that its associated hierarchy is given by:

GRecid,;

/ / \\ (8.3.3)
MS Age Mal

Priors e

The dimension orders are = for MS and Age, because their coefficients in the GLM are
negative, and < for Priors and Male, because their coefficients are positive. The order for
GRecid;s is < because o is (strictly) order-preserving. Relative to this hierarchy, the rows
of Table 8.2 constitute a (o, —0.04,—0.2,-0.03,0.11,0.55)-case base.

To prove our theorem, we will need two lemmas—the first of which states that GLM
decisions naturally satisfy the a fortiori principle underlying the model of case-based
reasoning.

Lemma 8.14. For an n-ary GLM (m, ) and (m, B)-decisions X and Y: If Y (dy,) < X(dy,)
forall 1 =i<n, then Y(dy) < X(dy). Similarly, if X(dy,;) <Y (dy,) for all 1 <i < n, then
X(dy) =Y(dy).
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Proof. The first implication can be derived as follows:

Y(dy)=X(dy)forl<sisn (8.3.4)
implies BiY(dy)<piX(dy)forl<isn (8.3.5)
implies Bo+ X, BiY(dy) < Po+ X}, BiX(dy,) (8.3.6)
implies m(Bo+Xl, BiY(dy))=m(Bo+X1 | BiX(dy,)) (8.3.7)
implies Y(dy) = X(dy). (8.3.8)

Step (8.3.5) follows by definition of the dimension order of d,: If §; >0 then < =< so
Y(dy,) = X(dy,) and B;Y (dy,) < B; X(dy,;); while if §; <0then <=2, 50 Y(dy,) = X(dy,)
and §;Y (dy,) < B; X(dy,;). Step (8.3.7) follows by monotonicity of 7 and the definition of
the dimension order of dy, and step (8.3.8) follows by Definition 8.12. The proof of the
second implication is analogous so we omit it. O

The second lemma uses the first to show that when a GLM case base induces constraint
on one of its decisions, then this is necessarily the results of disjunct (2) of Definition 8.5.

Lemma 8.15. For an n-ary GLm (m, ), an (m, B)-case base €, some fact situation X € 6,
and a value v € dy: If € = v = X(dy) then v < X(dy). Similarly, if € = X(dy) < v then
X(dy) =v.

Proof. Assume € F v < X(d,), we proceed by a case distinction on the disjuncts (1)—(3) in
Definition 8.5. We can rule out condition (1) because d) does not have a minimal element.
If condition (2) holds we are done immediately. Lastly, if condition (3) holds, then for
some Y € € with v < Y (d) we have that Y (dy;) < X(dy;) for all 1 =i < n. Hence, we get
Y(dy) =< X(dy) from Lemma 8.14, and so v < X(d,) by transitivity of <. The proof of the
second implication follows the same pattern, so we omit it. [

It is now straightforward to derive our first main result from Lemma 8.15: a case base
of GLM decisions is always fully consistent.

Theorem 8.16. If (m, ) is a LM, (D,H) its associated hierarchy, and € < % (D) an
(m, B)-case base, then Consdy (¥6)=1.

Proof. Assume, for sake of contradiction, that Consdy () < 1; then there is a case X € €
which is dj-inconsistent. This means that both € = X(d,) < v and € F w < X(d,) for
some values v, w € dy, with v < w. By Lemma 8.15 this implies X(d)) < v and w < X(d,),
so X(dy) < X(dy), meaning X(d,) # X(dy)—a contradiction. O

It is important to note that Theorem 8.16 relies on an accurate construction of the
dimension hierarchy associated with the GLM. In practice, when the GLM is a black box, we
cannot inspect the signs of its coefficients, or whether its mean function is order-preserving
or -reversing. However, estimating the signs of the coefficients is a much easier task than
estimating the precise values of the coefficients. Likewise, it is easier to determine whether
the function connecting the linear predictor to the output is order-preserving or -reversing,
than it is to precisely estimate the function itself.
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8.3.3 The consistency of the comPAS risk scores

We can now use our implementation from Section 8.2.3 to compute the consistency scores
of the COMPAS risk scores, using the scale inputs as described in Section 8.1. The dimension
orders we use for this analysis are in line with their description in Example 8.3; a complete
overiew can be found in our source code. The results of this analysis are quite surprising:
the consistency of the raw GRecid, VRecid, and FTA risk scores are all 0%—the opposite
of what we would expect given Theorem 8.16.

There are multiple possible explanations for this. One possibility is that our estimations
of the dimension orders are incorrect. However, we consider this unlikely, as the effects of
the features involved are quite self-evident. For example, the majority of the features in the
dataset correspond to criminal history, and it is clear that higher values of these features
should generally lead to higher risk scores. Another possibility is that coMpAs depends on
the features in a nonlinear manner, as hypothesized by Rudin et al. (2020a).

However, it seems to us that the most likely cause is the absence of dimensions
from the dataset which were used by coMPAs to arrive at the scores. Reconsider, for
example, Example 8.10 of inconsistency. Assigning Z(GRecid) = 3 makes Z GRecid-
inconsistent with respect to the case base {X, Y}, because X lower-bounds Z on GRecid
to 5. However, the recidivism risk scores assignment might in reality be based on an
additional drug-problem dimension Drugs—a 1-10 score ordered by <—which is missing
from our hierarchy. Suppose, furthermore, that X (Drugs) = 8 and Z(Drugs) = 4; then Z
appears inconsistent in the version of the hierarchy that does not include the drug-problem
dimension, but is in fact consistent with respect to the hierarchy that does include it.
Indeed, the comPAs general recidivism risk score does rely on such a dimension according
to Dieterich et al. (2016), and this dimension is not present in the data that we have used,
so it is highly likely that our analysis is suffering from the effect illustrated by this example.

8.4 The effects of binning on consistency

In the second half of this chapter we consider the effects of binning input dimensions on
consistency. Data binning is a preprocessing technique used in machine learning and data
science to convert continuous numeric variables into categorical ones by subdividing a
range of values into smaller, consecutive, non-overlapping intervals called bins (Nisbet et al.,
2018, Chapter 4). A common application of data binning is the histogram, which visualizes
the distribution of a dataset by replacing individual data points with their corresponding
bins, thus smoothing the data and making general trends easier to see.

We begin by proving a theorem stating that binning input dimensions decreases case
base consistency. We then show that this theorem can be used to find a problem with the
COMPAS dataset that has not received much attention in the literature, namely that multiple
norm groups were used in the raw-to-decile score conversions. This means that the decile
scores, which are often the focus of data analyses based on the comPAs dataset, can only be
compared with each other after checking that they were normed using the same group. This
is difficult because information on the norm groups is not made available by Equivant. We
conclude by demonstrating that this information can, to some extent, be reverse engineered
from the coMPAs dataset, by using a graph coloring algorithm.
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8.4.1 Dimension binning

To begin, we need a formal definition of data binning within our framework, for which we
propose the following.

Definition 8.17. Let d be a dimension; a binning (bin, e) of d is a dimension e together
with a surjective order-preserving function bin: d — e. The elements of e may be referred
to as bins.

For the sake of convenience we will refer to just the function bin: d — e as the
“binning” of d. The requirement that bin is order-preserving, which means that v < w
implies bin(v) < bin(w), ensures that the order of the bins reflects the order of the original
dimension d. The surjectivity requirement, which states that any bin v € e has a nonempty
pre-image, ensures that all bins correspond to some region of the original dimension.

Example 8.18. An example of dimension binning in the context of COMPAS is given by the
various presentations of the risk scores which we discussed in Section 8.1. Let GRecid,
denote the dimension corresponding to the raw version of the recidivism risk score,
GRecidgs the decile version, and GRecid; the textual version (i.e., with the possible values
low, medium, and high). The conversion of the raw scores to decile scores corresponds
to a binning bings : GRecid;s — GRecidgs. The way this mapping works depends on the
specific norm group that is used for the conversion. Assuming the conversion specified
by Equivant (2019, Table 2.3) can compute the pre-images of the bins; for example,
bing. (4) = (~0.7,-0.4], and bing! (5) = (-0.4,-0.2], etc. In turn, we have a binning
converting deciles scores to text bing; : GRecidgs — GRecid:

bing! (low) = [1,4], bing (med) = [5,7], bing{ (high) = [8,10].

Example 8.19. In general, for any dimension d there is a trivial identity binning id; : d — d
defined by id;(v) = v for all v € d. This corresponds to putting every value of d in its own
unique bin.

We want to investigate the effect that binning one or more dimensions has on case base
consistency. To this end, we introduce the following definition.

Definition 8.20. Given a set of dimensions D, a D-binning is an assignment of a binning
bing : d — d to every dimension d € D. Furthermore, given e € D, a D-binning is an input
binning of e if bin, = id,.

Given a hierarchy (D, H) with a D-binning, the binned version of a dimension d € D
is denoted by d. Likewise, we will write D = {d | d € D} for the set of all binned
dimensions. This set can be given the same hierarchical structure as the original hierarchy
by defining H = {(e, d) | (e, d) € H}. There is a canonical way of transforming a fact situation
X € Z (D) into a fact situation X € & (D) for the binned version of the hierarchy, by defining
X(d) =bing (X (d)). This operation extends in the obvious way to a case base € < X (D):
We define € ={X| X €6} <X (D).

Example 8.21. An example of an input binning is given by the various presentations of
the compas risk scores, in their connection to the recommended supervision level score.
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Together the binnings GRecid;s — GRecidys, VRecid;s — VRecidgs and FTA;s — FTAg;
give an input SLevel binning, with associated hierarchies:

SLevel SLevel
/ ‘ \ 8.4.1) / ‘ \ (8.4.2)
GRecid;s VRecid;; FTA GRecidgs VRecidys FTAgs

8.4.2 Input binning decreases consistency

We now prove the second theorem of this chapter, which states that input binning decreases
case base consistency. In fact this result follows readily from the following lemma, which
states that binning preserves constraint.

Lemma 8.22. Consider a hierarchy (D,H) with a D-binning. For a dimension d € D, a
value v € d, a fact situation X € & (D), and a case base € < X (D). If € E v < X(d) then
% Fbin(v) < X(d); and similarly, if € E X(d) < v then € = X(d) <bin(v).

Proof. We proceed by structural induction on the position of d in H, and apply a case
distinction on € E v < X(d).

(1) If v is the least element of d, then bin(v) is the least element of d because bin is
order-preserving and surjective, so that indeed € E bin(v) < X(d).

(2) Likewise, if v < X(d) then because bin is order-preserving we have bin(v) <
bin(X(d)) = X(d), so € E bin(v) < X(d).

B) If€,YEv=<X(d),thende A, v=<Y(d),andforall e€ H({d)ndom(Y): € = Y(e) <
X (e). The induction hypothesis states that forall w € e € H(d): € F w < X(e) implies
% Ebin(w) < X(e). We are done if €,Y E bin(v) < X(d). Note that d is abstract
in (D, H), and that bin(v) < bin(Y (d)) = Y (d) as bin is order-preserving. Therefore,
it only remains to show that for all e € H(d) ndom(Y): € E Y(e) < X(e), so
consider such e. By definition of H and Y, this means that e € H(d) ndom(Y)
and so € F Y (e) < X(e), which means € F Y (e) < X(e) follows from the induction
hypothesis.

The proof of the other implication is analogous, so we omit it. O

Theorem 8.23. Given a dimension hierarchy (D,H), a case base € < & (D), and an input
D-binning of d € D, we have Cons (%) < Cons;(%6).

Proof. Tt suffices to show that if X € € is d-inconsistent with respect to €, then X
is d-inconsistent with respect to %, so consider such X € €. This means there are
v<wedwith €k X(d)<vand €F w = X(d). Lemma 8.22 gives us €  X(d) < v and
¥ F w = X(d), so X is indeed d-inconsistent with respect to €. O

Intuitively, the reason for this result is that as we bin input dimensions, it becomes easier
to satisfy disjunct (3) of Definition 8.5 of constraint. As such, more constraint is induced,
and so there are more opportunities for inconsistencies to arise.
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Table 8.3: Two examples of fact situations X, Y in the coMpAs dataset that are SLevel-inconsistent
with respect to their raw scores, but SLevel-consistent with respect to their decile scores. The input
dimensions are the three risk scores produced by cCOMPAS.

FTA GRecid VRecid
SLevel
Raw Decile Raw Decile Raw Decile
Y 21 3 0.14 7 -0.95 9 3
X 19 3 0.11 8 -1.21 8 4

8.4.3 Consistency of the recommended supervision levels

For our second analysis, we look at the consistency percentage of the recommended
supervision level (SLevel) scores in the dataset. This score is an overall recommendation
that the COMPAS program outputs, based on its various needs and risk scales (Equivant,
2019). This recommendation is primarily based on the general recidivism and violent
recidivism risk scores, and so—unlike in the first analysis—we can now be (more or less)
certain that we are using the same dimensions as the ones used by the COMPAS program.

Each of the datasets we examined contained approximately 12,000 rows. The dimension
orders were assigned based on the assumption that there is a positive correlation between
the risk scores and the recommended supervision level, as described in Section 8.3. We
used the three risk scores as the inputs, so that the resulting hierarchies are the same as the
ones depicted in Example 8.21. Our implementation reports that the consistency of the
data with respect to (8.4.1) is 81%), and with respect to (8.4.2) it is 100%.

In other words, the consistency of the data increases after applying a binning to the input
dimensions, which directly contradicts Theorem 8.23. An examination of this contradiction
reveals that the cause lies in the use of multiple norm groups for the raw-to-decile score
conversion. To see this, consider the two fact situations X and Y listed in Table 8.3, taken
from the dataset. If we look at the raw scores, we have the constraint {Y} = X (SLevel) < 3
because X assigns lower values to all three of the raw compas risk scores. This means
that X is SLevel-inconsistent because X (SLevel) = 4 > 3. However, when we look at the
decile scores rather than the raw scores we get a different picture, because according to
those we have X (GRecid) =8 £ 7 = Y (GRecid); so Y no longer constrains X, and X has
become SLevel-consistent. Of course, this should not happen: when a general recidivism
risk score of 0.11 is higher than 70-80% of the normative group, then 0.14 should also be
higher than 70-80% of the normative group.

Remark 8.24. A manual of the version of comPas used in the state of New York explicitly
states how its recommended supervision levels are computed (New York State Division
of Criminal Justice Services, Office of Probation and Correctional Alternatives, 2015,
Appendix C). This description matches the scores found in the Broward County data,
which suggests that the version of cCOMPAS used there computes the recommendation in
the same way. This would also explain why the decile scores give a higher consistency
percentage than the raw scores.
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Table 8.4: The reconstructed cut-points of norm groups used for the raw-to-decile score conversions in
the coMpAs dataset. We indicate the highest score for each given decile, in accordance with Equivant
(2019, Table 2.3). The dashes indicate that there were no defendants grouped in that particular decile
of the hypothesized norm group, and so no information is available on its cut-point.

Score  Order Male D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

5,230 x
GRecid 4,440 v -1.39 -0.92 -0.60 -0.39 -0.19 0.01 0.19 0.39 0.67 —
v

FTA 4,950 — 16 19 21 22 24 26 28 31 35
929 v —_ —_ —_ 23 25 27 29 _ -

8.4.4 Reconstructing the norm groups

Decile scores computed with different norm groups should not be compared, as they are
on different scales. However, many studies, including the original publication by Angwin
et al. (2016), do exactly that. A more accurate approach uses raw scores, as that of Rudin
et al. (2020a), but users prefer decile or textual scores (Brennan & Dieterich, 2018). The
study by Engel et al. (2024) renorms decile scores based on all raw scores, which lowers
the average decile risk score and bases the study on hypothetical rather than actual compas
output.

To compare decile risk scores accurately, they should be split according to the norm
groups used to convert the scores. This is difficult because Equivant does not make their
norm groups public. We estimate the number of norm groups by constructing a graph
of COMPAS risk assessments, drawing edges between nodes with mutually inconsistent
raw-to-decile score conversions. Applying a graph coloring algorithm (Hagberg et al.,
2008), we identified three norm groups; see Table 8.4 for their cut-points. The GRecid and
FTA graphs have fully connected subgraphs of size 3, indicating at least three norm groups
for these scores. The VRecid scores were converted using a single norm group.

We note that, because there is some overlap in the cut-points of the groups, defendants
can be “shuffled around.” For example, the size of the second largest group of the GRecid
score could be increased to at least 6,698. Therefore, those wishing to analyze the recidivism
scores and the outcome labels could analyze this group in isolation, without having to
re-norm the deciles.

Some of the reconstructed groups consist of over over 99.5% males. Since the graph
labeling algorithm we used was not in any way instructed to group defendants by sex (in
fact, it did not even have access to this information), we consider it likely that gendered
norm groups were used for the raw-to-decile conversion in the dataset. We have marked
these groups in Table 8.4. Moreover, one of these groups (corresponding to the second
row of Table 8.4) closely aligns with the cut-points given by Equivant (2019, Table 2.3)
for the GRRS. Due to this, we consider it likely that our reconstructed cut-points are good
approximations of the true cut-points.
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8.5 Conclusion

In this chapter, we analyzed the consistency of the compas risk scores using the dimensional-
hierarchical result model that we introduced in Chapter 5. We proved two formal results on
case base consistency, and related them to this analysis. Firstly, we showed that generalized
linear models always produce fully consistent case bases. We showed that the COMPAS
dataset is not fully consistent (in fact, it is fully inconsistent), and conclude that this is due
to input features missing from the data. Secondly, we showed that binning input dimensions
generally decreases consistency. However, our analysis of the COMPAS recommended
supervision level scores revealed an increase in consistency after binning, which we
attribute to the use of multiple norm groups for the raw-to-decile score conversions. We
demonstrated that these norm groups can be reverse-engineered from the dataset using a
graph coloring algorithm, providing a more accurate basis for analyzing the COMPAS risk
scores.

We remark, as a point for future work, that Rudin et al. (2020a) found that many
defendants with numerous prior offenses received low risk scores in the compas dataset.
Van Woerkom et al. (2024a) showed that such outlier cases, there termed landmarks,
can significantly increase inconsistency in a dataset. We suspect that these cases might
overlap with those identified by Rudin et al. (2020a, Table 6), potentially explaining the low
consistency percentages observed for the COMPAS scores in this chapter. If this is indeed the
case, this would suggest that inconsistency measures could be useful for detecting outliers
in similar datasets.



Chapter

Conclusion

=1 ROM THE OUTSET, this thesis pursued a dual aim: to develop a general theory
of a fortiori reasoning, and to study its application to the analysis and
justification of decisions made by data-driven artificial intelligence systems.
After introducing these subjects in Chapter 1, we developed variations

2 of the result model (RM) of precedential constraint, introduced by Horty
(2011). In Chapter 2 we reviewed the RM, and considered how to incorporate incomplete
information in its knowledge representation. In Chapter 3 we conducted a similar analysis
for the dimension-based version of this model, the DRM, and related it to order theory and
logic. In Chapter 4, we extended the RM to operate on factor hierarchies, resulting in the
HRM. Then, as the final chapter of Part I, we introduced the bHRM, which incorporates
both dimensional and hierarchical information. In Part II we turned to applications of
these models to artificial intelligence. Beginning in Chapter 6, we reviewed the a fortiori
case-based argumentation method of explaining data-driven decisions, and expanded the
method with formal notions of justification, compensation, and citability. In Chapter 7, we
used the theory developed in Chapter 3 to build an implementation of the DRM based on
the Z3 sMT solver. This was used to analyze the consistency of several machine learning
datasets. Lastly, in Chapter 8, we extended this implementation to compute constraint
produced by the DHRM, and used this to analyze the consistency of the COMPAS risk scores.

9.1 Answers to the research questions

We will now recall and answer the research questions set out at the beginning of this thesis
in Chapter 1. The first of these, addressed in Part I, concerns expanding the result model of
precedential constraint to a general theory of a fortiori reasoning:

Research question 1: Can we extend the result model of precedential constraint
to a general theory of a fortiori case-based reasoning?

120
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DHRM
Theorem V Theorem 5.12
DRM HRM
Theorem 3.19 A{orem 4.17
RM

Figure 9.1: A graphical representation of the conservative extension relations between the models
we introduced; e.g., the arrow from RM to DRM indicates that all reasoning done in an instance of the
RM can be faithfully reproduced in an instance of the DRM.

In particular, the knowledge representation used by the RM makes simplifying assump-
tions with regards to the inputs of the model that do not always hold in practice.

Research question 1A: How can incomplete, dimensional, and hierarchical
information be incorporated in the knowledge representation, and what should the
corresponding notion of constraint be?

We answered this question by first modifying the RM and the DRM to operate on the basis of
incomplete information. We proposed a modified principle of constraint, according to an
assumption that the available information was sufficient to reach a decision. As such, we
adapted the notion of constraint accordingly, to operate only on the factors or dimensions
that have known truth values. Subsequently, we introduced the HRM, which operates on the
basis of a factor hierarchy. We developed a notion of constraint for the HRM that utilizes
this hierarchical structure by means of recursion. This enables multi-case precedential
reasoning. Lastly, we introduced the DHRM, which operates on the basis of a dimension
hierarchy. In this model, outcomes of the decision-maker are nonbinary, and accordingly
we proposed a notion of constraint in the form of lower- and upper-bounds.

Research question 1B: How can the models developed in response to 1A be
formally compared, and what are their differences and similarities?

We showed that the models we developed in response to Question 1A are conservative
extensions of each other. This relies on two observations: firstly, a factor can be interpreted
as a binary dimension; and secondly, the RM can be interpreted as a “flat” factor hierarchy,
which moves in one step from the base-level factors to a decision. We gave formal proofs
of each of these relations, which are visualized in Figure 9.1. This showed that the DHRM
subsumes the other models and, as such, is the most general of the models of a fortiori
reasoning that we presented. Furthermore, we saw that the DHRM is also more expressive
than the other models which we considered, because it produces constraint in the form of
lower- and upper-bounds, rather than directly for either of two sides.
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Research question 1C: What is the relation between this theory and other reasoning
formalisms, such as logic?

We have positioned the DRM in the context of order theory and logic. Key to this
association is the observation that the strength order of the DRM corresponds to the product
order of order theory. Through this connection, constraint in the DRM can be understood
in terms of up- and down-sets. This provides a clarifying perspective on the DRM. For
example, the notion of what we call a landmark case—which is a case that does not have its
outcome forced by the rest of a case base—can be understood as a minimal element in the
order-theoretic sense. Building on this, we showed that the DRM can be phrased in terms of
many-sorted logic. This led to new insights. In particular, both theories define a notion of
inconsistency, and we showed that these are related in a precise sense. Furthermore, an
important topic in the literature on logic is that of nonmonotonicity. We connected our
formalism to this topic by phrasing a monotonicity principle in the setting of a fortiori
reasoning, and gave formal proofs that our models satisfy this principle. In a similar vein,
we briefly compared our notion of constraint for incomplete information to the notion of
default truth values in nonmonotonic logic.

In Part II, we addressed the second of our research questions, pertaining to applications
of the theory of a fortiori reasoning to artificial intelligence:

Research question 2: How can the models of a fortiori precedential constraint be
applied to artificial intelligence?

In particular, we reviewed the AF-cBA method of explaining data-driven decisions
proposed by Prakken and Ratsma (2022), and asked the following question:

Research question 2A: How can the theory of a fortiori precedential constraint
be used to formalize compensation and citability, to aid in justifying data-driven
decisions?

The AF-CcBA model provides explanations as winning strategies in the grounded argument
game of an abstract argumentation theory. We showed that this model admits an equivalent
rephrasing in terms of relations, in which explanations are provided as cases related to the
focus case through justification and citation relations. Most notably, this shows that the
explanation model can, in some sense, be seen as adding a notion of justification to the
theory of precedential constraint, in the form of a relation that extends the forcing relation.
We further introduced criteria for selecting precedent cases that minimize differences while
maximizing similarities to the focus case in order to provide an appropriate starting point
for the explanation.

Research question 2B: How can we write capable and efficient computer imple-
mentations of these models?
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To answer this question, we used the connection that we established between the
models of a fortiori reasoning and logic in response to Question 1C, in order to write
an implementation in the Z3 sMT solver. We showed how this can be used to compute
constraint, to check whether a case is a landmark, and to give automatic proofs of case
base properties such as consistency and completeness. We demonstrated the efficacy of
this implementation on a number of datasets. As part of this implementation, we proposed
a way to use logistic regression in order to determine the dimension orders used by the
DRM and the DHRM, and showed that it performs well for the datasets that we considered.

Research question 2C: Is precedential constraint useful as a measure of data-driven
decision consistency?

For this question, we used our implementation to analyze the internal consistency of the
recidivism risk scores produced by the compAS program. By comparing the results of this
analysis to formal results providing predictions about how these scores should behave, we
were able to discover inconsistencies in the data that many previous studies on this data did
not take into account. This affirms that the notion of constraint can be useful for measuring
artificial intelligence.

9.2 Relevance for artificial intelligence and law

In the past, A1 researchers have devoted much of their attention to the development of
systems of ever-increasing complexity. The results speak for themselves: modern systems
are capable of outperforming humans in many domains, and have become so complex that it
is no longer possible to have a complete understanding of how they function. This problem
is compounded by the proprietary nature of many of these systems—even if they could
be understood by a human, their inner workings are hidden behind intellectual property
rights. Naturally, this has raised concerns regarding their use in sensitive contexts, in which
decisions made by Al systems have social, ethical, or legal consequences. Increasingly,
interest in Al research is rediverted to the responsible use of A1, which is focused on
developing Al techniques that emphasize the role of humans in their interaction with A1
systems. Examples of topics receiving attention are the development of methods to explain
Al decisions, mitigating bias, aligning decisions with international law and intellectual
property rights, ensuring privacy, and combating misinformation.

In recent years, models of CBR from the Al & law literature have been applied to
this purpose: to explain data-driven decisions (Cyras et al., 2016; Prakken & Ratsma,
2022), to develop interpretable decision systems (Odekerken & Bex, 2020), and to
formulate computational normative reasoning principles (Canavotto & Horty, 2022). This
dissertation fits in this line of research: We developed a general model of a fortiori
reasoning, together with an efficient software implementation, and applied these to case
studies that demonstrated their efficacy with respect to analyzing data-driven decisions. We
now discuss the relation between the findings of this thesis and the goals of the responsible
Al research line, and A1 & law in general, before closing with thoughts on future research
directions.
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Firstly, we consider the goal of explaining, or justifying, data-driven decisions. Research
in this direction has been one of our primary motivators to further develop the formal
theory of case-based reasoning. Miller (2019) argued that explanations should be selective,
contrastive, and are fundamentally social. As such, explanations should not, for example,
overemphasize probabilities associated to the black box system, as this type of explanations
tend to be unsatisfying to people. It is generally better to provide a causal explanation,
focused on generalisations. Accordingly, Miller (2019) argues that research on explainable
Al should draw on the social sciences literature in order to meet these standards. This is
what Prakken and Ratsma (2022) have aimed to do through the development of their AF-CBA
explanation method: to draw on the way in which courts explain and justify decisions,
and apply these techniques to explain data-driven decisions. While the generation of
argumentative dialogue was not the focus of this thesis, we did aim to contribute to the
development of such explanation methods by expanding the theoretical basis on which
they are built. For example, courts often make use of hierarchically structured concepts,
or factors, to explain their reasoning, and we have incorporated these in the model of
case-based reasoning (Bench-Capon, 2024; Canavotto & Horty, 2023a).

It has often been argued that explanations of A1 decisions should have the form of
an argumentative dialogue (Miller, 2019; Prakken & Ratsma, 2022; Verheij, 2020). In
an ideal scenario, an end-user could engage in a back-and-forth conservation with the
system, in natural language, in which arguments for a decision are sequentially provided and
questioned. Work such as that by Prakken and Ratsma (2022) draws on argumentation theory
and models of reasoning which are akin to logic to try to reach this goal. However, recently
developed Al systems based on large language models (LLMs) seem to have off-the-shelf
capabilities for providing this gold standard of explanations (OpenAl, 2024). For example,
by using chain-of-thought prompting, LLMs can give answers to questions by providing a
sequence of reasons which can then individually be challenged or questioned (Wei et al.,
2022). These developments would seem to suggest that symbolic approaches to explanation,
such as the AF-cBA method, have been rendered obsolete.

However, in practice the self-explanation capabilities of LLMs lack fidelity (Parcalabescu
& Frank, 2024), meaning their explanations do not necessarily reflect the true reasons
behind their decisions (Molnar, 2024). Turpin et al. (2023) showed that chain-of-thought
explanations can be biased by input features, leading models to rationalize incorrect answers
without mentioning the biasing factors in their self-explanation. Related to this is the
problem of LLM hallucinations, which refers to the model presenting incorrect but plausible
sounding information. Dahl et al. (2024) have shown that the mean hallucination rate of
popular LLMs on common legal tasks lies between 69% and 88%. Ironically, the problem
of determining whether a self-explanation accurately reflects the internal reasoning, or
whether it is just an incorrect but plausible sounding rationalization, is exactly the type of
problem for which we need explanation methods to begin with. Work is being done on
improving the self-explanatory capabilities of LLMs (Chuang et al., 2024), but we believe
that it is clear that there is still merit to symbolic, argumentation-based approaches, which
are inherently reliable and transparent.

A risk associated with black-box machine learning systems, and LLMs in particular, is
their tendency to perpetuate bias that is present in the data used to train them. For example,
bias has been present in the earliest forms of word embeddings (on the basis of which LLMs
operate) and have turned out to be very difficult to remove (Kurita et al., 2019). Another
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prominent example, which we discussed in Chapters 7 and 8, is the COMPAS recidivism
risk prediction system, and it has often been claimed that it is biased with regards to race
and age—in fact, Engel et al. (2024) have recently argued that cOoMPAS is biased against
all defendants. Bias is a complicated topic. The debate surrounding COMPAS is partially
due to its proprietary nature, but it is also due to the difficulty with giving a universal and
precise definition of fairness. Consider, for example, the issue of recidivism base rates.
It is well-known that younger individuals tend to recidivate more often, which is to say
that the group of young individuals has a higher recidivism base rate than the group of
old individuals. A data-driven risk prediction system will pick up on this trend and assign
higher risk scores to young individuals, and this leads to scenarios where a person’s age
determines if they remain detained or not. Whether this is fair depends on one’s definition
of fairness; on the one hand, age is not something a person has any control over, but on the
other hand it is a highly predictive feature. As a matter of fact, it is prohibited in New York
to base a pretrial risk assessment on age (Equivant, 2019).

We believe that the models presented in Part I of this thesis encode a formal stare decisis
principle for data-driven decisions, which can be used as a concrete definition of fairness.
More research is needed to ascertain the usefulness of this definition, but we think that our
findings in Part II of this thesis are promising. Furthermore, we think that stare decisis
is a natural principle which people tend to agree on. Consider, for instance, the example
presented by Tripathi et al. (2024, Figure 1), which demonstrates that an LLM can change
opinion on the applicability of a law to a certain case only when seemingly irrelevant
attributes such as the subject’s name and religion are changed. It seems clear that a stare
decisis principle underlies the surprise expressed at such an example: Similar cases should
be treated similarly.

An alternative to the attempts of mitigating the risks associated with black-boxes is
simply to use systems that are inherently interpretable. Rudin (2019) warns that attempts to
explain black-box are potentially dangerous as explanations can be misleading, and suggests
to exclusively use interpretable models for high-stakes decisions. In fact, Rudin (2019)
argues that the commonly held conception that there is a trade-off between accuracy and
interpretability is a myth. For example, it has been shown repeatedly that simple predictive
models can achieve the same accuracy as complicated black-box models on the task of
predicting recidivism; see Rudin and Radin (2019) for references. It should be noted,
however, that these claims predate the sudden rise of LLMs, of which the performance is
currently unmatched by interpretable models.

Models of a fortiori case-based reasoning have been used by Odekerken (2025) as part
of interpretable decision systems for fraud intake and the classification of web shops. These
are both implemented and used by the Dutch Police Force. This indicates that our models
from Part I can also be used for this purpose. In this vein, we investigated in Chapter 3
under which conditions the DRM constitutes a classifier in the machine-learning sense
of the word. It should be noted, however, that the DHRM does not lend itself as well to
regression tasks, because its notion of constraint produces lower- and upper-bounds, rather
than precise outcomes. Furthermore, the dimensions constitute quite a strong assumption
that the features involved in the classification or prediction task are linearly correlated with
the output, and this is an assumption that is not always satisfied, particularly in non-legal
contexts.
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9.3 Future work

We conclude by outlining some directions for future research.

Order theory and logic Our comparison between the a fortiori models of reasoning and
order theory and logic has focused on the DRM, and to a lesser extent on the DHRM. An
evident continuation of this comparison would focus more on the DHRM, and in particular,
work out the details of the way in which the recursive aspect of the DHRM is handled in the
logical framework.

Incomplete information We have proposed a notion of constraint in the context of
incomplete information. Concurrently, Odekerken et al. (2023a) has investigated very
similar questions. A preliminary comparison between our proposed definitions and that of
Odekerken et al. (2023a) suggests that there is agreement between our work, but we have
not worked this out thoroughly.

Computing stability In the same vein, Odekerken et al. (2023b) have proposed algorithms
for computing possible assignments of values to undefined dimensions, so that the resulting
fact situations are forced for a side. This is exactly the type of question that our Z3-based
implementation can answer, because Z3 tries to find satisfying assignments. For example,
a question such as, “Is there a value that can be assigned to dimension d so that outcome s
is forced?” is native to the language of an sMT solver such as Z3. It would be interesting
to explore this application in more detail and to see whether Z3 can offer a performance
improvement on this task.

The hierarchical reason model Throughout this dissertation, we focused on the result
model of precedential constraint. When it comes to modeling common law jurisdictions,
Horty (2011) prefers the reason model of constraint, which has similarly seen applications
in Artificial Intelligence and Law (Canavotto & Horty, 2022). The reason model has
also been recently extended by Canavotto and Horty (2023b) to operate on the basis of
factor hierarchies. A superficial comparison of this extension and our HRM suggests the
models are very comparable. It would be interesting to give a complete formal comparison.
Specifically, the comparison between the RM and the reason model, which we gave in
Section 2.7, could be done for the HRM and the model hierarchical reason model developed
by Canavotto and Horty (2023b).

Expanding the AF-cBA method The AF-CBA explanation method, developed by Prakken
and Ratsma (2022), operates on the basis of the DRM. As such, it can only be applied to
binary classifiers—models that learn to sort an input into either of two classes. In practice,
there are many Al systems that produce real-valued, nonbinary output, such as regression
models, and to these the AF-CBA method cannot be applied. Modifying the AF-cBA method
to operate on the basis of the DHRM, as opposed to the DRM, could rectify this. These
modifications would likely be nontrivial, as they would require changes to the underlying
argumentation framework of the method.
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Further data analyses The result model, and variations thereof, have initially been
proposed as a model of human decision-making. It would therefore be interesting to
see whether decisions of courts and judges are consistent in the sense proposed by these
models. An example of where such an analysis could be performed is in the domain of bail
decisions, which has featured as a running example in this dissertation. A dataset was made
available by Williams and Kolter (2021) of cash bail decisions made by magistrates in the
Allegheny and Philadelphia counties in Pennsylvania. Our DHRM is capable of quantifying
the decision consistency of these magistrates, so our Z3 implementation could be used to
compute them based on the available dataset.

Determining dimension orders As part of our software implementation, we have
proposed a logistic regression-based method for estimating appropriate choices for the
dimension orders of the a fortiori models. This method is a modified version of the one
proposed by Prakken and Ratsma (2022), who use Pearson correlation coefficients, and
we compared the performance of these methods. Since there exist many other measures
of correlation, it is easy to come up with alternatives to these approaches, and we have
not given a comprehensive comparison of these options. In a similar vein, our formal
results regarding the DHRM consistency of generalized linear models require an accurate
reconstruction of the signs of the coefficients used by the linear model, and of the direction
of its mean function. The feasibility of estimating this information from a dataset could
be further explored; for example, how many datasets would be needed to obtain a 95%
confidence that the signs are correctly estimated?
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Nederlandse Samenvatting

Casusgebaseerd redeneren (CR) houdt in dat een probleem wordt vergeleken met eerdere
gevallen om besluitvorming te ondersteunen en conclusies te trekken. Dit type redenering
is fundamenteel voor common law-rechtsstelsels, waar rechtbanken verplicht zijn eerdere
uitspraken te volgen aan de hand van het stare decisis-principe. In deze systemen vergelijken
advocaten huidige geschillen met eerdere zaken om argumenten op te bouwen, en gebruiken
rechters eerdere zaken om hun conclusies te rechtvaardigen en uit te leggen.

Er zijn formele modellen ontwikkeld om juridisch cR te beschrijven. Deze berusten
vaak op het representeren van zaken in termen van factoren: verzamelingen van feiten
die vaak voorkomen in juridische zaken en die de positie van de ene of de andere partij
in het geschil versterken of verzwakken. Een veelgebruikt voorbeeld van factoren heeft
betrekking op het domein van bedrijfsgeheimen; het is moeilijk precies te definiéren wat
een bedrijfsgeheim is, en daarom worden factoren gebruikt om aspecten van de betreffende
situatie te beschrijven die de zaak sterker of zwakker maken voor de partij die beweert het
bedrijfsgeheim te bezitten. Enkele voorbeelden van zulke factoren zijn: de mate waarin de
informatie bekend is bij buitenstaanders; de waarde van de informatie voor de eigenaar en
diens concurrenten; en de hoeveelheid moeite of geld die de eigenaar heeft besteed aan het
ontwikkelen van de informatie.

Een bekend voorbeeld van een formeel model van CR is het zogenoemde resultaatmodel
(RM) van precedentgebondenheid. Het formuleert een beknopt a fortiori-principe van
beslissingsgebondenheid voor zaken die worden weergegeven in termen van de factoren
van het domein, wat als volgt kan worden samengevat: wanneer een eerdere zaak is beslist
in het voordeel van een bepaalde partij, moet elke nieuwe zaak waarin de factoren minstens
even sterk in het voordeel van die partij spreken en niet sterker tegen haar pleiten, eveneens
in haar voordeel worden beslist; een symmetrische regel geldt voor de andere partij. Sinds
de introductie ervan zijn er vele varianten en uitbreidingen van het RM ontwikkeld.

Het RM en de varianten ervan staan centraal in dit proefschrift, met name wat betreft hun
toepasbaarheid op kunstmatige intelligentie (A1). Juridische besluitvormers generaliseren
eerdere beslissingen om tot een oordeel te komen in een nieuwe zaak, en dit wordt
vergeleken met de manier waarop datagestuurde Al-systemen trainingsdata generaliseren
om output te genereren voor nieuwe input. Deze analogie maakt het mogelijk het RM toe
te passen in de context van datagestuurde besluitvorming, en dit heeft in de afgelopen
jaren geleid tot de ontwikkeling van diverse toepassingen — bijvoorbeeld om Al-output te
verklaren of te rechtvaardigen, of om frauduleuze online activiteiten te detecteren.

Kort samengevat zijn de doelstellingen van dit proefschrift tweevoudig. Ten eerste om
het rM uit te breiden tot een algemene theorie van a fortiori CR, met als doel deze theorie
toe te passen op het gebied van Al en recht; en ten tweede om de resulterende theorie te
toetsen door haar toe te passen op de analyse van datagestuurde Al-beslissingen. Deze
doelstellingen worden respectievelijk behandeld in Deel I en Deel II van dit proefschrift.
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Deel 1

Al geruime tijd wordt erkend dat een eenvoudige, op factoren gebaseerde representatie van
zaken niet het volledige beeld weergeeft. Zo kunnen factoren bijvoorbeeld een hi€rarchische
structuur hebben. Neem de eerder genoemde factor die betrekking heeft op de mate waarin
informatie bekend is bij buitenstaanders; deze kan worden uitgesplitst in subfactoren die
beschrijven of de informatie uniek was en of werknemers een geheimhoudingsverklaring
hebben moeten ondertekenen. Daarnaast kunnen factoren meerwaardige in plaats van
binaire waarden aannemen; zulke factoren worden in de literatuur vaak dimensies genoemd.
Ten slotte is het in de praktijk vaak onmogelijk om voor alle factoren te bepalen of
ze van toepassing zijn, omdat sommige feiten onbekend of irrelevant zijn. Dit brengt
ons bij de eerste centrale onderzoeksvraag van dit proefschrift: Kunnen we het RM van
precedentgebondenheid uitbreiden tot een algemene theorie van a fortiori casusgebaseerd
redeneren, die parti€le, dimensionele en hi€rarchische informatie omvat?

We beantwoorden deze vraag bevestigend door een reeks uitbreidingen van het RM
te ontwikkelen. Eerst passen we het RM en diens dimensionele variant (DRM) aan om
te werken met onvolledige informatie. Vervolgens introduceren we een hiérarchische
versie van het RM (het HRM), waarin gebondenheid wordt gedefinieerd via recursie over
een factorhiérarchie, wat meervoudige precedentredenering mogelijk maakt. Ten slotte
presenteren we een dimensioneel-hi€rarchische versie van het RM (het DHRM), waarin
uitkomsten niet-binair zijn en gebondenheid wordt uitgedrukt met onder- en bovengrenzen.
De modellen bouwen voort op elkaar, waarbij het DHRM alle voorgaande omvat.

Deel 11

De in Deel I ontwikkelde uitbreidingen zijn gemotiveerd door toepassingen van het RM
binnen de domeinen van AI en recht. Deze toepassingen vloeien voort uit de analogie
tussen juridische besluitvorming en datagestuurde besluitvorming door A1. Dit leidt vanzelf
tot de tweede centrale onderzoeksvraag die in dit proefschrift wordt behandeld: Hoe kan
de in Deel I ontwikkelde theorie worden toegepast op het gebied van A1?

Om deze vraag te beantwoorden benutten we een verbinding tussen onze theorie en
formele logica om een implementatie ervan te schrijven op basis van de “Satisfiability
Modulo Theories” solver Z3. We tonen aan hoe deze implementatie gebruikt kan worden
om gebondenheid uit te rekenen, maar ook voor verschillende andere doeleinden zoals het
toetsen van de consistentie en volledigheid van een casusverzameling. We illustreren de
werking van de implementatie aan de hand van experimenten met verschillende datasets.

Een van de voordelen van de theorie is dat zij een notie van consistentie voor datagedreven
beslissingen definieert. Door de consistentie van een verzameling datagedreven beslissingen
te meten, ontstaat een berekenbare maatstaf voor de interne beslisconsistentie van een
Al-systeem. Ter illustratie passen we deze concepten toe op data over het COMPAS-systeem:
een datagedreven Al-systeem dat in de Verenigde Staten onder meer wordt ingezet om
de kans op recidive bij strafrechtelijke verdachten te voorspellen. Het gebruik van dit
systeem is het onderwerp geworden van een voortdurende discussie in de literatuur over het
verantwoord gebruik van Al. Onze analyse werpt nieuw licht op deze discussie en bevestigt
Z0, onzes inziens, het nut van de theorie.
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