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Introduction

In statistical mechanics, modular theory provides powerful tools that survive
the thermodynamic limit. In QFT (also on curved spacetimes) it is the primary
ingredient to define measures of entanglement through different notions of
entropy. The Araki–Woods ’63 construction plays a distinguished role in both.
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Bosonic Fock spaces and CCR

Let complex K Hilbert space. Bosonic Fock space

Γ(K) =
⊕
n>0

Γn(K), Γn(K) = K⊗sn,

with vacuum vector Ω = (1, 0, 0⊗2, 0⊗3, . . . ). If A ∈ B(K), second
quantization Γ(A), dΓ(A) ∈ B(Γ(K)) defined as direct sums of

Γn(A)(f1 ⊗s · · · ⊗s fn) = Af1 ⊗s · · · ⊗s Afn,

dΓn(A)(f1 ⊗s · · · ⊗s fn) = Af1 ⊗s · · · ⊗s fn + · · ·+ f1 ⊗s · · · ⊗s Afn.

Properties:

Γ(AB) = Γ(A)Γ(B), dΓ(A) = d

dt Γ(e
tA)|t=0, Γ(eA) = edΓ(A)

[dΓ(A), dΓ(B)] = dΓ([A,B]).



Creation and annihilation operators for f ∈ K are symmetrizations and direct
sums of

a(f )(f1 ⊗ f2 ⊗ · · · ⊗ fn) = n
1
2 〈f |f1〉f2 ⊗ f3 ⊗ · · · fn,

a∗(f )(f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n + 1)
1
2 f ⊗ f1 ⊗ f2 ⊗ f3 ⊗ · · · fn.

They satisfy

[a(f ), a(g)] = 0 = [a∗(f ), a∗(g)], [a(f ), a∗(g)] = 〈f |g〉1.

The field operators are

Φ(f ) = 1√
2
(a(f ) + a∗(f )), f ∈ K

and satisfy the CCR

Φ(f1)Φ(f2)− Φ(f2)Φ(f1) = i Im〈f1|f2〉1 =: iσ(f1, f2)1

(Non)-equivalent CCR representations f 7→ Φ(f ) (or f 7→ a#(f )):

new scalar product 〈f1|f2〉j = σ(f1, jf2) + σ(f1, f2)

provided (KR, σ, j) is Kähler, i.e. j2 = −1 and σ ◦ j > 0. New Hilbert space by
complexification:

(α+ β)f := αh + jβf , f ∈ KR, α+ β ∈ C.



Bosonic quasi-free states for finite systems

Let dimK <∞. Let Q ∈ B(K) be such that

0 6 Q 6 1, Ker(1− Q) = {0}.

Then, define the operator

T := Q(1− Q)−1, Q = T (1+ T )−1

referred to as 1-particle charge density, or in short density. To T we associate
the normalization factor ZT = Tr(Γ(Q)) = Tr(Γ(T/(1+T ))) the density matrix

ωT =
1

ZT
Γ

(
T

1+ T

)
=

1

Tr(Γ(Q))
Γ(Q).

We denote by the same letter ωT the corresponding state on B(Γ(K)). It is
called the quasi-free state associated to the density T .



T := Q(1− Q)−1, Q = T (1+ T )−1, 1
ZT

Γ
(

T
1+T

)
= 1

Tr(Γ(Q))
Γ(Q).

This applies in particular to the situation when we are given a one-particle
Hamiltonian h = h∗ ∈ B(K), and want to consider the Gibbs state

e−βdΓ(h)

Tr e−βdΓ(h)

at inverse temperature β for the Hamiltonian of the free Bose gas dΓ(h). The
corresponding density is

T =
1

eβh − 1

and in our notation Q = e−βh.

No problem for finite systems, but Gibbs density matrix problematic in
thermodynamic limit or in QFT.



T := Q(1− Q)−1, Q = T (1+ T )−1, 1
ZT

Γ
(

T
1+T

)
= 1

Tr(Γ(Q))
Γ(Q).

Theorem
1. If g1, . . . , gn, f1, . . . , fm ∈ K, then

ωT (a∗(gn) · · · a∗(g1)a(f1) · · · a(fm)) = δnmperm[〈fi |Tgj〉],
where perm defined as det but with only + signs. In particular
ωT (a∗(g)a(f )) = 〈f |Tg〉.

2. logZT = log det(1+ T ) = Tr(log(1+ T )).
3. ωT (Γ(A)) = det(1+ T (1− A)).
4. ωT (dΓ(A)) = Tr(TA).
5. S(ωT ) = − Tr(T logT − (1+ T ) log(1+ T )), where

S(ωT ) = −ωT lnωT .
6. ωT1 � ωT2 iff KerT1 ⊂ KerT2, and then

S(ωT1 |ωT2) = Tr (T1(logT2 − logT1)− (1+ T1)(log(1+ T2)− log(1+ T1)))

Uses a lot formula TrΓ(A) = det(1− A)−1.



Araki–Woods representation

With T = Q(1− Q)−1 as previously, set

HAW = Γ(K)⊗ Γ(K),

ΩAW = Ω⊗ Ω,

b∗
AW = a∗((1+ T )

1
2 f )⊗ 1+ 1⊗ a(T 1/2f ),

bAW = a((1+ T )
1
2 f )⊗ 1+ 1⊗ a∗(T 1/2f ).

1. f 7→ b#
AW(f ) define a representation of the CCR over K on HAW.

2. Let πAW be the induced representation of B(Γ(K)) on HAW. ΩAW is a
cyclic vector for this representation and

ωT (A) = (ΩAW|πAW(A)ΩAW),

for all A ∈ B(Γ(K)).
3. The modular conjugation is given by

J(ψ1 ⊗ ψ2) = ψ2 ⊗ ψ1.



4. The modular operator of ωT is

∆ωT = Γ(Q)⊗ Γ(Q−1).

In consequence

log∆ωT = dΓ(logQ)⊗ 1− 1⊗ dΓ(logQ).

5. If ωT1 is the quasi-free state of density T1 > 0 then the relative
Hamiltonian is

`ωT1
|ωT = log det

(
(1+ T1)(1+ T )−1)+ dΓ(logQ1 − logQ),

with Q1 = T1(1+ T1)
−1, and

log∆ωT1
|ωT = log∆ωT + πAW(`ωT1

|ωT2
)

6. Suppose h commutes with T . Then ωT is invariant under the dynamics
τ t generated by H = dΓ(h). Moreover

K = dΓ(h)⊗ 1− 1⊗ dΓ(h)

is the standard Liouvillean of this dynamics.



Let us abbreviate ∆ = ∆ωT . For (1) and (2) it suffices to prove that

J∆
1
2 AΩAW = A∗ΩAW

for any monomial A = b#
AW(fn) · · · b#

AW(f1). We do it by induction on n.
We first compute

b′
AW(f ) := JbAW (f )J = a∗(T

1
2 f )⊗ 1+ 1⊗ a((1+ T )

1
2 f ),

b′∗
AW(f ) = Jb∗

AW (f )J = a(T
1
2 f )⊗ 1+ 1⊗ a∗((1+ T )

1
2 f ),

and check that [b′
AW(f ), b#

AW(g)] = 0 for all f , g ∈ K. Next, we observe that

∆
1
2 bAW(f )∆− 1

2 = bAW(Q− 1
2 f ), ∆

1
2 b∗

AW(f )∆− 1
2 = b∗

AW(Q
1
2 f ).

For n = 1, the claim follows from the fact that

J∆
1
2 bAW(f )ΩAW = J∆

1
2 bAW(f )∆− 1

2 JΩAW

= b′
AW(Q− 1

2 f )ΩAW

=
(
a∗(Q−1T

1
2 f )⊗ 1

)
ΩAW

= b∗
AW(f )ΩAW.



Next, for the induction, let A be a monomial of degree less than n in the b#
AW

and assume that J∆ 1
2 AΩAW = A∗ΩAW for all such monomials. Then,

J∆
1
2 b#

AW(f )AΩAW = (J∆
1
2 b#

AW(f )∆− 1
2 J)J∆

1
2 AΩAW

= (Jb#
AW(Q∓ 1

2 f )J)A∗ΩAW

= b′#
AW(Q∓ 1

2 f )A∗ΩAW

= A∗b′#
AW(Q∓ 1

2 f )ΩAW

= A∗J∆
1
2 b#

AW(f )∆− 1
2 JΩAW

= A∗J∆
1
2 b#

AW(f )ΩAW

= A∗b#
AW(f )∗ΩAW,

which shows that the induction property holds for all monomials of degree
6 n + 1.

Valid for dimK = ∞, Araki–Woods representations are valid without
trace-class assumptions.



Quasi-free states on Weyl C∗-algebra

Given a symplectic space (X , σ) there is a unique up to ∗-isomorphism
C∗-algebra (the Weyl C∗-algebra) generated by V (f ), f ∈ X , s.t.

1. V (−f ) = V (f )∗,
2. V (f )V (g) = e−iσ(f ,g)/2V (f + g)

A state is a positive unital functional ω. A state ω is quasi-free if there
is a symmetric form η (called covariance) s.t.

ω(V (f )) = e−η(f ,f )/2

Our next goal: The GNS representation of ω is an Araki–Woods
representation, with density Q identified with a complexification of η − i

2
σ.

Proposition
Suppose η is a covariance as above, η is non-degenerate and X is
complete for η. If dim Kerσ is even or infinite, then there exists an
anti-involution j such that (η, j) is Kähler.

(roughly, polar decomposition of 1
2
η−1σ)



For many purposes we can replace the Weyl C∗-algebra by a “polynomial”
∗-algebra CCR(X , σ) finitely spanned by abstract field elements X 3 f 7→ Φ(f )
satisfying the CCR

[Φ(f ),Φ(g)] = iσ(f , g)1
formally, Φ(f ) = d

dt W (tf )|t=0.

A quasi-free state ω on CCR(X , σ) is characterized by:

ω(Φ(f1) · · ·Φ(fn)) = 0,

ω(Φ(f1) · · ·Φ(fn)) =
∑
s pair

m∏
j=1

ω(Φ(fs(2j−1)Φ(fs(2j))))

and η is equivalently characterized by two-point function

ω(Φ(f )Φ(g)) = η(f , g) + i
2
σ(f , g).

The GNS representation associated to ω is equivalent to the Araki–Woods
representation based on the Hilbert space K := X with complex structure j
and

〈f |g〉 := σ(f , jg) + iσ(f , g),
with density Q computed from 〈f |Qf 〉 = η(f , f ).



Kay doubling

Our representation was actually the left Araki–Woods representation b#
AW, and

it comes with the right Araki–Woods representation (which appeared already!):

b′
AW(f ) := JbAW (f )J = a∗(T

1
2 f )⊗ 1+ 1⊗ a((1+ T )

1
2 f ).

In terms of the field operators ΦAW(f ), Φ′
AW(f ),

[ΦAW(f ),ΦAW(g)] = iσ(f , g)1, [Φ′
AW(f ),Φ′

AW(g)] = −iσ(f , g)1

Doubling procedure (by Kay ’85 in QFT context):

(Xd, σd) := (X , σ)⊕ (X ,−σ), Φd((f , g)) := ΦAW(f ) + Φ′
AW(g).

The vacuum vector Ω induces a quasi-free state ωd on CCR(Xd, σd), formally by

ωd(Φ((f1, g1))Φ((f2, g2))) := 〈Ω|Φd((f1, g1))Φd((f2, g2))Ω〉

This state is a pure state.

Modular conjugation exchanges σ and −σ (“time reversal”) and
creation/annihilation processes.


