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Statistical mechanics away from equilibrium is in a formative
stage, where general concepts slowly emerge.

David Ruelle (2008)
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ENTROPY PRODUCTION OBSERVABLE

Hilbert space H, dimH <∞. Hamiltonian H.

Observables: O = B(H). 〈A,B〉 = tr(A∗B).

State: density matrix ρ > 0. ρ(A) = tr(ρA) = 〈A〉.

Time-evolution:

ρt = e−itHρeitH

Ot = eitHOe−itH .

The expectation value of O at time t:

〈Ot〉 = tr(ρOt) = tr(ρtO) = ρt(A)
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”Entropy observable” (information function):

S = − log ρ.

Entropy:

S(ρ) = −tr(ρ log ρ) = 〈S〉.

Average entropy production over the time interval [0, t]:

∆σ(t) =
1

t
(St − S).

Entropy production observable

σ = lim
t→0

∆σ(t) = i[H,S].

∆σ(t) =
1

t

∫ t
0
σsds.
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The entropy production observable = ”quantum phase space
contraction rate”.

Radon-Nikodym derivative=relative modular operator

∆ρt|ρ(A) = ρtAρ
−1.

∆ρt|ρ is a self-adjoint operator on O and

tr(ρ∆ρt|ρ(A)) = tr(ρtA)
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log ∆ρt|ρ(A) = (log ρt)A−A log ρ

= log ∆ρ|ρ(A) +
(∫ t

0
σ−sds

)
A.

d

dt
log ∆ρt|ρ(A)

∣∣∣
t=0

= σA.
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BALANCE EQUATION

Relative entropy

S(ρt|ρ) = tr(ρt(log ρt − log ρ))

= 〈ρ1/2
t , log ∆ρt|ρρ

1/2
t 〉 ≥ 0.

1

t
S(ρt|ρ) = 〈∆σ(t)〉 =

1

t

∫ t
0
〈σs〉ds.
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OPEN QUANTUM SYSTEMS

S
R2

Rk

RM

R1

8



Hilbert spaces Hk, k = 0, · · · ,M . Hamiltonians Hk.

Initial states

ρk = e−βkHk/Zk.

Composite system:

H = H0 ⊗ · · · ⊗ HM

ρ = ρ0 ⊗ · · · ⊗ ρM

Hfr =
∑

Hk,

H = Hfr + V.
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Energy change of Rk over the time interval [0, t]:

∆Qk(t) =
1

t
(eitHHke−itH −Hk).

The energy flux observable

Φk = lim
t→0

∆Qk(t) = i[H,Hk] = i[V,Hk].

∆Qk(t) =
1

t

∫ t
0

Φksds.
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The balance equation takes the familiar form:

S =
∑

βkHk + const

∆σ(t) =
∑

βk∆Qk(t)

σ =
∑

βkΦk

〈∆σ(t)〉 =
∑

βk〈∆Qk(t)〉 ≥ 0.

Heat flows from hot to cold.

11



GOAL I

〈∆σ(t)〉 =
1

t

∫ t
0
〈σs〉ds.

TD= Thermodynamic limit. Existence of the limit (steady state
entropy production):

〈σ〉+ = lim
t→∞

lim
TD
〈∆σ(t)〉

〈σ〉+ ≥ 0. Strict positivity:

〈σ〉+ > 0.
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GOAL II

More ambitious: non-equilibriium steady state (NESS). TD leads
to C∗ quantum dynamical system (O, τ t, ρ).

ρ+(A) = lim
t→∞

1

t

∫ t
0
ρ(τs(A))ds.

〈σ〉+ = ρ+(σ).

Structural theory:

σ+ > 0 ⇔ ρ+ ⊥ ρ.
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THE REMARK OF RUELLE

D. Ruelle: ”How should one define entropy production for nonequi-
librium quantum spin systems?” Rev. Math. Phys. 14,701-
707(2002)

The balance equation

〈∆σ(t)〉 =
∑

βk〈∆Qk(t)〉.

can (should?) be written differently.
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H\k =
⊗
j 6=kHj. State of the k-th subsystem at time t:

ρkt = trH\kρt.

∆Sk(t) =
1

t
(S(ρkt)− S(ρk)).

∆σk(t)〉 =
1

t
S(ρkt|ρk)

∆Ŝ(t) =
∑

∆Sk(t)

∆σ̂(t) =
∑

∆σk(t).

Obviously,

∆σ̂(t) ≥ 0.∑
S(ρk) = S(ρ) = S(ρt) and by the sub-additivity:

∆Ŝ(t) ≥ 0.
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One easily verifies

〈∆σ(t)〉 = ∆Ŝ(t) + ∆σ̂(t).

Clausius type decomposition.

Set

Ep+ = lim
t→∞

lim
TD

∆Ŝ(t)

∆σ̂+ = lim
t→∞

lim
TD

∆σ̂(t).
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OPEN PROBLEMS

Mathematical structure of the decomposition

〈σ〉+ = Ep+ + ∆σ̂+.

The existence of Ep+ and ∆σ̂+ in concrete models (to be dis-
cussed latter).

When is ∆σ̂+ = 0? Ruelle: Perhaps when the boundaries be-
tween the small system and the reservoirs are allowed to move
to infinity. This limit is more of less imposed by physics, but
seems hard to analyze mathematically.
Another possibility: adiabatically switched interaction (quasi-static
process)?
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XY SPIN CHAIN

Λ = [A,B] ⊂ Z, Hilbert space HΛ =
⊗
x∈Λ C2.

Hamiltonian

HΛ =
1

2

∑
x∈[A,B[

Jx

(
σ

(1)
x σ

(1)
x+1 + σ

(2)
x σ

(2)
x+1

)

+
1

2

∑
x∈[A,B]

λxσ
(3)
x .

σ
(1)
x =

[
0 1
1 0

]
, σ

(2)
x =

[
0 −i
i 0

]
, σ

(3)
x =

[
1 0
0 −1

]
.
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RL

N

C RR

−M −N M

Central part C (small system S): XY-chain on ΛC = [−N,N ].

Two reservoirs RL/R: XY-chains on ΛL = [−M,−N − 1] and
ΛR = [N + 1,M ].

N fixed, thermodynamic limit M →∞.

Decoupled Hamiltonian Hfr = HΛL +HΛC +HΛR.
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The full Hamiltonian is

H = HΛL∪ΛC∪ΛR = Hfr + VL + VR,

VL =
J−N−1

2

(
σ

(1)
−N−1σ

(1)
−N + σ

(2)
−N−1σ

(2)
−N

)
, etc.

Initial state:

ρ = e−βLHΛL ⊗ ρ0 ⊗ e−βRHΛR
/
Z,

ρ0 = 1/dimHΛC.

Fluxes and entropy production:

ΦL/R = i[H,HL/R],

σ = βLΦL + βRΦR.
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Araki-Ho, Ashbacher-Pillet∼ 2000, J-Landon-Pillet 2012: NESS
exists and

〈σ〉+ =
∆β

4π

∫
R
|T (E)|2

E sinh(∆βE)

cosh βLE
2 cosh βRE

2

dE > 0.

∆β = βL − βR. Landauer-Büttiker formula.
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Steady state heat fluxes:

〈ΦL〉+ + 〈ΦR〉+ = 0

〈σ〉+ = βL〈ΦL〉+ + βR〈ΦR〉+.

〈ΦL〉+ =
1

4π

∫
R
|T (E)|2

E sinh(∆βE)

cosh βLE
2 cosh βRE

2

dE.
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Idea of the proof–Jordan-Wigner transformation.

O is transformed to the even part of CAR(`2(Z)) generated
by {ax, a∗x |x ∈ Z} acting on the fermionic Fock space F over
`2(Z).

Transformed dynamics: generated by dΓ (h), where h is the
Jacobi matrix

hux = Jxux+1 + Jx−1ux−1 + λxux, u ∈ `2(Z).

ΦR (and similarly ΦL, σ) is transformed to

iJNJN+1(a∗NaN+2 − a∗N+2aN)

iJNλN+1(a∗NaN+1 − a∗N+1aN).
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Decomposition

`2(Z) = `2(]−∞,−N−1])⊕`2([−N,N ])⊕`2([N+1,∞[),

hfr = hL + hC + hR,

h = hfr + vL + vR,

vR = JN(|δN+1〉〈δN |+ h.c)

The initial state ρ is transformed to the quasi-free state gener-
ated by

1

1 + eβLhL
⊕

1

2N + 1
⊕

1

1 + eβRhR
.
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The wave operators

w± = s− lim
t→±∞

eithe−ithfr1ac(hfr)

exist and are complete.

The scattering matrix:

s = w∗+w− : Hac(hfr)→Hac(hfr)

s(E) =

[
A(E) T (E)
T (E) B(E)

]
.

25



T (E) =
2i

π
J−N−1JN〈δN |(h−E− i0)−1δ−N〉

√
FL(E)FR(E)

FL/R(E) = Im 〈δL/R|(hL/R − E − i0)−1δL/R〉,

δL = δ−N−1, δR = δN+1.

T (E) is non-vanishing on the set spac(hL) ∩ spac(hR).

Jx = const, λx = const (or periodic)

|T | = χσ(h)
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Assumption:
h has no singular continuous spectrum

Open question: The existence and formulas for Ep+ and ∆σ̂+.

Open question: NESS and entropy production if h has some
singular continuous spectra. Transport in quasi-periodic struc-
tures.
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HEISENBERG SPIN CHAIN

The Hamiltonian H of XY spin chain is changed to

HP = H + P

where

P =
1

2

∑
x∈[−N,N [

Kxσ
(3)
x σ

(3)
x+1.

The central part is now Heisenberg spin chain

1

2

∑
x∈[−N,N [

Jxσ
(1)
x σ

(1)
x+1 + Jxσ

(2)
x σ

(2)
x+1 +Kxσ

(3)
x σ

(3)
x+1

+
1

2

∑
x∈[−N,N ]

λxσ
(3)
x .
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Initial state remains the same. h is the old Jacobi matrix.

Fluxes and entropy production:

ΦL/R = i[HP , HL/R]

σ = βLΦL + βRΦR.

TD limit obvious. τP denotes the perturbed C∗-dynamics.
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Assumption For all x, y ∈ Z,∫ ∞
0
|〈δx, eithδy〉|dt <∞.

Denote

`N =
∫ ∞

0
sup

x,y∈[−N,N [
|〈δx, eithδy〉|dt,

K̄ =
66

76

1

24N

1

`N
.
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Theorem. Suppose that

sup
x∈[−N,N [

|Kx| < K̄.

Then for all A ∈ O,

ρ+(A) = lim
t→∞

ρ(τ tP (A))

exists.
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Comments:

No time averaging. The constant K̄ is essentially optimal. With
change of the constant K̄ the result holds for any P depending
on finitely many σ(3)

x :

P =
∑∏

Kxi1···xikσ
(3)
xi1
· · ·σ(3)

xik
.

The NESS ρ+ is attractor in the sense that for any ρ-normal
initial state ω,

lim
t→∞

ω ◦ τ tP = ρ+.
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The map

({Kx}, βL, βR) 7→ 〈σ〉+ = ρ+(σ)

is real analytic. This leads to the strict positivity of entropy pro-
duction.

Green-Kubo linear response formula holds for thermodynamical
force X = βL − βR (J-Pillet-Ogata)

Bosonization Central Limit Theorem holds (J-Pautrat-Pillet)
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OPEN PROBLEM

The existence (and properties) of NESS

ρ+(A) = lim
t→∞

1

t

∫ t
0
ρ(τsP (A))ds

for all {Kx} ∈ R2N .

This is an open problem even if

P = K0a
∗
0a0a

∗
1a1.

Dependence of 〈σ〉+ on N?
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Idea of the proof: Jordan-Wigner transformation: τ tP is gener-
ated by

dΓ (h) +
1

2

∑
x∈[−N,N [

Kx(2a∗xax − 1)(2a∗x+1ax+1 − 1).

One proves that

γ+(A) = lim
t→∞

τ−t ◦ τ tP (A)

exists and is an ∗-automorphism of O. The starting point is the
Dyson expansion of τ−t ◦ τ tP . One then proceeds with careful
combinatorial estimates of each term in the expansion (Botvich-
Massen).
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The transport theory of non-equilibrium quantum statistical me-
chanics leads to an insight regarding two basic questions of
spectral theory:

What is absolutely continuous spectrum?

What is localization?
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WHAT IS AC SPECTRUM?

(1) Bruneau L., Jaksic V., Pillet C.-A.: Landauer-Bütttiker for-
mula and Schrödinger conjecture, CMP 2013
(2) Jaksic V., Landon B., Panati A.: A note on reflectionless Ja-
cobi matrices, CMP 2014
(3) Bruneau L., Jaksic V., Last Y., Pillet C.-A.: Landauer-Bütttiker
and Thouless conductance, CMP 2015
(4) Bruneau L., Jaksic V., Last Y., Pillet C-A.: Conductance and
absolutely continuous spectrum of 1D samples, CMP 2016
(5) Bruneau L., Jaksic V., Last Y., Pillet C-A.: Crystaline conduc-
tance and absolutely continuous spectrum of 1D samples, LMP
2016
(6) Bruneau L., Jaksic V., Last Y., Pillet C-A.: What is AC spec-
trum? ICMP 2015.
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PHYSICAL PICTURE

L1
µl µr
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MATHEMATICAL MODEL

• Sample: HL = `2([1, L]), hL = −∆ + v.

• Reservoirs: One electron data: (Hl/r, hl/r, ψl/r).
Hl/r = L2(R,dνl/r), hl/r = E, ψl/r = 1.

• One electron reservoirs + sample system:

H = Hl ⊕HL ⊕Hr, h0 = hl ⊕ hL ⊕ hr,

h = h0 + vT ,

vT = λ
(
|ψl〉〈δ1|+ |δ1〉〈ψl|+ |ψr〉〈δL|+ |δL〉〈ψr|

)
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• Electron gas:
Fock space Γ−(H), Hamiltonian H = dΓ (h),
Algebra of observables CAR(H), state ωµr,µl.

• Charge current observable:

J = −i[H,Nl], Jt = eitHJe−itH

• Steady state current:

〈J〉 = lim
T→∞

1

T

∫ T
0
ωµr,µl(Jt)dt.

〈J〉 = lim
T→∞

1

T

[
ωµr,µl(Nl)− ωµr,µl(eiTHNle

−iTH)
]
.
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LANDAUER-BÜTTIKER FORMULA

•

〈J〉 =
∫ µl
µr
D(L,E)dE

•

D(L,E) = 2πλ4|〈δ1, (h−E−i0)−1δL〉|2
dνl,ac

dE
(E)

dνr,ac

dE
(E)

• Origin: Scattering theory of the one-particle pair (h, h0).

Aschbacher W., Jaksic V., Pautrat Y., Pillet C.-A.: J. Math.
Phys., 48 (2007), 032101.
Nenciu, G.: J. Math. Phys. 48, 033302 (2007).
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THOULESS FORMULA

• Special case of the LB-formula. Crystaline reservoirs.
h = hL,per on `2(Z).

• Reflectionless transport. D(L,E) = (2π)−1 forE ∈ sp(hL,per),
0 otherwise.

• Thouless formula:

〈T 〉 =
1

2π
|sp(hL,per) ∩ (µr, µl)|.

•

〈J〉 . 〈T 〉
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GOAL

• Extended sample: hS = −∆ + v on `2(Z+).
spac(hS).
Σac(hS): the essential support of the ac spectrum of hS.

• Mathematical characterization of the conducting regime⇔
Physical characterization of the conducting regime.

• The energies in spac(hS) and Σac(hS) should be pre-
cisely the energies at which the charge transport of the finite
samples is non-vanishing in the limit L→∞.
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LINEAR RESPONSE

• µr = E, µl = E + ε. Ohm’s law

〈J〉 = εD(L,E) + o(1).

•

T = {E | lim inf
L→∞

D(L,E) > 0}.

• Bruneau, J., Pillet (2013): Conjecture

Σac = T
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• T (L,E)–transfer matrix of hS ,

T (L,E) =

[
v(L)− E −1

1 0

]
· · ·

[
v(1)− E −1

1 0

]

• Bruneau, J., Pillet (2013): Result

T = {E | sup
L
‖T (L,E)‖ <∞}.

T ⊂ Σac.

• Σac = T turns to the Schrödinger Conjecture.
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COUNTEREXAMPLE

• A. Avila.: On the Kotani-Last and Schrödinger Conjectures,
J. Amer. Math. Soc. 28 (2015), 579-616.

• The counterexample is in the ergodic setting: |Σac \T| > 0
with probability one.

• In the ergodic setting, the Kotani theory gives (Bruneau, J.)

Σac = {E | lim sup
L→∞

D(L,E) > 0}

and (Deift-Simon)

Σac =

E | lim sup
L→∞

1

L

L∑
`=1

‖T (`, E)‖2 <∞

 .
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THEOREM

〈J〉 = 〈J〉L,µr,µl, 〈T〉 = 〈T〉L,µr,µl.

The following statements are equivalent.

(A) spac(hS) ∩ (µr, µl) = ∅.

(B) limL→∞〈J〉L,µr,µl = 0.

(C) limL→∞〈T〉L,µr,µl = 0.

Moreover, if spac(hS) ∩ (µr, µl) 6= ∅, then

lim inf
L→∞

〈J〉L,µr,µl > 0, lim inf
L→∞

〈T〉L,µr,µl > 0.
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PERSPECTIVES

• The role of reflectionless

• Kotani and Remling theory

• Many body theory
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IDEAS OF THE PROOF

• Key Lemma: spac(hS) ∩ (µr, µl) = ∅ iff

lim
L→∞

∫ µl
µr
‖T (L,E)‖−2dE = 0. (1)

• The proof proceeds by showing that the statements (B) and
(C) are equivalent to (1).

• Proof of the Lemma: The key ingredient is the result of Car-
mona, Krutikov-Remling, Simon: If νD is the spectral mea-
sure for hS and δ1 with D. b.c. and u = (1,0)T , then

1

π
‖T (L,E)u‖−2dE → dνD(E).
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• Given the Lemma, the proof of (A)⇔ (B) follows from the
Last-Simon result: given a sequence Lk →∞,

Σac ⊂ {E | lim inf
k→∞

‖T (Lk, E)‖ <∞},

and Bruneau-J-Pillet result:

{E | lim
k→∞

D(Lk, E) = 0} = {E | lim
k→∞

‖T (Lk, E)‖ =∞}.

• In the ergodic setting the equivalence (A) ⇔ (C) was
proven in Yoram Last 1994 PhD thesis.
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• One of the key ingredients of Last’s proof was the estimate:

lim sup
L→∞

|spac(hL,per) ∩ (µr, µl)| ≤ |spac(hS) ∩ (µr, µl)|

that holds with probability one. Proof: the Kotani theory.

• Although motivated by the implication (C) ⇒ (A) and the
study of the Thouless conductance, (2) is stronger than one
needs for this purpose.

• Independent of its motivation, the above relation was shown
to have important consequences for the spectral theory of
quasi-periodic operators:
Last, Y.: A relation between a.c. spectrum of ergodic Jacobi
matrices and the spectra of periodic approximants. Com-
mun. Math. Phys. 151, 183–192 (1993).
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• Gestezsy-Simon extended Last’s result to deterministic full
line operators. Their argument does not work for the half
line operators.

• For the half-line case we prove

lim sup
L→∞

|spac(hper,L)∩(µr, µl)| ≤ C|spac(hS)∩(µr, µl)|
1
5,

where C = 5
(
π2(1+π)4

4

)1/5
' 18.7; That suffices for

(C)⇒ (A).
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MANY BODY THEORY

• Back to the electron gas picture:
Fock space Γ−(H)

Algebra of observables CAR(H)

State ωµr,µl.
Interaction

V =
∑

x,y∈[1,L],|x−y|=1

a∗xa
∗
yayax

Hamiltonian: H = dΓ (h) + V .
Current observable:

J = −i[H,Nl], Jt = eitHJe−itH .
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• Def: Localization regime on (µr, µl):

〈J〉+ = lim sup
L→∞

lim sup
T→∞

1

T

∫ T
0
ωµr,µl(Jt)dt = 0.

• Def: Conducting regime on (µr, µl):

〈J〉− = lim inf
L→∞

lim inf
t→∞

1

T

∫ T
0
ωµr,µl(Jt)dt > 0.

• V = 0: equivalent to absence/presence of ac spectrum on
(µr, µl).
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PROBLEM: 1D MANY BODY LOCALIZATION

Suppose that {v(x)}x∈Z+
are i.i.d. random variables (with den-

sity). Is it true for all µr and µl,

〈J〉+ = 0.

One can go further (with definitions and conjectures): Linear
response theory, many body Lyapunov exponent, many body
Kotani theory, any D, ...

But no results (proofs) worth mentioning...
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STEP 0

Replace the interaction V with

V̂ = a∗1a
∗
2a2a1.

Prove that in this ”trivial” case

〈J〉+ = 0.

Completely open.
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ENTROPIC FLUCTUATIONS

• J., Ogata, Pautrat, Pillet:
”Entropic fluctuations in non-equlibrium quantum statistical
mechanics. An Introduction.”
In Quantum Theory from Small to Large Scales, Les Houches
Proceeding (2012)

• J., Pillet, Rey-Bellet:
”Entropic Fluctuations in Statistical Mechanics I. Classical
Dynamical Systems.” Nonlinearity (2011)
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NAIVE FLUCTUATION RELATION FAILS

Finite dimensional setup. Time-reversal invariance.

Spectral resolution

∆σ(t) =
1

t

∫ t
0
σsds =

∑
λPλ.

Time-reversal implies

dimPλ = dimP−λ.

Entropy balance equation

1

t
S(ρt|ρ) = 〈∆σ(t)〉 =

∑
λtr(ρPλ) ≥ 0.
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Positive λ’s are favoured. Heat flows from hot to cold.

BAD NEWS: The fluctuation relation

tr(ρP−λ)

tr(ρPλ)
= e−tλ

FAILS.

Cummulant generating function:

enaive(α) = log tr(ρe−αt∆σ(t))

= log tr(e−Se−α(St−S)).

Equivalent form of bad news:

enaive(α) = enaive(1− α)

FAILS.
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QUANTUM ENTROPIC FUNCTIONAL I

Kurchan (2000), Tasaki-Matsui (2003)

efcs(α) = log tr(e−(1−α)Se−αSt).

Renyi relative entropy:

efcs(α) = log tr(ρ1−α
t ρα).

Time reversal invariance implies that the symmetry

efcs(α) = efcs(1− α)

HOLDS.
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Tasaki-Matsui relative modular operator interpretation.

O = B(H), 〈A,B〉 = tr(A∗B). Ωρ = ρ1/2.

∆ρt|ρ(A) = ρtAρ
−1.

efcs(α) = log〈Ωρ,∆
−α
ρt|ρΩρ〉

= log
∫
R

e−αtςPt(ς).
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Atomic probability measure Pt is the spectral measure for the
operator

−
1

t
log ∆ρt|ρ(A) = −

1

t
log ∆ρ|ρ(A)−∆σ(t)A

and Ωρ.

efcs(α) = efcs(1− α) is equivalent to

Pt(−ς)
Pt(ς)

= e−tς .
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Kurchan interpretation gives the physical meaning:

efcs(α) is the cummulant generating function for the full count-
ing statistics (Levitov-Lesovik) of the repeated quantum mea-
surement of S = − log ρ.

S =
∑

sPs

Measurement at t = 0 yields s with probability tr(ρPs).
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State after the measurement:

ρPs/tr(ρPs).

State at later time t:

e−itHρPse
itH/tr(ρPs).

Another measurement of S yields value s′ with probability

tr(Ps′e
−itHρPse

itH)/tr(ρPs).

The probability of measuring the pair (s, s′) is

tr(Ps′e
−itHρPse

itH)
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Probability distribution of the mean change of entropy

ς = (s′ − s)/t

is the spectral measure of Tasaki-Matsui:

Pt(ς) =
∑

s′−s=tς

tr(Ps′e
−itHPse

itH).

efcs(α) is the cummulant generating function for Pt.
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QUANTUM ENTROPIC FUNCTIONAL II

J-Ogata-Pautrat-Pillet.

evar(α) = log tr(e−(1−α)S−αSt).

Time reversal implies

evar(α) = evar(1− α)

Variational characterization:

evar(α) = − inf
ω

(αtr(ω(St − S)) + S(ρ|ω)) .

Golden-Thompson:

evar(α) ≤ efcs(α).
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Herbert Stahl (2011): Bessis-Moussa-Villani conjecture.

There exist probability measure Qt such that

evar(α) = log
∫
R

e−αtςdQt(ς).

evar(α) = evar(1− α) implies

dQt(−ς)
dQt(ς)

= e−tς .
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ALGEBRAIC BMV CONJECTURE

(M, τ t,Ω) W ∗-dynamical system on a Hilbert space H. Ω is
(τ, β)-KMS vector.

τ t(A) = eitLAe−itL.

V ∈M selfadjoint, ΩV the β- KMS vector for perturbed dynam-
ics

τ tV (A) = eit(L+V )Ae−it(L+V ).

ΩV = e−
β
2(L+V )Ω
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The Pierls-Bogoluibov and Golden-Thompson inequality hold:

e−β〈Ω,VΩ〉/2 ≤ ‖ΩV ‖ ≤ ‖e−βV/2Ω‖.

CONJECTURE:
There exists measure Q on R such that for α ∈ R,

‖ΩαV ‖2 =
∫
R

eαφdQ(φ).

Finite systems:

‖ΩαV ‖2 = tr(e−β(H+αV ))/tr(e−βH).

69



INTERPOLATING FUNCTIONALS

For p ∈ [1,∞),

ep(α) = log tr
(

e
−1−α

p S
e
−2α

p Ste
−1−α

p S
)p/2

= log tr

(
ρ

1−α
p ρ

2α
p
t ρ

1−α
p

)p/2

.

• e2(α) = efcs(α).

• e∞(α) = limp→∞ ep(α) = evar(α).

• ep(α) = ep(1− α)
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• ep(0) = ep(1) = 0.

• α 7→ ep(α) is convex.

• e′p(0) = −S(ρt|ρ), e′p(1) = S(ρt|ρ).

• [1,∞] 3 p 7→ ep(α) is decreasing (strictly): (Araki)-Lieb-
Thirring.
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• Interpolating functionals motivated recent works in quantum
information: M.R. Audenaert, N. Datta: α-z-relative Renyi
entropies.
For ν, ζ > 0, set

Sp,α(ν, ζ) = log tr
(
ν

1−α
p ζ

2α
p ν

1−α
p

)p/2
.

Obtaining a single quantum generalization of the classical
relative Renyi entropy, which would cover all possible oper-
ational scenarios in quantum information theory, is a chal-
lenging (and perhaps impossible) task. However, we be-
lieve Sp,α is thus far the best candidate for such a quantity,
since it unifies all known quantum relative entropies in the
literature.
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• Quantum transfer operators. Act on B(H). Specific norm:

‖A‖p =
(
tr(|Aρ1/p|p)

)1/p
.

Up(t)A = A−te
1
pS−te

−1
pS.

Properties:

Up(t1 + t2) = Up(t1)Up(t2)

Up(−t)AUp(t) = At

‖Up(t)A‖p = ‖A‖p.
Crucial property:

ep(α) = log ‖Up/α(t)1‖pp.
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GOALS

• Mathematical structure of finite time theory that deals di-
rectly with infinitely extended system within the framework
of algebraic quantum statistical mechanics. Modular theory
of W ∗-dynamical systems (Araki, Connes, Haagerup).

Critical role: Araki-Masuda theory of non-commutative Lp-
spaces.

Araki, H., Masuda, T. (1982). Positive cones and Lp-spaces
for von Neumann algebras. Publ. RIMS, Kyoto Univ. 18,
339–411.

• Benefit of unraveling the algebraic structure of entropic func-
tionals: Quantum Ruelle transfer operators.
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• Concrete models: Thermodynamic limit of the finite time
finite volume structures.

• The existence and regularity of

ep+(α) = lim
t→∞

1

t
ept(α).

Difficult problem in physically interesting models. Link with
quantum Ruelle resonances.



ep+(α) inherits all the listed properties of ept(α).
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e′p+(0) = −〈σ〉+, e′p+(0) = 〈σ〉+
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• Implications. p = 2, the large deviation principle and cen-
tral limit theorem for the full counting statistics of entropy/energy/charge
transport. The symmetry α → 1 − α in the linear regime
(small α, linear response) yields the Green-Kubo formulas
and Onsager reciprocity relations energy and charge fluxes.
The Fluctuation-Dissipation Theorem follows.

• p =∞. The large deviation principle and central limit theo-
rem for the BMV Qt. Quantum version of Gallavotti’s linear
response theory.
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BACK TO XY CHAIN

Two additional functionals:

(I) (Evans-Searles) Fluctuations with respect to the initial state:

Ct(α) = lim
M→∞

log tr
(
ρe−α

∫ t
0 σsds

)
.

(II) (Gallavotti-Cohen) Steady state fluctuations: ρt = e−itHρeitH .

Ct+(α) = lim
T→∞

lim
M→∞

log tr
(
ρTe−α

∫ t
0 σsds

)
.

Naive quantizations of the classical entropic functionals.
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After the TD limit

Ct(α) = log ρ
(

e−α
∫ t

0 σsds
)

= log
∫
R

e−αtςdPt(ς),

Ct+(α) = log ρ+

(
e−α

∫ t
0 σsds

)
= log

∫
R

e−αtςdPt+(ς).

Pt/t+ is the spectral measure for ρ/ρ+ and 1
t

∫ t
0 σsds.
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THEOREM

Assumption: Jacobi matrix h has purely ac spectrum.

(1)

C(α) = lim
t→∞

1

t
Ct(α) = lim

t→∞
1

t
Ct+(α)

=
∫
R

log

(
det(1 +Kα(E))

det(1 +K0(E))

)
dE

2π
,

Kα(E) = ek0(E)/2eα(s∗(E)k0(E)s(E)−k0(E))ek0(E)/2,

k0(E) =

[
−βLE 0

0 −βRE

]
, s(E) =

[
A(E) T (E)
T (E) B(E)

]
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(2)

ep+(α) = lim
t→∞

1

t
ept(α) =

∫
R

log

(
det(1 +Kαp(E))

det(1 +K0(E))

)
dE

2π
,

Kαp(E) =
(
ek0(E)(1−α)/ps(E)ek0(E)2α/ps∗(E)ek0(E)(1−α)/p

)p/2

(3) The functionals C(α), ep+(α) are real-analytic and strictly
convex.
C(0) = ep+(0) = 0 and

C′(0) = e′p+(0) = −〈σ〉+.

(4)

C′′(0) = e′′2(0) =
1

2

∫ ∞
−∞

〈
(σt − 〈σ〉+)(σ − 〈σ〉+)

〉
+

dt.



(5) The function

[1,∞] 3 p 7→ ep+(α)

is continuous and decreasing.

It is strictly decreasing unless h is reflectionless:

|T (E)| ∈ {0,1} ∀E.

If h is reflectionless, then ep+(α) does not depend on p and

ep+(α) = C(α) =

1

2π

∫
sp(h)

cosh((βL(1− α) + βRα)E/2)× (L→ R)

cosh(βLE/2) cosh(βRE/2)
dE.

Phenomenon: ”Entropic triviality.”



(6) If h is not reflectionless, C(1) > 0.

(7) The Central Limit Theorem and Large Deviation Principle
hold for measures Pt, Pt+, Pt, Qt.

Pt/t+ → δ〈σ〉+, Pt, Qt → δ〈σ〉+. Gärtner-Ellis theorem.

Pt(B) ' Pt+(B) ' e−t infς∈B I(ς),

Pt(B) ' e−t infς∈B I(ς),

Qt(B) ' e−t infς∈B J (ς)



I(ς) = − inf
α∈R

(ας + C(α)) ,

I(ς) = − inf
α∈R

(
ας + e2+(α)

)
,

J (ς) = − inf
α∈R

(
ας + e∞+(α)

)
Fluctuation Relation implies

I(−ς) = ς + I(ς),

etc.



OPEN PROBLEM

Suppose that Jx = J > 0 for all x.

hux = J(ux+1 + ux−1) + λxux

discrete Schrödinger operator.

Davies-Simon (1978): h is called homogenuous if it is reflection-
less and has purely a.c. spectrum.

We feel that the theory of homogeneous Hamiltonians
is worthy of further study.

Does there exist h with purely a.c. spectrum which is not reflec-
tionless?
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HEISENBERG CHAIN

K̄ = supx∈[−N,N ] |Kx|.

Given δ > 0 there exists ε > 0 such that if |K̄| < ε,

ep+(α)

exists for p = 2,∞ and α ∈]− δ,1 + δ[.

({Kx}, α) 7→ ep+(α) is real analytic.

CLT and local LDP for Pt and Qt.

Proof: Combination of De Roeck-Kupianien dynamical polymer
expansion and combinatorial estimates of J-Pautrat-Pillet.
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ELECTRONIC BLACK BOX MODEL

S
R1

R3

R2

82



MCLENNAN-ZUBAREV DYNAMICAL ENSEMBLES

Open systems:

ρt = e−S−t = e−
∑
βk(Hk+

∫ t
0 Φk(−s)ds)

ρt– Gibbs state at inverse temperature 1 for∑
βk(Hk +

∫ t
0

Φk(−s))ds.

83



TD limit: ρt is KMS-state for the dynamics generated by

δt(·) =
∑

βkδk(·) +
∫ t

0
[Φk(−s), ·]ds

NESS ρ+ is the KMS state for the dynamics generated by

δ+(·) =
∑

βk

(
δk(·) +

∫ ∞
0

[Φk(−s), ·]ds
)

Aschbacher-Pillet, Ogata-Matsui, Tasaki-Matsui.
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XY-chain, Jx = const, λx = 0,

β = (βL + βR)/2, γ = (βR − βL)/2.

ρ+ is β-KMS state for Hamiltonian

H +
δ

β
K

K = j(x− y)
1

2i

∑
x<y

(
σ

(1)
x σ

(3)
x+1 · · ·σ

(3)
y−1σ

(2)
y − h.c.)

)
where j is the Fourier transform of | cos θ|.
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e2t(α) = log tr(e−(1−α)Se−αSt).

e∞t(α) = log tr(e−(1−α)S−αSt).

In open systems:

e2t(α) = log tr
(

e−(1−α)
∑
βkHke−α

∑
βk(Hk+

∫ t
0 Φksds)

)
.

e∞t(α) = log tr
(

e−
∑
βk(Hk+α

∫ t
0 Φksds.

)
.

Similarly for other ept(α). The entropic functionals can be viewed
as deformations McLennan-Zubarev dynamical ensembles.
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ENTROPIC GEOMETRY (UNDER CONTRUCTION)

David Ruelle: Extending the definition of entropy to nonequilib-
rium steady states. Proc. Nat. Acad. Sci. 100 (2003).

Outside of equilibrium entropy has curvature.

An old idea. Ruppeiner geometry (1979).

G. Ruppeiner (1995): Riemannian geometry in thermodynamic
fluctuation theory. Reviews of Modern Physics 67 (3): 605659

Older:

B. Effron: Defining the curvature of the statistical problem. The
Annals of Statistics (1975), 1189-1242.

87



Even older:

Rao, C.R: (1945) Information and accuracy attainable in the es-
timation of statistical parameter. Bull. Calcutta Math. Soc. 37.

Information geometry. Monograph:

Amari-Nagaoka: Methods of information geometry (2000)

For our purposes:

G. Crooks (2007): Measuring thermodynamic length. PRL 99.



Parameter manifold: (β1, · · · , βM).

e′′p+(0) =
∑
j,k

βjβkLpjk.

This introduces a (possibly degenerate) metric on the tangent
space at (β1, · · · , βM).

p = 2. metric is induced by the CLT variance of CLT for the full
counting statistics.

L2jk =
1

2

∫ ∞
−∞

ρ+

(
(Φjs − ρ+(Φj))(Φks − ρ+(Φk))

)
ds.
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In equilibrium β1 = · · · = βM , L2jk are Onsager transport
coefficents.

At p =∞, twist to Bogoluibov-Kubo-Mari inner product.

The induced norms ‖ · ‖p are monotone in p.

Crooks thermodynamical path out of equilibrium.
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RELATIONS WITH QUANTUM INFORMATION THEORY

Landauer principle: the energy cost of erasing quantum bit of in-
formation by action of a thermal reservoir at inverse temperature
T is ≥ kT log 2 with the equality for quasi-static processes.

Full counting statistics, e2,+(α) = the Chernoff error exponent
in the quantum hypothesis testing of the arrow of time, i.e., of
the family of states {ρt, ρ−t}t>0.

J., Ogata-Pillet-Seiringer.: Quantum hypothesis testing and non-
equilibrium statistical mechanics, Rev. Math. Phys, 24 (6) (2012),
1-67

Parameter estimation, Fisher entropies, entropic/information ge-
ometry?
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STEADY STATE FLUCTUATION RELATIONS

Classical statistical mechanics: Dynamical system (M,φt, ρ).

Observable: f : M → R. ρ(f) =
∫
M fdρ. Time evolution

ft = f ◦ φt

ρt = ρ ◦ φ−t.
Phase space contraction:

∆ρt|ρ =
dρt
dρ

.

Entropy production observable

σ =
d

dt
log ∆ρt|ρ

∣∣∣
t=0
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log ∆ρt|ρ =
∫ t

0
σ−sds.

S(ρt|ρ) =
∫
M

log ∆ρt|ρdρt =
∫ t

0
ρ(σs)ds.

Classical open systems:

σ =
∑

βkΦk

Φk = {V,Hk}.
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Evans-Searles entropic functional:

et(α) = log
∫
M

e−α
∫ t

0 σsdsdρ.

Time-reversal invariance.
Evans-Searles fluctuation relation:

et(α) = et(1− α).

Let Pt be the probability distribution of

1

t

∫ t
0
σs

with respect to ρ.
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dPt(−ς)
dPt(ς)

= e−tς .

e+(α) = lim
t→∞

1

t
et(α).

CLT and LDP are with respect to ρ.

Important: The classical counterpart of the theory of quantum
entropic fluctuations described so far is the Evans-Searles fluc-
tuation relation.

Gallavotti-Cohen fluctuation relation: Related but also very dif-
ferent.
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NESS: weak limit

ρ+(f) = lim
t→∞

ρt(f).

ρ+(σ) > 0⇔ ρ+ ⊥ ρ.

Gallavotti-Cohen entropic functional:

êt(α) = log
∫
M

e−α
∫ t

0 σsdsdρ+.

Finite time fluctuation relation

êt(α) = êt(1− α)

does not hold.
It is even possible that êt(1) =∞ for t > 0 (chain of harmonic
oscillators).
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ê+(α) = lim
t→∞

1

t
êt(α).

Gallavotti-Cohen fluctuation relation: for Anosov diffeomprhisms
of compact manifolds the symmetry

ê+(α) = ê+(1− α)

is restored. In this case

ê+(α) = e+(α).

General Gallavotti-Cohen fluctuation relation.
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Principle of regular entropic fluctuations.Exchange of limits:

e+(α) = lim
t→∞

1

t
log

∫
M

e−α
∫ t

0 σsdsdρ

= lim
t→∞

1

t
log

∫
M

e−α
∫ u+t
u σsdsdρ

= lim
t→∞

1

t
log

∫
M

e−α
∫ t

0 σsdsdρu

= lim
t→∞

lim
u→∞

1

t
log

∫
M

e−α
∫ t

0 σsdsdρu

= lim
t→∞

1

t
log

∫
M

e−α
∫ t

0 σsdsdρ+

= ê+(α).
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OPEN PROBLEM

Gallavotti-Cohen fluctuation relation in quantum statistical mechancs.

Two obvious routes:

Tasaki-Matsui: (H, π,Ωρ) GNS-representation induced ρ,

log ∆ρt|ρ = log ∆ρ|ρ +
∫ t

0
σ−sds.

e2t(α) = log
∫
R

e−αtςPt(ς)

= log〈Ωρ,∆
α
ρt|ρΩρ〉

= log〈Ωρ, e
α
(

log ∆ρ|ρ−
∫ t

0 σsds
)
Ωρ〉
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(H+, π+,Ωρ+),

ê2t(α) = log〈Ωρ+, e
α
(

log ∆ρ+|ρ+
−
∫ t

0 σsds
)
Ωρ+〉

= log
∫
R

e−αtςdP̂t(ς).

ê2+(α) = lim
t→∞

1

t
ê2t(α).

XY chain:

ê2+(α) = e2+(α).

Same for locally interacting case.
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Missing: Physical interpretation. Repeated quantum measure-
ment procedure incompatible with NESS structure.

One possibility: Indirect measurements. Work in preparation
Bruneau, J., Pillet

Bauer M., Bernard D., Phys. Rev. A84, (2011) Convergence
of repeated quantum non-demolition measurements and wave
function collapse.

M. Bauer, T. Benoist, D. Bernard, Repeated Quantum Non-Demolition
Measurements: Convergence and Continuous Time Limit, Ann.
Henri Poincar 14 (2013) 639 67
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One difficulty in quantum optic experiments is to measure a sys-
tem without destroying it. For example to count a number of
photons usually one would need to convert each photon into an
electric signal. To avoid such destruction one can use non de-
molition measurements. Instead of measuring directly the sys-
tem, quantum probes interact with it and are then measured.
The interaction is tuned such that a set of system states are
stable under the measurement process.

This situation is typically the one of Serge Haroche’s (2012 No-
bel prize in physics) group experiment inspired the work I will
present. In their experiment they used atoms as probes to mea-
sure the number of photons inside a cavity without destroying
them.

Abstract of T. Benoist talk at McGill (2014)
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p =∞. Slightly more satisfactory.

e∞t = − inf
ω�ρ

(
S(ω|ρ) + α

∫ t
0
ω(σs)ds

)
.

ê∞t = − inf
ω�ρ+

(
S(ω|ρ+) + α

∫ t
0
ω(σs)ds

)
.

Again, in the cases where one can compute (XY, etc):

ê∞+(α) = e∞+(α).

102



TOPICS NOT DICSUSSED

Weak coupling limit (Davies 1974, Lebowitz-Spohn 1978, J-Pillet-
Westrich 2014)

Repeated interactions systems

Pauli-Fierz systems (finite level atom coupled to bosonic reser-
voirs).

Classical statistical mechanics.

Landauer Erasing Principle

Refinements of the 1st law of thermodynamics
103



CONCLUSIONS
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