
Knowledge-Based Systems 31 (2012) 89–105
Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
Formal framework to support organizational design q

Catholijn M. Jonker a, Viara Popova b, Alexei Sharpanskykh c,⇑, Jan Treur c, Pınar Yolum d

a Interactive Intelligence group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
b Institute of Computer Science, University of Tartu, J. Liivi 2, Tartu 50409, Estonia
c Agent Systems Research Group, VU University Amsterdam, De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands
d Department of Computer Engineering, Bogazici University, TR-34342 Bebek, Istanbul, Turkey

a r t i c l e i n f o
Article history:
Received 19 July 2011
Received in revised form 10 January 2012
Accepted 17 February 2012
Available online 28 February 2012

Keywords:
Organization design
Organizational structure
Organizational dynamics
Design tools
Design operators
Ontologies
0950-7051/$ - see front matter � 2012 Elsevier B.V. A
doi:10.1016/j.knosys.2012.02.011

q A preliminary (short) version of this manuscript a
Second International Conference on Design Computin
⇑ Corresponding author. Address: Department of C

Science, VU University Amsterdam, De Boelelaan 108
Netherlands. Tel.: +31 205985887; fax: +31 20598765

E-mail address: sharp@few.vu.nl (A. Sharpanskykh
a b s t r a c t

Organizational design is an important topic in the literature on organizations. Usually the design princi-
ples are addressed informally in this literature. This paper makes a first attempt to formally introduce
design operators to formalize the design steps in the process of designing organizations. These operators
help an organization designer create an organization design from scratch as well as offer the possibility to
revise existing designs of organizations. The operators offer both top-down refinements and bottom-up
grouping options. Importantly, the operators can be combined into complex operators that can serve as
patterns for larger steps in an organization design process. The usability of the design operators is dem-
onstrated in a running example. The contribution of this paper provides a solid basis for the development
of a software environment supporting interactive organization design processes. This is demonstrated by
an implemented prototype example tool.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction The Business architecture defines the structure of the enterprise
Organizations play a key role in the modern society. To a large
extent, the vitality and productivity of an organization situated in
an environment of a certain type depend on the kinds of structure
and behavior of the organization that should conform to the envi-
ronmental conditions. Business modeling is instrumental in
addressing a number of problems such as: understanding the
structure and dynamics of the organization [24], diagnosing
problems and detecting avenues for improvement [15], ensuring
common vocabulary and understanding, and formulating require-
ments needed for interoperation. A number of frameworks and
tools for business modeling have been developed such as the
OMG Business Modeling and Management Specifications (http://
www.omg.org), ARIS [37], CIMOSA [14], MEMO [17], and IBM Web-
Sphere Business Modeler. Less comprehensive with respect to
scope, but still relevant, is the research on Enterprise Ontology
[13] which aims at defining an abstract high-level model that
captures the essence of the organization and thus enabling easier
communication and shared understanding between inter- and
intra-organizational parties.
ll rights reserved.

ppeared in Proceedings of the
g and Cognition (DCC’06).
omputer Science, Faculty of

1a, 1081 HV Amsterdam, The
3.
).
including its business processes and information and governance
structure and is typically organized in a number of views clustering
related aspects of the organizational structure and dynamics. For
example, one important view is the organization-oriented view
which defines the structure of the organization into business units,
roles and their relationships, communication and capabilities.
Another essential view is the process-oriented view which
describes the business processes and tasks, the material and infor-
mation resources needed for and produced by these processes and
so on. This view has been the focus of extensive research and can
be modeled by a number of existing methods and tools such as
PetriNets [46], BPMN (http://www.bpmn.org/), EPC [47], and
YAWL (http://www.yawlfoundation.org/). Some authors consider
communication relations between organizational actors as organi-
zational processes too (see e.g., [16]).

In this paper, for reasons of specificity, we focus on the organi-
zation-oriented view in the context of the framework presented in
[31–34,41,42,21]. It is beyond the scope of the paper to discuss
how the chosen framework compares to other existing ones—for
this the reader is referred to [41]. The approach presented here,
however, can be extended and adapted to other existing frame-
works as well.

The specific problem addressed in the paper is to formalize the
process of organizational design and organizational change in the
context of the organization-oriented view.

Organization design is concerned ‘‘with what an organization is
ought to be’’ [30]. More specifically, Galbraith [18] stated that orga-

http://www.omg.org
http://www.omg.org
http://www.bpmn.org/
http://www.yawlfoundation.org/
http://dx.doi.org/10.1016/j.knosys.2012.02.011
mailto:sharp@few.vu.nl
http://dx.doi.org/10.1016/j.knosys.2012.02.011
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

90 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105
nization design ‘‘is conceived to be a decision process to bring
about a coherence between the goals or purposes for which the
organization exists, the patterns of division of labor and interunit
coordination and the people who will do the work’’. Further Galba-
ith argues that design is an essential process for ‘‘creating organi-
zations, which perform better than those, which arise naturally’’.

In the literature, a range of theories and guidelines concerning
the design of organizations are present [18,12,28,5]. For example,
Duncan proposed a contingency model for designing organizations
with environmental variables being the principal determinants of
organizational models. Mintzberg described a number of guide-
lines applicable mostly to designing hierarchical organizations that
function in a relatively stable environment. However, despite the
abundance of organizational design theories no general principles
applicable to organizational design at all times and places can be
identified [39]. Moreover, almost all theoretical findings in organi-
zational design are informal and often vague. In order to provide an
organization designer or a manager with operational automated
tools for creating, analyzing, and revising organizations, in the first
place a formal representation of an organization model as a design
object description should be provided. In addition to this, to ad-
dress the operations performed on such design object descriptions
during a design process, a formal representation of design opera-
tors underlying possible design steps is needed. Such design oper-
ators describe the possible transitions between design object
descriptions. Using the design operators, a design process can be
described by choosing, at various points in time, the next operator
to be applied to transform the current design object description
into the next one. Examples of very simple design operators are
adding or deleting an element of a design object description. More
sophisticated design operators can involve, for example, the intro-
duction of further refinement of the aggregation levels within a de-
sign object description. In this paper we introduce a formal
organizational model format, to be used to represent design object
descriptions for the organization-oriented view. On top of this, a
set of design operators is formally defined. The formalization is
based on the sorted predicate logic [26].

Often in the literature organizational design is recognized as an
engineering problem [10]. From this perspective, design is consid-
ered as a continuous process of a gradual change of an organiza-
tional model by applying certain operations [30]. For example,
[28] describes the design process as the following sequence of
operations: given overall organizational needs, a designer refines
the needs into specific tasks, which are further combined into posi-
tions. The next step is to build the ‘‘superstructure’’ by performing
unit grouping using special guidelines and heuristics (e.g., group-
ing by knowledge and skill, by work process and function, by time,
by place, etc.). Then, the grouping process is repeated recursively,
until the organization hierarchy is complete.

For this paper, we aimed at identifying the most commonly and
generally used set of operators for designing organizations. For this
purpose, the literature from social sciences, and design principles
used in other disciplines were investigated. For example, useful
principles for organizational design can be found in the area of
derivative grammars. Thus, graphical changes in organizational de-
signs may be described by shape [45] and graph grammars [36].
Whereas changes in textual (or symbolic) structural and dynamic
descriptions of organizational elements may be specified by string
[11] and graph grammars, which allow representation of relation-
ships between the descriptions of different elements. In order to
relate graphical organizational designs to designs described in a
symbolic form, parallel grammars (or grammars defined in multi-
ple algebras) may be used [45]. For designing organization struc-
tures with multiple levels of representation (e.g., hierarchical
organizations with departments, groups, sections) abstraction
grammars [38] and hierarchical graph grammars [19] can be use-
ful. By means of abstraction grammars, design is performed from
the top level of the abstraction hierarchy to the bottom (most
concrete) level, with each design generation using the prior level
design as a pattern. Furthermore, mechanisms for choosing the
most appropriate design generated by different transformations
defined by grammars have been developed in different areas (e.g.
recursive annealing in mechanical design [38]). Although it is
widely recognized in social studies that no ‘‘best’’ design of an
organization exists, a number of informal guidelines and best prac-
tices developed in the area of organizational design can help in
identifying the most suitable organizational designs.

Thus, based on the rich literature on design, this paper makes a
first attempt to formalize the operators underlying organization
design processes. A set of design operators is formally introduced,
which provides the means for creating a design of an organization
from scratch as well as revising existing designs for organizations.
Furthermore, the formalization of the operators provides a solid
basis for a software tool supporting interactive organization design
processes. A formal organizational specification provides a clear
overview of organizational structures and dynamics, which would
facilitate decision making by organizational managers. Further-
more, a formal, consistent specification of an organization may
be used for analysis of organizational structures and interactions
(e.g., identifying inconsistencies and bottlenecks in an organiza-
tional structure) by managers as a part of a dedicated knowl-
edge-based system. Such a system may be also used for
organizational design:

– it may advise on the choice of design operators based on the
type of the organization under consideration (e.g., hierarchical,
flat organic);

– it may be able to trace the design operations of the user and to
suggest suitable design operators based on design patterns
stored in the system.

The research presented in this paper does not overlap with the
area of organizational learning [1,2,40,29], however there are
some meeting points between the two areas. More specifically,
within the technical view on organizational learning, the two
areas can meet when organizational learning results in organiza-
tional change that will be reflected in the formal specification
structure of the organization and/or the roles of the organization.
Our research concerns the process of incorporating new elements
and properties in the specification. It does not address the ques-
tion of what these elements and properties should be in order
to achieve a more faithful representation or to improve the
functioning of the organization, nor does it consider the process
of deriving them.

In Section 2 a formal framework for the specification of design
object descriptions for organizations is described. Sections 3 and
4 introduce a set of classes of operators to create and modify de-
sign object descriptions for organizations. In Section 5 checking
consistency of organizational specifications during the organiza-
tional design is considered. Section 6 illustrates the application of
a developed prototype by an example. Finally, Section 7 discusses
future work and provides general conclusions.
2. Format for an organizational model as a design object
description

We consider a generic organization model, abstracted from the
specific instances of agents (actors), which consists only of struc-
tural and behavioral descriptions of organizational roles and rela-
tions between them. A top-down ordering of definitions is used,
meaning that concepts are referred to before they are defined.

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 91
Definition 1 (A specification of an organization). A specification of
an organization with the name O is described by the relation
is_org_described_by (O, C, D), where C is a structural description
and D is a description of dynamics.

An organizational structure is characterized by the patterns of
relationships or activities in an organization, and described by sets
of roles, groups, interaction and interlevel links, relations between
them and an environment.
Definition 2 (A structural description of an organizational specifica-
tion). A structural description C of an organizational specification
described by the relation is_org_described_by (O, C, D) is determined
by a set of relations, among which1:
� a relation has_basic_components (C, R, G, IL, ILL, ONT, M, ENV)
defined on the subsets R, G, IL, ILL, ONT, M, ENV of the corre-
sponding general sets ROLE (the set of all possible role names),
GROUP (the set of all possible group names), INTERAC-

TION_LINK (the set of all possible interaction links names),
INTERLEVEL_LINK (the set of all possible interlevel links
names), ONTOLOGY (the set of all possible ontology names),
ONTO_MAPPING (the set of all possible ontology mappings
names), ENVIRONMENT (the set of all possible environment
names)2

� a relation for specifying a role r 2 R in C is_role_in (r, C)
� a relation for specifying an interaction link e 2 IL in C is_interac-

tion_link_in (e, C)
� a relation for specifying an interlevel link il 2 ILL in C is_interlev-

el_link_in (il, C)
� a relation for specifying an environment env 2 ENV is_environ-

ment_in (env, ENV)
� a relation has_input_ontology (r, o) that assigns an input ontology

o 2 ONT to a role r 2 R (similarly the relations for output, inter-
nal, and interaction ontologies are introduced: has_output_ontol-

ogy (r, o), has_interaction_ontology (r, o), has_internal_ontology (r, o))
� a relation has_input_ontology (env, o) that assigns an input ontol-

ogy o 2 ONT to an environment env 2 ENV (similarly the rela-
tions for output, internal, and interaction ontologies are
introduced: has_output_ontology (env, o), has_interaction_ontology

(env, o), has_internal_ontology (env, o))
� a relation is_ontology_for (el, o) that assigns an ontology o 2 ONT

either to a role el2 R or an environment el2 ENV

� a relation has_onto_mapping (il, m) that associates an interlevel
link il 2 ILL with an ontology mapping m 2M (an ontology map-
ping for an interaction link is defined similarly)
� a relation is_interaction_link_of_type (e, type) that specifies an

interaction link e 2 IL of one of the types: role_interaction_link,

env_input_link, env_output_link

� a relation connects_to (e, r, r0, C) that specifies a connection by an
interaction link e 2 IL from a source-role r 2 R to a destination
role r0 2 R in C
� a relation connects_to (e, env, r, C) that specifies a connection by

an interaction link e 2 IL of type env_output_link from an envi-
ronment env 2 ENV to a role r 2 R in C (similarly for connects_to

(e, r, env, C))
� a relation subrole_of_in (r0, r, C) that specifies a subrole r0 2 R of a

role r 2 R in C
� a relation member_of_in (r, g, C) that specifies a member role

r 2 R of a group g 2 G in C
1 Notice that all the following relations are defined using the names of organization
elements; the specifications for these elements will be provided in the following
definitions.

2 The difference between R and ROLE, for example, is that R (subset of ROLE) is the
set of all role names that occur in C.
� a relation interlevel_connection (il, r, r0, C) that specifies a connec-
tion by an interlevel link il 2 ILL between roles r, r0 2 R of adja-
cent aggregation levels (i.e., between a role and one of its
subroles)

Organizational behavior is described by dynamic properties of
the organizational structure elements.

Definition 3 (A description of dynamics of an organizational spec-
ification). A description of dynamics D of an organizational spec-
ification described by the relation is_org_described_by (O, C, D) is
determined by a set of relations, among which:
� a relation has_basic_components (D, DP) that specifies a set of

dynamic properties names DP defined in an organizational
specification
� a relation has_dynamic_property (r, d) that specifies a dynamic

property d 2 DP for a role r 2 R (the relations for dynamic prop-
erties of an interlevel link, a group and an environment are
defined in a similar manner: has_dynamic_property (e, d),
has_dynamic_property (g, d), has_dynamic_property (env, d))
� a relation has_expression (d, expr) that identifies a dynamic prop-

erty name d 2 DP with a dynamic property expression
expr 2 DPEXPR (e.g., a formula in sorted first-order predicate
logic)

A role is a basic structural element of an organization. It repre-
sents a subset of functionalities, performed by an organization, ab-
stracted from specific agents (or actors) who fulfill them. Each role
has an input and an output interface, which facilitate the interac-
tion (communication) with other roles. The interfaces are de-
scribed in terms of interaction (input and output) ontologies: a
vocabulary or a signature specified in order-sorted logic. An ontol-
ogy contains objects that are typed with sorts, relations, and func-
tions. Generally speaking, an input ontology determines what
types of information are allowed to be transferred to the input of
a role, and an output ontology predefines what kinds of informa-
tion can be generated at the output of a role.

Each role can be composed of a number of other roles, until the
necessary detailed level of aggregation is achieved. Thus, roles can
be specified and analyzed at different aggregation levels, which cor-
respond to different levels of an organizational structure. A role that
is composed of (interacting) subroles, is called a composite role.

Definition 4 (Role). A specification of a role r is determined by:

Objects:

� or, oi, o, o0, o00 2 ONT, or = o [o0 [o00, oi = o0 [o00, here [is a
functional symbol that maps names of ontologies to a name
of the joint ontology

Relations:
� has_internal_ontology (r, o), has_input_ontology (r, o0), and

has_output_ontology (r, o00)
� has_ontology (r, or) and has_interaction_ontology (r, oi)
� d 2 DP, has_dynamic_property (r, d)

The ontologies, which describe interfaces of interacting roles,
can be different. Therefore, if necessary, the specification of a role
interaction process includes ontology mapping. An ontology map-
ping m between ontologies o and o0 is characterized by a set of
relations is_part_of_onto_map (a, a0, m), where a is an atom expressed
in ontology o and a0 is an atom expressed using ontology o0.
Definition 5 (Ontology mapping). An ontology mapping m

between ontologies o and o0 is characterized by:

92 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105
� is_part_of_onto_map (a, a0, m), where a 2 At (o) and a0 2 At (o0)
� for a 2 At (o) is_in_domain_of (a, m), $a0 2 At (o0) is_part_of_

onto_map (a, a0, m), where At (o) is the set of all atoms, expressed
in ontology o.
� for a0 2 At (o0) is_in_range_of (a0, m) ,$a 2 At (o) is_part_of_onto_

map (a, a0, m)

Roles of the same aggregation level interact with each other by
means of interaction links. The interaction between roles is
restricted to communication acts.
Definition 6 (Interaction link). An interaction link e is determined
by:

Relations:

� is_interaction_link_in (e, C)
� has_onto_mapping (e, m) for some m 2M

� has_dynamic_property (e, d) for a number of d 2 DP

Constraints:

� An interaction link e must connect two roles at the same
aggregation level: is_interaction_link_in (e, C)) $r, r0 2 R con-

nects_to (e, r, r0, C)^ :has_subrole (r, r0)^ :has_subrole (r0, r)

An interlevel link connects a composite role with one of its
subroles. It represents an information transition between two
adjacent aggregation levels. For roles connected by an interlevel
link, this link is described by an ontology mapping between the
corresponding elements of ontologies, part of which may be
identity correspondence. Moreover, an ontology mapping
associated with an interlevel link may be used for representing
mechanisms of information abstraction. These mechanisms can
be applied for transmitting (or generating) partial, aggregated
or generalized information to the input (or from the output) of a
role.
Definition 7 (Interlevel link). A specification for an interlevel link il

is determined by:
Relations:

� is_interlevel_link_in (il, C)
� has_onto_mapping (il, m) for some m 2M

Constraints:

� An interlevel link il must connect two roles at two adjacent
aggregation levels: is_interlevel_link_in (il, C)) $r, r0 2 R sub-

role_of_in (r0, r, C)^ (interlevel_connection (il, r, r0, C)_ interlevel_con-

nection (il, r0, r, C))

A group is a composite structural element of an organization
that consists of a number of roles. In contrast to roles, a group does
not have well-defined input and output interfaces. Groups can be
used for modeling units of organic organizations, which are
characterized by loosely defined or sometimes informal frequently
changing structures that operate in a dynamic environment.
Furthermore, groups can be used at the intermediate design steps
for identifying a collection of roles, which may be further trans-
formed into a composite role.
Definition 8 (Group). A group g is defined by the relations to other
concepts:

� membership relation member_of_in: r 2 R member_of_in (r, g, C)
� has_dynamic_property (g, d) with d 2 DP
The conceptualized environment represents a special compo-
nent of an organization model. According to some sociological
theories (e.g., contingency theory), an environment represents a key
determinant in organizational design, upon which an organizational
model is contingent. Similarly to roles, the environment is repre-
sented in this proposal by an element having input and output
interfaces, which facilitate in interaction with roles of an organiza-
tion. The interfaces are conceptualized by the environment interac-
tion (input and output) ontologies. Interaction links between roles
and the environment are indicated in the organizational model as
links that have a specific type, namely env_input_link or env_outpu-

t_link by means of the predicate is_interaction_link_ of_type.
The internal structure of the environment is not fixed, i.e., the

designer has freedom to provide his/her own conceptualization of
the environment. For example, the environment can be defined by
a set of objects with certain properties and states and by causal
relations between objects. On the one hand, roles are capable of
observing states and properties of objects in the environment; on
the other hand, they can act or react and, thus, affect the
environment. We distinguish passive and active observation
processes. For example, when some object is observable by a role
and the role continuously keeps track of its state, changing its
internal representation of the object if necessary, passive observa-
tion occurs. For passive observation, no initiative of a role is
needed. Active observation is always concerned with the role’s
initiative and focusing. For particular purposes the internal spec-
ification for the environment can be conceptualized using one of
the existing world ontologies (e.g., CYC, SUMO, TOVE [4]). How-
ever, despite the richness and the extensiveness of these ontolog-
ical bases, more specific and refined types of concepts and relations
are required for modelling particular types of organizations and
environments.
Definition 9 (Environment). A specification of an environment env

is determined by:

Objects:
� oe, oi, o, o0, o00 2 ONT, oe = o [o0 [o00 and oi = o0 [o00
Relations:
� has_internal_ontology (env, o), has_input_ontology (env, o0), and

has_output_ontology (env, o00)
� has_ontology (env, oe) and has_interaction_ontology (env, oi)
� d 2 DP, has_dynamic_property (env, d)
Constraints:
� IL0 # IL, "e 2 IL0 is_interaction_link_in (e, C)) $r0 2 R such that

connects_to (e, env, r0, C) _ $r00 2 R such that connects_to (e, r00,
env, C)

The behavior of each element of an organizational structure is
described by a set of dynamic properties. With each name of a
dynamic property, an expression is associated. Dynamic property
expressions represent formulae specified over a certain ontology
(ies). In particular, a dynamic property for a role is expressed using
a role ontology. A dynamic property for an interaction link is con-
structed using the output ontology of a role-source of a link and
the input ontology of a role-destination. A group dynamic property
is expressed using ontologies of roles- members of a group.

Definition 10 (Dynamic Property). A specification of a dynamic
property d 2 DP is described by:

� has_expression (d, expr) for some expr 2 DPEXPR

� uses_ont (d, o) for some o 2 ONT

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 93
� if r 2 R and has_dynamic_property (r, d), then uses_ont (d, o))
has_ontology (r, o)
� if e 2 IL and has_dynamic_property (e, d), then uses_ont (d, o))$r,

r0 2 R, $o0, o00 2 ONT connects_to (e, r, r0, C)^ has_output_ontology (r,
o0)^ has_input_ontology (r0, o00) ^ o # o0 [o00

� if g 2 G and has_dynamic_property (g, d), then uses_ont (d, o)
)$r 2 R member_of_in (r, G, C)^ has_ontology (r, o)

Dynamic properties expressions are specified in the Temporal
Trace Language (TTL) [22,43,44], which is a variant of order-sorted
predicate logic [26]. TTL is a hybrid language; it combines the
expressivity of logic-based (automata-based) languages [3] with
the numerical expressivity of Dynamical Systems Theory [35]
based on differential equations. In particular, it allows:

– discrete and continuous temporal modelling of a system at dif-
ferent aggregation levels;

– numerical expressivity for modelling systems with explicitly
defined quantitative relations best presented by difference or
differential equations;

– specifying qualitative aspects of a system by expressing logical
relationships between parts of a system.

Furthermore, using dedicated tools based on TTL [8] both the
generation and formalization of simulated and empirical trajecto-
ries or traces, as well as analysis of complex dynamic properties
of such traces and relationships between such properties can be
performed.

To enable reasoning about the dynamic properties the language
TTL includes special sorts, such as: TIME (a set of linearly ordered
time points), STATE (a set of all state names of a system), and
TRACE (a set of all trace names; a trace or a trajectory can be
thought of as a timeline with a state for each time point).

Definition 11 (Dynamic Property Expression). Dynamic Property
Expression is constructed as follows:
1. STATOM # ONT and has_expression: STATOM x STATOMEXPR

whereSTATOM denotes a set of static atoms in an ontology.
2. Static property expressions (STATPROPEXPR) are generated by

applying conjunction, disjunction, implication, and negation
operators on STATOMEXPR and STATPROPEXPR.

3. States relate to particular time points in traces (TRACE x

TIME ? STATE). States are related to state properties via the
satisfaction relation j=, formally defined as a binary infix pred-
icate (or by holds as a binary prefix predicate). For example,
the expression state (c: TRACE, t: TIME, output (r: ROLE)) j = p

(or holds (state (c, t, output (r)), p)) denotes that state property
p holds in trace c at time t in the output state of role r.

4. The set of all dynamic properties expressions (DPEXPR) for the
corresponding dynamic properties names (DP) is inductively
defined by:
(1) If v1 is a term of sort STATE, and u1 is a term of the sort

STATPROPEXPR, then holds (v1, u1) is an atomic dynamic
property expression (belongs to the sort DPATOMEXPR,
which is a subsort of the sort DPEXPR).

(2) If s1, s2 are terms of any TTL sort, then s1 = s2 is an atomic
dynamic property expression.

(3) If t1, t2 are terms of sort TIME, then t1 < t2 is an atomic
dynamic property expression.

(4) The set of dynamic properties expressions (sort DPEXPR) is
defined inductively based on atomic dynamic property
expressions using boolean propositional connectives and
quantifiers (^, _,), :, $, ").
The application of the basic components of an organizational
model is illustrated by means of a running example. Consider the
process of organizing a conference. A partial model for the consid-
ered conference organization is shown in Fig. 1.

At the most abstract level 0 the organization is specified by one
role CO (Conference Organization) that interacts with the environ-
ment Env. Role CO can act in the environment, for example by post-
ing a call for papers in different media. Note, that the organizational
model is depicted in a modular way; i.e., components of every
aggregation level can be visualized and analyzed both separately
and in relation to each other. Consequently, scalability of graphical
representation of an organizational model is achieved. At the first
aggregation level the internal structure of the composite role CO
is revealed. It consists of subrole Ch (Conference Chair), which
interacts with two other subroles: OC (Organizing Committee)
and PS (the Paper Selection role). At the second aggregation level
the internal structure of role PS is represented. It consists of subrole
PCh (Program Chair), subrole PCM (Program Committee Member),
and subrole R (Reviewer), which interact with each other. The input
interface of role PS is connected to the input interface of its subrole
PCh by means of an interlevel link. In our example the interlevel
link describes the mapping between the input ontology of role PS
and the input ontology of its subrole PCh. It means that information,
transmitted to the role PS at the first aggregation level, will imme-
diately appear at the input interface of subrole PCh, expressed in
terms of its input ontology at the second aggregation level.

For example, if Ch requests some information from PS, the re-
quest actually arrives at the input of PCh. As a result of the internal
communications among PCh, PCM and R, PCh will generate a reply
that will appear as a response of PS for Ch.

For each element of the considered organizational model a set
of dynamic properties is identified and formally specified in TTL.
In fact, these properties define constrains on the behavior of ele-
ments, thus forming their expected behavioral repertoire in the
organization.

For example, for the role Reviewer the dynamic property may
be specified expressing that a reviewer should send his/her review
to the Program Chair before a certain deadline. This property is ex-
pressed in TTL as follows:

"t state (c, t, environment) j= deadline_for_conference (d)) $t0 < d

state (c, t0, output (Reviewer)) j= communicate_from_to (Reviewer, Pro-

gram_Chair, inform, review_report)
The predicate communicate_from_to (r1:ROLE, r2:ROLE, s_act:-

SPEECH_ACT, message:STRING) is used to specify the speech act
s_act (e.g., inform, request, ask) from role-source r1 to role-destina-
tion r2 with the content message.
3. Representing design operators for organizational design

In this section, a formal format for representing design opera-
tors is presented and, based on this format, formulations are intro-
duced for a number of primitive design operators for designing
organizations. Each primitive operator represents a specialized
one-step operator to transform a design object description (organi-
zational model) into a next one. Each operator is concerned with a
part of the design object description to which it will be applied and
the part of the transformed design object description, resulting
from the operator application. The parts of the organization O that
are being modified in terms of structure and dynamics (i.e., sets of
dynamic properties) are specified using the in-focus relations:
structure_in_focus (O, Rf, Gf, ILf, ILLf, ONTf, Mf, ENVf) and dynam-

ics_in_focus (O, DPf), with Rf # R, Gf # G, ILf # IL, ILLf # ILL,
ONTf # ONT, Mf # M, ENVf # ENV, DPf # DP. The remaining
parts of the organization stay the same.

Level 0

Ch OC

Level 1

CO

Level 2

PCh

PS

Env

Env environment

role

interaction link

interlevel link

input interface

output interface

PS

PCM

R

environment
interaction link

CO - Conference Organization

Env - Environment

Ch - Conference Chair

OC - Organizing Committee

PS - Paper Selection

PCh - Program Chair

PCM - Program Committee Member

R - Reviewer

Fig. 1. Model of the conference organizing committee.

Table 1
Operator classes for creating and modifying roles.

Class Description

Role Introduction Introduces a new role
Role Retraction Deletes all links connected to a role with their

dynamic properties and mappings; deletes a role
and all dynamic properties associated with this role

Role Dynamic
Property Addition

Adds a new dynamic property to a role

Role Dynamic
Property
Revocation

Deletes an existing role dynamic property

94 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105
The following operations all refer to an organization O 2 ORGA-

NIZATION described by relations is_org_described_by (O, C, D),
has_basic_components (C, R, G, IL, ILL, ONT, M, ENV). This organiza-
tion is modified by an operator, leading to a second organization
O0 2 ORGANIZATION described by relations is_org_described_by (O0,
C0, D0), has_basic_components (C0, R0, G0, IL0, ILL0, ONT0, M0, ENV0).

Our choice of primitive operators is motivated by different de-
sign guidelines and theories from social sciences [18,5,25], other
disciplines, and our own research on formal modeling of organiza-
tions [9]. However, the application of the proposed set of operators
is not restricted only to these theories. Thus, a designer has free-
dom to choose any sequence of operators for creating models of
organizations. The operators are divided into three classes, which
are consecutively described in the following subsections. Thus, in
Section 3.1 the operators for roles are specified; in Section 3.2
the operators for different types of links are described; and in
Section 3.3 the operators for groups are introduced.

3.1. Operators for roles

The classes of primitive operators for creating and modifying
roles in a design object description for an organization are shown
in Table 1.

A role introduction operator adds a new role to the organization.
Usually, in organizational design after organizational tasks have
been identified, these tasks should be further combined into posi-
tions (roles), based on the principles of labor division [23]. For
example, in the conference organization setting, if the number of
reviewers turns out to be insufficient, a Reviewer Recruiter role
can be added to the Paper Selection role (see Fig. 2). This role, for
example, may contact researchers to ask them to review for the
conference by means of interaction with the environment.

3.1.1. Role introduction operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is a role introduction operator iff it satisfies:

1. d R R, d 2 R0 such that is_role_in (d, C0)
2. structure_in_focus (O, £, £, £, £, £, £, £)
3. structure_in_focus (O0,{d}, £, £, £, ONTf0, £, £), where

ONTf0 = is_ontology_for (d, o) and o 2 ONT0

A role retraction operator removes all links connected to a role
with their dynamic properties and mappings; it also deletes
dynamic properties associated with the role and the role itself. In
the example of the conference organization, when the Reviewer
Recruiter has found enough reviewers, then the role can safely be
removed from the organization.

3.1.2. Role retraction operator
Let op (O, O0, d) be an operator that changes O into O0 with a

focus on d. Then op is a role retraction operator iff it satisfies:

1. d 2 R such that is_role_in (d, C)
2. d R R0

3. structure_in_focus (O, {d}, £, ILf, ILLf, ONTf, Mf) ILf={e2 ILj$r0 2 R

connects_to (e, d, r0, C) _ $ r00 2 R connects_to (e, r00, d, C)}

ILLf={ill 2 ILLj$r 2 R interlevel_connection (ill, d, r, C)_
$r0 2 R interlevel_connection (ill, r0, d, C)}
ONTf = is_ontology_for (d, o), o2 ONTMf={m 2Mj$ill 2 ILLf

has_onto_mapping (ill, m) _ $e 2 ILf

has_onto_mapping (e, m)}
4. structure_in_focus (O0, £, £, £, £, £, £)
5. dynamics_in_focus (O, DPf) DPf= {dp 2 DPjhas_dynamic_property

(d, dp) _$e 2 ILfhas_dynamic_property (e, dp)}
6. dynamics_in_focus (O0, £)

A role dynamic property addition operator creates a new property
for the existing role in the organization and a role dynamic property
revocation operator deletes a property from the dynamic descrip-
tion of a role.

3.1.3. Role dynamic property addition operator
Let op (O, O0, d) be an operator that changes O into O0 with a

focus on d. Then op is a role dynamic property addition operator
iff it satisfies:

PCh

Paper Selection

PCM

R

PCh

Paper Selection

PCM

R RR

Role introduction
operator

Fig. 2. Application of the role introduction operator for adding the Reviewer Recruiter role (RR) into the Paper Selection role.

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 95
1. dynamics_in_focus (O, £)
2. dynamics_in_focus (O0, DPf0) DPf0= {d 2 DP0j$r 2 R0 has_dynamic_

property (r, d)}

3.1.4. Role dynamic property revocation operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is a role dynamic property revocation operator iff
it satisfies:

1. dynamics_in_focus (O, DPf) DPf= {d 2 DPj$r 2 R has_dynamic_prop-

erty (r, d)}
2. dynamics_in_focus (O0, £)

3.2. Operators for links

In this subsection, we propose a set of classes of primitive oper-
ators for creating and modifying links in a design object description
for an organization (see Table 2).

An interaction link addition operator allows the creation of an
interaction link (information channel) between two existing roles
in the organization. In the organizational design, after organiza-
tional subtasks are assigned to roles, the problem of coordination
of interdependencies among subtasks should be solved.

In the conference management example, the Program Chair
(playing in this case a managerial role) may request two reviewers
to discuss their reviews. This requirement can be handled by the
addition of interaction links between the appropriate reviewer
roles in the design object description for an organization (see
Fig. 3).
3.2.1. Interaction link addition operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is an interaction link addition operator iff it
satisfies:
Table 2
Operator classes for creating and modifying links.

Class Description

Interaction Link Addition Adds a new i
Interaction Link Deletion Deletes an in
Interlevel Link Introduction Introduces a
Interlevel Link Retraction Retracts an e
Interaction Dynamic Property Addition Adds a new d
Interaction Dynamic Property Revocation Deletes an ex

PCh

Paper Selection

PCM

R1

Interactio
addition op

R2

Fig. 3. Application of the interaction link addition operator for adding interaction links
1. d R IL, d 2 IL0 such that is_interaction_link_in (d, C0)
2. structure_in_focus (O, £, £, £, £, £, £, £)
3. structure_in_focus (O0, £, £, {d}, £, £, Mf0, £)

Mf0 = {m 2M0jhas_onto_mapping (d, m)}

An interaction link deletion operator is used to delete an existing
interaction link between two roles as well as to revoke all dynamic
properties, associated with this link. For example, the Program Chair
has taken care of the acceptance proceedings for the conference. He
does not need to be in contact with the reviewers any more. This case
can be handled by the deletion of the interaction between two roles
in the design object description for an organization.

3.2.2. Interaction link deletion operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is an interaction link deletion operator iff it
satisfies:

1. d R IL0, d 2 IL such that is_interaction_link_in (d, C)
2. structure_in_focus (O, £, £,{d}, £, £, Mf)

Mf= {m 2Mj has_onto_mapping (d, m)}
3. structure_in_focus (O0, £, £, £, £, £, £)
4. dynamics_in_focus (O, DPf)

DPf={dp 2 DPj has_dynamic_property (d, dp)}
5. dynamics_in_focus (O0, £)

An interaction dynamic property addition operator creates a new
property for an existing interaction link. An interaction dynamic
property revocation operator deletes a property from the dynamic
description of an interaction link.

3.2.3. Interaction dynamic property addition operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is an interaction dynamic property addition oper-
ator iff it satisfies:
nteraction link between any two roles
teraction link and all dynamic properties associated with this link
new interlevel link
xisting interlevel link
ynamic property to an interaction link
isting dynamic property, associated with an interaction link

n link
erator

PCh

Paper Selection

PCM

R1 R2

between Reviewer 1 role (R1) and Reviewer 2 role (R2) in the Paper Selection role.

Table 3
Operator classes for creating and modifying groups.

Class Description

Grouping Combines roles into groups
Degrouping Moves roles outside of a group and deletes the group
Group-to-Role Transforms groups into roles
Role-to-Group Transforms roles into groups

96 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105
1. dynamics_in_focus (O, £)
2. dynamics_in_focus (O0, DPf 0)

DPf0= {d 2 DP0j$e 2 IL0 has_dynamic_property (e, d)}

3.2.4. Interaction dynamic property revocation operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is an interaction dynamic property revocation
operator iff it satisfies:

1. dynamics_in_focus (O, DPf)

DPf = {d 2 DPj$e 2 IL has_dynamic_ property (e, d)}
2. dymanics_in_focus (O0, £)

An interlevel link introduction operator creates a relation
between a composite role and one of its subroles. It allows infor-
mation that is generated outside the role to be passed into the role
through its input interface or it allows information generated with-
in a role to be transmitted outside through the role output inter-
face. Normally, in hierarchical organizations decisions made at a
managerial level are transferred to an operational level, e.g., to a
certain department. Within the department this information is
obtained by a certain role (s). For identifying which roles obtain
this information, interlevel links are used. In the conference man-
agement example, the Conference Chair may have the possibility to
send inquiries to Program Committee Members. This can be
achieved by introducing an interlevel link between composite role
Paper Selection (with which role Conference Chair has a direct con-
nection by an interaction link) and its subrole Program Committee
Member (see Fig. 4).

3.2.5. Interlevel link introduction operator
Let op (O, O0, d) be an operator that changes O into O0 with a fo-

cus on d. Then op is an interlevel link introduction operator iff it
satisfies:

1. d R IL, d 2 IL0 such that is_interlevel_link_in (d, C)
2. structure_in_focus (O, £, £, £, £, £, £, £)
3. structure_in_focus (O0, £, £, £, {d}, £, Mf0, £) Mf0 = {m 2M0j

has_onto_mapping (d, m)}

An interlevel link retraction operator is used for breaking off
interaction between some composite role and one of its subroles.
This operation removes an interlevel link from the design object
description for an organization. If the Conference Chair does not
need to communicate with Program Committee Members any
more, the interlevel link between these two roles can be retracted.

3.2.6. Interlevel link retraction operator
Let op (O, O0, d) be an operator that changes O into O0 with a

focus on d. Then op is an interlevel link retraction operator iff it
satisfies:

1. d R IL0, d 2 IL such that is_interlevel_link_in (d, C)
2. structure_in_focus (O, £, £, £, {d}, £, Mf) Mf = {m 2Mj

has_onto_mapping (d, m)}
3. structure_in_focus (O0, £, £, £, £, £, £)
PCh

Paper Selection

PCM

R

Interlevel
introduct

operato

Fig. 4. Application of the interlevel link introduction operator for adding an interleve
3.3. Operators for groups

The classes of primitive operators for creating and modifying
groups in a design object description for an organization are shown
in Table 3.

Often an organization designer can easily list a number of roles
needed in an organization. However, it is not always clear which
roles are related to each other, which roles would most often inter-
act with each other, and so on. Once identified, the organization
designer can group roles into sets.

In the literature on organizational design [28] different princi-
ples of grouping are described. For example, role grouping can be
performed based on (1) similarities in role functional descriptions;
(2) role participation in the same technological process; (3) iden-
tity or similarity of role technical specialties; (4) role orientation
on the same market or customer groups. Often roles belonging to
the same group interact with each other intensively. However, in
the proposed organizational model, in contrast to roles, groups
do not have interfaces. It means that every role within a group is
allowed to interact with roles outside the group by means of direct
interaction links. For example, in the conference organization the
Program Chair and the Program Committee Members can be joined
in one Program Committee group that will be responsible for mak-
ing final decisions concerning paper acceptance. This can be
accomplished by applying the grouping operator (see Fig. 5).

3.3.1. Grouping operator
Let op (O, Rg, O0, Gn) be an operator that changes O into O0 wrt.

Gn 2 G0, Rg # R. Then op is a grouping operator that creates a new
group Gn from the subset of roles Rg iff it satisfies:

Structural aspect:
1. "a 2 Rg member_of_in (a, Gn, C0).

2. structure_in_focus (O, £, £, £, £, £, £, £)
3. structure_in_focus (O0, £, {Gn}, £, £, £, £, £)
Dynamic aspect:
1. dynamics_in_focus (O, £)

2. dynamics_in_focus (O0, DPf0)

DPf0={dp 2 DP0 jhas_dynamic_property (Gn, dp)}.
3. Er={e 2 ILj$r1 2 Rg $r2 2 Rg connects_to (e, r1, r2, C)}

DPr = {dp 2 DPj$r 2 Rg has_dynamic_property (r, dp) _$e 2 Er

has_dynamic_property (e, dp)}
DPg={dp 2 DP0jhas_dynamic_property (Gn, dp)}

4. DPg # DCL (DPr), where DCL (DPr) is the deductive closure of
DPr
 link
ion
r

PCh

Paper Selection

PCM

R

l link between Paper Selection role and Program Committee Member role (PCM).

PCh

Paper Selection

PCM

R

PCh

Paper Selection

PCM

R

Grouping operator

Fig. 5. Application of the grouping operator to create the Program Committee group that consists of roles Program Chair (PCh) and Program Committee Member (PCM) for
making final decisions concerning paper acceptance.

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 97
A natural dual to the role grouping is role degrouping. This
operator takes a group of roles and moves the roles to outside of
the group. Role Degrouping transforms a group into a set of roles.

3.3.2. Degrouping operator
Let op (O, Gd, O0, Rdg) be an operator that changes O into O0 wrt.

Gd 2 G, and Rdg # R0. Then op is a degrouping operator iff it
satisfies:

Structural aspect:
1. Rdg = {r 2 Rj member_of_in (r, Gd, C)}

2. Gd R G0

3. structure_in_focus (O, £, {Gd}, £, £, £, £)
4. structure_in_focus (O0, £, £, £, £, £, £)
Dynamic aspect:
1. dynamics_in_focus (O, DPf) DPf = {dp 2 DPjhas_dynamic_property
(Gd, dp) }.
2. dynamics_in_focus (O0, £)

A group can be transformed into a role, a more coherent, integrated
and formal organizational unit with proper interfaces (e.g., a depart-
ment of an organization). For a group to act as a role, it should have
well-defined (formalized) input and output interfaces. A Group-to-
Role operator takes a group and adds these interfaces. In an organic
organization with loosely defined frequently changing structure this
would correspond to the formalization of one of the organizational
units, i.e., providing a formal (permanent) structural description with
the subsequent specification of formal functional procedures. For
example, in the conference organization setting, the Program Com-
mittee group from the Paper Selection role can be further transformed
into the Program Committee role, a formal organizational unit with
certain characteristics and functions (e.g., final decision making for
the paper acceptance). Such transformation can be achieved by means
of the Group-to-Role operator (see Fig. 6). The next logical step would
be to limit the interactions of the subroles of the Program Committee
role only to those that exist within the Program Committee role, and
replace all interactions with the roles outside of the Program Commit-
tee role by corresponding interactions between outer roles and the
Program Committee role. This can be done by applying interaction
and interlevel link addition and retraction operators. In this case
reviewers should follow a formal procedure for interactions with
the Program Committee role and cannot directly address any arbi-
trary Program Committee Member.
PCh

Paper Selection

PCM

R

Group-to-R
operato

Fig. 6. Application of the Group-to-Role operator to transform P
3.3.3. Group-to-Role operator
Let op (O, g, O0, r) be an operator that transforms group g 2 G in

O into role r 2 R0 in O0. Then op is a Group-to-Role operator iff it
satisfies:

Structural aspect:
1. r R R, g R G0.

2. "a 2 R member_of_in (a, g, C)) subrole_of_in (a, r, C0).
3. structure_in_focus (O, £, {g}, £, £, £, £, £)
4. structure_in_focus (O0, {r}, £, £, £, ONTf0, £, £)

ONTf0={o 2 ONT0j has_internal_ontology (r, o) _ has_input_ontology

(r, o) _ has_output_ontology (r, o)}
Dynamic aspect:
1. dynamics_in_focus (O, DPf) DPf={dp 2 DPj has_dynamic_property (g,

dp)}.

2. dynamics_in_focus (O0, DPf0) DPf0={dp 2 DP0j has_dynamic_property

(r, dp)}.
3. DPf) DPf0

A role may consist of several other roles that are not exposed
to the rest of the world. When a role is converted to a group, it
exposes the input and output interfaces of the roles inside it.
Transforming a role into a group results in the subroles now
residing on the level of the prior composite role. For example,
during the reorganization some formal organization units (e.g.,
sections and departments) have been eliminated, whereas the
roles that constituted these units and relations between them
were kept, thus, creating a basis for new organizational
formations.

3.3.4. Role-to-Group operator
Let op (O, r, O0, Gr) be an operator that changes O into O0, wrt.

r 2 R, and Gr 2 G0. Then op is a Role-to-Group operator that trans-
forms role r into group Gr iff it satisfies:

Structural aspect:
1. Gr R G, r R R0.

2. "a 2 R subrole_of_in (a, r, C)) member_of_in (a, Gr, C0).
3. structure_in_focus (O, {r}, £, £, £, ONTf, £) ONTf = {o 2 ONTj

has_internal_ontology (r, o) OR has_input_ontology (r, o) OR

has_output_ontology (r, o)}
4. structure_in_focus (O0, £,{Gr}, £, £, £, £)
PCh

Paper Selection

PCM

R

ole
r

rogram Committee group into the Program Committee role.

Tab
Sam

N

I

I

R

R

A

D

R

The

Fig
Gen

Based Systems 31 (2012) 89–105
Dynamic aspect:
98 C.M. Jonker et al. / Knowledge-
1. dynamics_in_focus (O, DPf) DPf={dp 2 DPj has_dynamic_property
(r, dp)}.
2. dynamics_in_focus (O0, DPf0) DPf0={dp 2 DP0jhas_dynamic_property

(g, dp)}.

4. Composing operators

The primitive operators described above reflect major principles
of organizational design. In practice, in addition to the primitive
operators more complex operators are used. Complex operators
are represented as a combination of a certain number of primitive
operators; some of them are given in Table 4.

Sometimes an effect produced by application of some compos-
ite operator to a design object description for an organization can
be achieved by different combinations of primitive operators.

Consider the Role refinement operator as an example. This
operator divides a role into several roles such that the role proper-
ties of the first role are distributed over the newer roles. In organi-
zational design, role refinement corresponds to the fine-tuned
specialization and division of labor for increasing efficiency. It is
usually recommended to divide the work so that the portions be
differentiated rather than similar, and that each role is responsible
for a small portion of the overall task. According to Adam Smith,
division of labor is limited by the extent of the market; other gen-
eral principles of labor division can be found in [23].

Let us illustrate the application of the Role refinement operator
in the context of the conference organizing example. In Fig. 7 the
design object description for an organization is represented at
the first aggregation level. Consider the situation when the deci-
sion is made to divide the tasks of Organizing Committee (OC) be-
tween the Local Organizing Committee (LOC), which is hence
responsible for negotiations with publishers for printing proceed-
le 4
ple complex operators for creating and manipulating organizations.

ame Pattern for

nteraction Level Ascent Interaction link deletion⁄. Role dynamic property addi
addition⁄. Interaction link addition⁄.

nteraction Level Descent Interlevel link deletion⁄. Interaction link deletion⁄. Rol
property addition⁄. Interaction link addition⁄.

ole refinement Role Retraction. Interlevel link deletion⁄. Interaction li
dynamic property addition⁄. Interlevel link addition⁄. I
introduction⁄. Role dynamic property addition⁄. Role i

ole join Role Retraction⁄. Interlevel link deletion⁄. Interaction li
dynamic property addition⁄. Interlevel link addition⁄. I
introduction⁄. Role dynamic property addition⁄. Role i

dding aggregation levels Interaction Level Ascent. Group-to-Role. Grouping. Rol

eleting aggregation levels Degrouping.R-t-G. Interaction Level Descent

egrouping Grouping.Degrouping

symbol ⁄ denotes that an operator can be applied zero, one or multiple times.

Ch
PS

OC refines

refines

. 7. Example of the application of the Role refinement operator, in which the Organiz
eral Organizing Committee roles (GOC).
ings and arranging the conference venue, and the General Organiz-
ing Committee (GOC), which is designated for solving financial and
other questions. Thus, the role OC is refined into two new roles LOC
and GOC. These roles are able to interact with each other and with
the role Conference Chair.

Alternatively, every composite operator can be considered as an
aggregated one-step operator. Such descriptions define formal con-
ditions for a design object description for an organization before
and after the application of a complex operator; therefore, they
can serve the purpose of checking integrity and consistency of a
design object description.

An example of such a representation for the Role refinement
operator is given below.

4.1. Refinement operator (integrity definition)

Let op (O, r, O0, Rref) be an operator that refines role r 2 R in O
into a set of roles Rref # R0 in O0. Then op is a refinement operator
iff it satisfies:

Structural aspect:
1. r 2 R, r R R0, Rref \ R = £
2. structure_in_focus (O, {r}, £, ILf, ILLf, ONTf, Mfa, £)

ILf={e 2 ILj$r0 2 R connects_to (e, r0, r, C) OR $r00 2 R connects_to

(e, r, r00, C)},
tion

e in

nk d
nter

ntro
nk d
nter

ntro
e re

ing
ILLf = ILLfi [ILLfo

ILLfi={ill 2 ILL j$r0 2 R interlevel_connection (ill,r0,r, C)}
ILLfo={ill 2 ILL j$r0 2 R interlevel_connection (ill,r,r0, C)}
Mfa = Mf[Mfi[Mfo

Mf= {m 2Mj$e 2 ILf has_onto_mapping (e, m)}
Mfi={m 2Mj$e 2 ILLfi has_onto_mapping (e, m)}
Mfo={m 2Mj$e 2 ILLfo has_onto_mapping (e, m)}
ONTf={o 2 ONTj has_ontology (r, o)}
Description

⁄. Interlevel link Represents interaction between roles at a higher
aggregation level

teraction dynamic A natural dual to Interaction Level Ascent operator

eletion⁄. Interaction
action link
duction⁄

Divides a role into several roles such that the role
properties of the first role are distributed over the
newer roles

eletion⁄. Interaction
action link
duction

Joins several roles into a single new role

finement⁄ Aggregates existing roles of the organization in more
complex roles
Replaces a composite role by a corresponding set of
its constituent roles and relations between them
Regroups the roles in an organization

PS

LOC
GOC

Ch

Committee role (OC) is refined into the Local Organizing Committee (LOC) and

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 99
3. structure_in_focus (O0, Rref, £, ILf0, ILLf0, ONTf0, Mfa0, £)

ILf0 = {e 2 IL0 j$r1 2 Rref $r2 2 Rref connects_to (e, r1, r2, C0) OR

$r10 2 Rref $r20 2 R0, r20 R Rref connects_to (e, r10, r20, C0) OR

$r100 2 Rref$r200 2 R0, r200 R Rref connects_to (e, r200, r100, C0)}.

ILLf0 = ILLfi0[ILLfo0

ILLfi0 = {ill 2 ILL0j$ r0 2 R0 interlevel_connection (ill,r0,r, C0)}
ILLfo0 = {ill 2 ILL0j$r0 2 R0 interlevel_connection (ill,r,r0, C0)}
Mfa0 = Mf0[Mfi0 [Mfo0

Mf0 = {m 2M0j$e 2 ILf0 has_onto_mapping (e, m)}
Mfi0 = {m 2M0j$e 2 ILLfi0 has_onto_mapping (e, m)}
Mfo0 = {m 2M0j$e 2 ILLfo0 has_onto_mapping (e, m)}
ONTf0= {o 2 ONT0 j$r1 2 Rref has_ontology (r1, o) }.

4. "e 2 IL, "b 2 R, b 2 R0, b R Rref connects_to (e, r, b, C)) $e0 2 IL0,

$r02 Rref connects_to (e0, r0, b, C0) and

"e 2 IL, "a 2 R, a 2 R0, a R Rref connects_to (e, a, r, C)) $e0 2 IL0, $
r0 2 Rref connects_to (e0, a, r0, C0).

5. "e02 IL0, " r0 2 Rref "b 2 R0 and b R Rref connects_to (e, r0, b, C0)
) $e 2 IL, connects_to (e, r, b, C) and

"e02 IL0, " r0 2 Rref "a 2 R0 and a R Rref connects_to (e, a, r0,

C0)) $e 2 IL, connects_to (e, a, r, C).

6. "a,a0,m 2Mfi is_part_of_onto_map (a,a0,m)) $a00,m0 2Mfi0 is_par-

t_of_onto_map (a,a00,m0)

"a,a0,m0 2Mfi0 is_part_of_onto_map (a,a0,m0)) $a00,m 2Mfi is_par-

t_of_onto_map (a,a00,m)

"a,a0,m 2Mfo is_part_of_onto_map (a0,a,m)) $a00,m0 2Mfo0 is_par-

t_of_onto_map (a00,a,m0)

"a,a0,m0 2Mfo0 is_part_of_onto_map (a0,a,m0)) $a00,m 2Mfo is_par-

t_of_onto_map (a00,a,m)
Dynamic aspect:
1. dynamics_in_focus (O, DPf) DPf={dp 2 DPj has_dynamic_property
(r, dp) _$e 2 ILf has_dynamic_property (e, dp)}.
2. dynamics_in_focus (O0, DPf0)DPf0={dp 2 DP0 j $r1 2 Rref

has_dynamic_property (r1, dp) OR $e02 ILf0 has_dynamic_property

(e0, dp)}.
3. ONTp={o 2 ONTj$dp 2 DPf uses_ont (dp, o) AND

o R ONTf}"u 2 DPEXP, such as uses_ont (u,
S

o2ONTpo) [DPf)
u])[DPf0) u]

A natural dual to the Role refinement operator is the Role join
operator. This operator takes several roles and joins them into a
step 1
Groupin

PCM

PCh

R

PCM

PCh

R

step
Interac

Level A

PC

Fig. 8. Example of the application of the Adding Aggregation Levels operator, in which t
together and transformed into the Paper Selection (PC) role.
single new role. Consider again the organization arranging a con-
ference. If over time the differences between the tasks of the Pro-
gram Committee Member and Reviewer roles disappear, then the
roles Program Committee Member and Reviewer can be joined in
one new role.

Let us consider one more often used complex operator adding
aggregation levels. When certain roles have been joined in one
group, this operator allows this group to be represented as an inte-
gral structural unit of an organization at the more abstract aggre-
gation level. This operator has a counterpart in organizational
design studies called departmentalization. Based on the departmen-
talization principles (cf. 19] an organization is partitioned into
structural units (called departments) with certain areas of respon-
sibilities, a functional orientation, and a local authority power.

In the conference organization, the Adding aggregation levels
operator can be applied for representing the Program Committee
as an integral role that consists of the Program Chair and the Pro-
gram Committee Member roles within the Paper Selection role.
Such choice, for example, can be motivated by introducing a gen-
eral formal procedure for paper acceptance. Hence, the Program
Committee role is empowered (has a corresponding dynamic prop-
erty) to make final decisions concerning paper selection. Applying
the Aggregation Levels operator for this example can be considered
as a three-step process (see Fig. 8 for the representation of the
organization model (role Paper Selection) at aggregation level 2).

First, the roles Program Chair (PCh) and Program Committee
Member (PCM) are joined into one group by applying the Grouping
operator. After that, at step 2 the created group is transformed into
the role Program Committee by adding interaction interfaces by
means of the Group-to-Role operator. Finally, as the last step using
the Interaction Level Ascent operator interaction links between
roles PC and Reviewer (R) are created, as well as interlevel links
within role PC.
5. Consistency of organizational specifications

To ensure internal consistency and validity of organizational
specifications, specification constraints are identified, which can
be checked automatically during the design process. The role of
the constraints may differ in organization modeling which
influences their format, purpose and way of use. Here we present
a classification framework for constraints covering a range of
:
g

PCM

PCh

R

PCM

PCh

R

step 2:
Group-to-Role

3:
tion
scent

PC

he roles Program Chair (PCh) and Program Committee Member (PCM) are grouped

100 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105
perspectives on organizations from very detailed to global, and
from internal to external point of view, connecting the organiza-
tion with its environment.

Specification constraints can be checked at every step of the de-
sign process in order to ensure the consistency and validity of the
current specification. They can be classified based on their origin
into: generic constraints that need to be satisfied by any organiza-
tional specification; domain-specific constraints dictated by the
application domain of the specification.

Two types of generic constraints are considered: structural con-
sistency constraints used to ensure consistency of the specification;
constraints imposed by the physical world - the laws of the physical
world render certain events, relationships between concepts, etc.
impossible (e.g. a role cannot be at two locations at the same
time).

The consistency of a specification is checked w.r.t. the set of
structural consistency constraints. These constraints are axioms
of the specification language and their logical consequences for-
mulated based on the definitions of the language and reflecting
the rules of correct and consistent use of the elements of the lan-
guage in modeling. These constraints ensure internal integrity of
the structures defined using the language. A specification S is
consistent w.r.t. a set of structural consistency constraints SCC

iff in each of its models each formula from SCC is true: hI,
vij = SCC, where I is an interpretation of the sorts, functions and
predicates of the language of S and v is a valuation of variables
in S.

Consider two examples of structural consistency constraints for
the organization-oriented view:

CS1: A role should receive only information types specified by its input

ontology.

CS2: An information type outputted by some role should be related by

the corresponding mapping to an information type from the ontol-

ogy of the role-recipient.

Domain-specific constraints are imposed by the application do-
main in which the particular specification will be used and can be
classified according to their sources:

Constraints imposed by the organization have been chosen (e.g.
by the management of the company) as necessary and need to
be satisfied by any specification for the particular organization.
Such constraints can often be found in company policy documents,
internal procedures descriptions, etc. Constraints coming from exter-
nal parties are enforced by external parties (e.g. the society or gov-
ernment) and contain rules about working hours, safety
procedures, emissions, etc. Sources for such constraints are regula-
tions, agreements, etc. Constraints of the physical world come from
the physical world w.r.t. the specific application domain and
should be satisfied by any specification in this domain (in contrast
to the generic physical constraints which should be satisfied by any
specification irrespective of the application domain).

The validity of a specification is checked w.r.t. a set of physical-
world and domain-specific constraints. An organizational specifi-
cation S is valid w.r.t. a set of physical world and domain-specific
constraints C iff in each of its models each formula from C is true:
hI, vij = C.

To reduce the complexity of modeling and analysis, organiza-
tional specifications can be considered at different aggregation lev-
els (e.g., to investigate certain organizational aspects, while
abstracting from irrelevant details). To ensure consistency of spec-
ifications and sets of constraints of different aggregation levels, and
integrity of a complete organizational specification, a set of inter-
level consistency constraints is defined. A part of these constraints
belong to the class of generic structural consistency constraints.
For example,
CS3 : A role can be a subrole of one role at most.

In the structure C"r, r1, r2: ROLE subrole_of_in (r, r1, C) & sub-

role_of_in (r, r2, C)) r2 = r1

CS4 : Each subrole of a composite role r should interact with at least one

other subrole of r.

In the structure C"r1: ROLE subrole_of_in (r1, r, C)) $r2:ROLE

$e:INTERACTION_LINK subrole_of_in (r2, r, C) & (connects_to

(e, r2, r1, C)j connects_to (e, r1, r2, C))

CS5 : Information provided to the input of a composite role should be

further transmitted to one or more its subroles.

CS6: No role can be a subrole of itself at any aggregation level.

CS7: Information generated at the output of a composite role is trans-

ferred from the output of one of its subroles.

CS8: Any subrole of a composite role is not allowed to interact directly

with any other role outside of this composite role.

The rest are domain-specific and should be identified and
checked for a particular organization. For example:

CS9: Information of a type inf produced by a role r1 for a role r2 should be

able to reach r2.

For checking if a path exists for communicating inf from r1 to r2

the following algorithm is proposed.

Algorithm 1. CHECK-EXISTENSE-OF-INTERACTION-PATH
1 i max (AGR_LEVEL (r1), AGR_LEVEL (r2)), rt1 r1, rt2 r2

2 if $rh1, rh2 $C subrole_of_in (rt1, rh1, C) and

3 subrole_of_in (rt2, rh2, C) and rh1 = rh2,

4 then if IS_PATH_FROM_TO_FOR (rt1, rt2, inf) = true,

5 then return true, else return false.

6 if rt1 = r2 or rt2 = r1, then return true.

7 if AGR_LEVEL (r1) >= i and $rh1 $C subrole_of_in (rt1, rh1, C)

8 then if IS_PATH_FROM_TO_FOR (rt1, rh1, inf) = false

9 then return false.

10 rt1 rh1

11 if AGR_LEVEL (r2) >= i and $rh2 $ C subrole_of_in (rt2, rh2, C)

12 then if IS_PATH_FROM_TO_FOR (rh2, rt2, inf) = false

13 then return false.

14 rt2 rh2

15 i i – 1

16 until i > 0 perform steps 2–15.

Function AGR_LEVEL (r)

Output: returns the aggregation level number for role r

1 l 1, rt r

2 until $rh rh – ORG and $C subrole_of_in (rt, rh, C), perform step

3

3 rt rh, l l + 1

4 return l

Function IS_PATH_FROM_TO_FOR (src, dest, inf)

Output: returns true if a communication path exists from role src to

role dest for information type inf, or returns false otherwise.

1 R {src}, RT £

2 R R [RT

3 RT { r2 j$e $r1 2 R $C connects_to (e, r1, r2, C)

4 and has_onto_mapping (e, inf, inf)}
5 if dest 2 RT, then return true.

6 until RT å R, perform 2–5.

7 return false.

The general idea of the algorithm is to check if a communication
path exists at every aggregation level, through which information
is transferred on its way from the role-source to the role-destina-
tion. The algorithm begins from the maximum aggregation level

Table 5
Dynamics of the design process for the role refinement.

Actions of the designer States of the tool

Chooses to address the role Organizing Committee (OC) Proposes potentially applicable operators for role OC
Chooses the Role refinement operator According to the specification of the Role refinement operator, initiates execution of role

introduction operator and requests the designer to specify role names
Specifies GOC (General Organizing Committee) and LOC (Local Organizing

Committee) names of the roles, into which role OC is refined
Requests to specify the elements of the ontologies for the newly created roles

Specifies the elements of the ontologies for roles LOC and GOC Initiates execution of the role dynamic property addition operator. Requests to specify
dynamic properties for the LOC and GOC roles

(optional) Specifies dynamic properties for the roles Initiates execution of the interaction link introduction operator. Requests to specify
interaction links between roles Chair (Ch), LOC and GOC

Specifies, which interaction links are needed between the roles Initiates execution of the interaction dynamic property addition operator. Requests to
specify dynamic properties for the introduced interaction links

(optional) Specifies dynamic properties for the interaction links Initiates execution of the interaction link deletion operator, which removes all interaction
links connected with role OC. Then, initiates execution of the role retraction operator,
which removes role OC from the design object description

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 101
of both roles (Algorithm 1:1). Then the information flow is recon-
structed gradually by proceeding from both ends (the source and
the destination) simultaneously (from the source- Algorithm 1:
7–10, from the destination- Algorithm 1: 11–14) until the point
is reached, at which the source-part flows directly into the destina-
tion part (Algorithm 1: 2–5 the parts connect at one level; 6: the
parts connect across two levels). The worst case time complexity
of the algorithm is estimated as O (jLEVELj. � jLINKj2), where
jLEVELj is the number of aggregation levels, and jLINKj is the num-
ber of links between roles in the specification.

An instantiated version of this constraint with the template
CS8(role1, role2, inf) for the conference organization case study con-
sidered in the paper is the following:

CS9(Conference Chair, Program Committee Member, inquiry):
An inquiry about a paper sent by Conference Chair to Program Committee

Member should be able to reach Program Committee Member.
6. A prototype tool to support the design of organizations

The formal representations of the organization’s entities and the
design operators described in this paper provide a solid basis for
the development of a software environment supporting interactive
organization design processes.

For the purpose of illustration and evaluation, a prototype tool
was implemented, using the LEADSTO environment [7] and TTL
Checking environment [8].3 This tool supports organizational design
and allows organization designers to investigate its dynamics. The
LEADSTO tool was used to implement design operators and the de-
sign process. The TTL Checking tool was used to check the consis-
tency of the organizational specification during the design process.

The application of the design prototype is demonstrated on the
example of role refinement as described in the previous Section.
The dynamics of the design process is described in Table 5. Parts
of the corresponding design specification implemented in the tool
are provided in Fig. 9. Based on this specification, a trace was gen-
erated automatically, a part of which is provided in Fig. 10 (the
complete trace is provided in Appendix A).

A design specification consists of three essential types of ele-
ments: sorts, intervals and rules. Sorts (Fig. 9a) are used to define
types of entities used in the design process (e.g., roles, design oper-
ators). Intervals are used to specify the input from the designer,
external events and the initial design object description. For exam-
ple, the interval in Fig. 9b specifies that the designer supports the
3 Both environments can be accessed at http://www.few.vu.nl/�wai/TTL/; the
LEADSTO specification for the design example considered in this section is available at
http://www.few.vu.nl/�sharp/design.lt.
choice of the Role refinement operator for role OC in ORG in the
time interval [4, 5]. The design process and the design operators
introduced in this paper are described using generic leadsto-rules.
These rules are expressed in the form of direct temporal dependen-
cies between two state properties in successive states. The format
is defined as follows. Let a and b be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h non-
negative real numbers. In the LEADSTO language the notation
a e, f, g, h{b} means: if state property a (antecedent indicated by
A in Fig. 9c) holds for a certain time interval with duration g, then
after some delay (between e and f) state property b (consequent
indicated by C in Fig. 9c) will hold for a certain time interval of
length h. The default time parameters are e = f = 0 and g = h = 1.
For example, the rule in Fig. 9c generates possible operator alterna-
tives, which could be applied to a role specified by the variable r.

In the design process, first, a designer chooses a part of the de-
sign object description, on which she intends to put her attention
(in the considered example it is the role Organizing Committee).
Next, the software proposes to the designer a number of operators,
which are potentially applicable to the chosen part of the design
object description. The designer chooses one of them, for the
example, the Role refinement operator. Role refinement is a com-
posite operator that consists of an ordered sequence of primitive
operators. Usually, most of the primitive operators constituting
composite ones are imperative (e.g., Role Introduction for Refine-
ment); yet application of some of them may be postponed to the
future (e.g., Role dynamic property addition for Refinement) or
skipped (e.g., Interlevel link deletion for Refinement). Further, the
tool demands specifying roles, into which role OC has to be refined.
The designer specifies role names (for this example, Local Organiz-
ing Committee (LOC) and General Organizing Committee (GOC))
and their ontologies. At this step the software will check if the
input ontology of role OC constitutes a subset of the union of the
input ontologies elements of roles LOC and GOC. This is done by
automated checking of the corresponding TTL property using the
TTL Checking tool (see Fig. 11). Note that TTL properties can be de-
fined in advance and be checked on the design specification at any
step of the design process.

After that the software tool requests the designer to specify dy-
namic properties for the created roles. The designer may postpone
this operation to a future point in time. Thereafter, the tool pro-
poses to add interaction links between roles LOC, GOC and role
Conference Chair (Ch), with which the original role OC was con-
nected. At this step it is checked based on the integrity definition
for refinement, whether the links, corresponding to the interaction
links between Ch and OC in the original design object description,
are present in the obtained design object description. Furthermore,
if the original role had interlevel links with other roles, these links
need to be deleted, and new interlevel links will be added. After

http://www.few.vu.nl/~wai/TTL/
http://www.few.vu.nl/~wai/TTL/
http://www.few.vu.nl/~sharp/design.lt
http://www.few.vu.nl/~sharp/design.lt

Fig. 9. Screen print of a design specification implemented in the tool comprising definitions of sorts (a), input from the designer in form of intervals (b), and generic rules
describing the design process (in particular, design operators) (c).

has_output_ontology(OC, O6)
has_output_ontology(Ch, O4)
has_output_ontology(PS, O5)

connects_to(L1, Ch, PS, G_ORG)
connects_to(L2, PS, Ch, G_ORG)
connects_to(L3, Ch, OC, G_ORG)
connects_to(L4, OC, Ch, G_ORG)
is_interaction_link_in(L4, G_ORG)

has_input_ontology(Ch, O1)
has_input_ontology(OC, O3)
has_input_ontology(PS, O2)

is_role_in(PS, G_ORG)
is_role_in(OC, G_ORG)
is_role_in(Ch, G_ORG)

is_interaction_link_in(L2, G_ORG)
is_interaction_link_in(L3, G_ORG)
is_interaction_link_in(L1, G_ORG)

designer_attention(OC, G_ORG)
is_possible_operator_for_in(role_retraction, OC, ORG)

is_possible_operator_for_in(role_dyn_prop_add, OC, ORG)
is_possible_operator_for_in(role_dyn_prop_revoke, OC, ORG)

is_possible_operator_for_in(role_to_group, OC, ORG)
is_possible_operator_for_in(role_refinement, OC, ORG)

is_possible_operator_for_in(role_introduction, OC, ORG)
is_possible_operator_for_in(interaction_link_intro, OC, ORG)

is_possible_operator_for_in(interaction_link_del, OC, ORG)
is_possible_operator_for_in(interaction_dyn_prop_addition, OC, ORG)

designer_supports(role_refinement, OC, ORG)
selected_operator(role_refinement, OC, ORG)

operator(role_intoduction, ORG)
request(role_name, ORG)
is_role_in(GOC, G_ORG)
is_role_in(LOC, G_ORG)

request(role_ontology, ORG)
has_input_ontology(GOC, O7)

has_output_ontology(GOC, O8)
has_input_ontology(GOC, O9)

has_output_ontology(GOC, O10)
operator(role_dyn_prop_add, ORG)

time 0 2 4 6 8 10

Fig. 10. Screen print of a partial trace illustrating dynamics of the design process for the role refinement; the darker line indicates that the state holds, the lighter line
indicates that the state does not hold.

102 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105
that the integrity constraints for the ontology mappings for these
links need to be checked according to the integrity definition of
the refinement operator. As the last step, role OC and interaction
links connecting it with role Ch, as well as dynamic properties of
role OC and its interaction links are automatically removed from
the design object description.
7. Discussion

This paper introduces a representation format and a variety of
operators for the design of organization specified in this repre-
sentation format. The described operators have several important
characteristics. First, they can be combined into composite oper-

Fig. 11. The interface of the TTL Checking tool with the property specifying the
consistency between the input ontology of role OC and the input ontologies of roles
LOC and GOC, which replace OC.

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 103
ators that can serve as patterns for larger design steps in certain
design cases. Second, the identified set of operators is indepen-
dent of any organization theory or sociological methodology:
they can be used for formalizing design principles from different
theories. Third, a designer has freedom to choose any sequence of
operators for creating designs of organizations of most types (e.g.,
functional and organic). An example of functional organizational
design was discussed in this paper. When designing adaptive or-
ganic organizations, dedicated structural elements (e.g., the orga-
nization change management role) and dynamic descriptions
(e.g., properties that describe the adaptation process) are speci-
fied. The operators offer both top-down refinements, as well as
bottom-up grouping options. Finally, as has been shown the
developed tool provides interactive support in designing
organizations.

In comparison with other existing approaches which can be
used for designing specifications of the organization-oriented view
(e.g., UML structure and interaction diagrams [6], S-BPM ONE
(2011)), the design approach proposed in this paper has the follow-
ing advantages:

– it has a formal predicate logic-based basis (with properly
defined syntax and semantics), which allows to define formal,
dynamic, temporal properties of roles and links;

– the language TTL used to define properties allows: discrete and
continuous temporal modelling of a system at different aggre-
gation levels; numerical expressivity for modelling systems
with explicitly defined quantitative relations best presented
by difference or differential equations; specifying qualitative
aspects of a system by expressing logical relationships between
parts of a system;

– roles can be defined at different aggregation levels and proper-
ties of roles of different aggregation levels may be related to
each other (see e.g., 23];

– basic operators proposed in the paper can be combined in com-
posite operators based on patterns described in the literature on
organizational design (some of such operators were described
in Section 4);

– to ensure the consistency and validity of an organizational spec-
ification, automated checks can be performed at any step of the
design process. For this the dedicated TTL Checking tool is used.
To express properties to be checked on organizational specifica-
tions the whole expressiveness of TTL language can be used,
including references to multiple time points, nested quantifiers
and composite structures.
In this paper we focused on designing specifications of the orga-
nization-oriented view from the generic organization modeling
and analysis framework [41]. In the future, the design of other
views of the framework such as the process-oriented view [31] will
be addressed as well.

To a certain extent organizations can be considered as composi-
tional systems [48]. However, models and design methods for such
systems do not allow representing many organization domain-
specific concepts and operators (e.g., a group, a Group-to-Role
operator) and, therefore, cannot capture many important organiza-
tion phenomena.

In the area of component-based software engineering a
number of design patterns for building software components
(e.g., refinement, chaining, disjoint composition) have been intro-
duced [20]. These patterns specify general-purpose manipula-
tions with programming constructs (e.g., interface and private
methods of components); while in organizational design litera-
ture organization transformations are described using domain-
specific concepts. The formal representation format proposed in
this paper bridges this gap and facilitates the abstraction of
organization domain into general-purpose programming design
patterns.

Formal specification of design processes enables verification of
structural and dynamic consistency of a design object description
for an organization. The verification of structural consistency is
based on the consistency definitions for operators, such as one
given in Section 4 for the Role refinement operator, and the consis-
tency constraints described in Section 5. To check the consistency
constraints, algorithms were developed and implemented, some
of which were considered in the paper. For verifying dynamic con-
sistency (e.g., checking relations between dynamic properties de-
fined at different aggregation levels of a model representation)
model checking techniques [27,43] may be used. Furthermore, ver-
ification mechanisms based on certain requirements on organiza-
tional functioning and performance (e.g., using organization
performance indicators) were developed [33].

Another way to evaluate an organizational model is by perform-
ing simulations. For this purpose, agents with different types of
attitudes and internal architectures may be allocated to roles with-
in an organization model on certain conditions. After that, by con-
sidering different types and sequences of environmental influences
provided within certain simulation scenarios, traces (i.e., temporal
sequences of events in the environment and within the organiza-
tion) corresponding to the execution of scenarios can be generated.
These traces may be further used for analysis of the organizational
model, more specifically, for evaluating different global properties
of the organizational model (e.g., robustness, stability, efficiency,
and effectiveness).

In conclusion, this paper introduced a representation format
and a set of formally represented design operators dedicated to
the design of organizations of most types. Although the choice of
operators is motivated by different theories and guidelines from
the area of organizational design, the application of the proposed
operators is not restricted to any theories from social studies.
The formalization of the operators provides a solid basis for the
development of a software tool supporting interactive organization
design processes. A prototype implementation for such a tool is
demonstrated by an example in this paper.

Acknowledgments

This research is partly supported by the Dutch Technology Foun-
dation STW, which is the applied science division of NWO, and the
Technology Programme of the Ministry of Economic Affairs.

Appendix A. Screen print of a trace illustrating the dynamics of the design process for role refinement

has_input_ontology(PS, O2)
has_input_ontology(Ch, O1)

is_interaction_link_in(L2, G_ORG)
is_role_in(Ch, G_ORG)
is_role_in(PS, G_ORG)

is_interaction_link_in(L1, G_ORG)
has_output_ontology(PS, O5)

connects_to(L2, PS, Ch, G_ORG)
has_output_ontology(Ch, O4)

connects_to(L1, Ch, PS, G_ORG)
is_interaction_link_in(L3, G_ORG)
connects_to(L4, OC, Ch, G_ORG)
connects_to(L3, Ch, OC, G_ORG)
is_interaction_link_in(L4, G_ORG)

has_input_ontology(OC, O3)
is_role_in(OC, G_ORG)

has_output_ontology(OC, O6)
designer_attention(OC, G_ORG)

is_possible_operator_for_in(role_retraction, OC, ORG)
is_possible_operator_for_in(role_dyn_prop_add, OC, ORG)

is_possible_operator_for_in(role_dyn_prop_revoke, OC, ORG)
is_possible_operator_for_in(role_to_group, OC, ORG)

is_possible_operator_for_in(role_refinement, OC, ORG)
is_possible_operator_for_in(role_introduction, OC, ORG)

is_possible_operator_for_in(interaction_link_intro, OC, ORG)
is_possible_operator_for_in(interaction_link_del, OC, ORG)

is_possible_operator_for_in(interaction_dyn_prop_addition, OC, ORG)
designer_supports(role_refinement, OC, ORG)
selected_operator(role_refinement, OC, ORG)

operator(role_intoduction, ORG)
request(role_name, ORG)
is_role_in(GOC, G_ORG)
is_role_in(LOC, G_ORG)

request(role_ontology, ORG)
has_input_ontology(GOC, O7)
has_input_ontology(GOC, O9)

has_output_ontology(GOC, O8)
has_output_ontology(GOC, O10)

operator(role_dyn_prop_add, ORG)
request(role_dyn_prop, GOC, ORG)
request(role_dyn_prop, LOC, ORG)

operator(interaction_link_intro, ORG)
request(interaction_link, ORG)

is_interaction_link_in(L5, G_ORG)
is_interaction_link_in(L6, G_ORG)
is_interaction_link_in(L7, G_ORG)
is_interaction_link_in(L8, G_ORG)
is_interaction_link_in(L9, G_ORG)

is_interaction_link_in(L10, G_ORG)
connects_to(L5, Ch, GOC, G_ORG)
connects_to(L6, GOC, Ch, G_ORG)
connects_to(L7, Ch, LOC, G_ORG)
connects_to(L8, LOC, Ch, G_ORG)

connects_to(L9, GOC, LOC, G_ORG)
connects_to(L10, LOC, GOC, G_ORG)

operator(interaction_dyn_prop_addition, ORG)
request(interaction_link_dyn_prop, L5, ORG)
request(interaction_link_dyn_prop, L8, ORG)

request(interaction_link_dyn_prop, L10, ORG)
request(interaction_link_dyn_prop, L7, ORG)
request(interaction_link_dyn_prop, L6, ORG)
request(interaction_link_dyn_prop, L9, ORG)

operator(interaction_link_del, L4, ORG)
operator(interaction_link_del, L3, ORG)

operator(role_retraction, OC, ORG)
time 0 5 10 15 20

104 C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105

C.M. Jonker et al. / Knowledge-Based Systems 31 (2012) 89–105 105
References

[1] C. Argyris, D. Schön, Organizational Learning: A Theory of Action Perspective,
Addison Wesley, Reading, Mass, 1978.

[2] C. Argyris, D. Schön, Organizational Learning II: Theory, Method and Practice,
Addison Wesley, Reading, Mass, 1996.

[3] H. Barringer, M. Fisher, D. Gabbay, R. Owens, M. Reynolds, The Imperative
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd.,
John Wiley & Sons, 1996.

[4] E. Bertino, G.P. Zarri, B. Catania, Intelligent Database Systems, Addison-Wesley
Professional, 2001.

[5] P.M. Blau, R.A. Schoenherr, The Structure of Organizations, Basic Books Inc.,
New York, London, 1971.

[6] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide,
Addison Wesley, 1999.

[7] T. Bosse, C.M. Jonker, L. van der Meij, J. Treur, A language and environment for
analysis of dynamics by simulation, The International Journal on Artificial
Intelligence Tools 16 (2007) 435–464.

[8] T. Bosse, C.M. Jonker, L. van der Meij, A. Sharpanskykh, J. Treur, Specification
and verification of dynamics in agent models, International Journal of
Cooperative Information Systems 18 (1) (2009) 167–193.

[9] E. Broek, C. Jonker, A. Sharpanskykh, J. Treur, P. Yolum, Formal modeling and
analysis of organizations, in: O. Boissier, V. Dignum, E. Matson, J. Sichman
(Eds.), Proceedings of the Workshop on Organizations in Multi-Agent Systems,
2005, pp.17–33.

[10] J. Child, Organization: a choice for man, in: J. Child (Ed.), Man and
Organization, Halsted Press, London, 1973, pp. 234–570.

[11] N. Chomsky, Aspects of the Theory of Syntax, The MIT Press, 1965.
[12] R.B. Duncan, What is the right organization structure?, Organizational

Dynamics, Winter (1979) 59–79
[13] J. Dietz, Enterprise Ontology – Theory and Methodology, Springer-Verlag,

Berlin, Heidelberg, 2006.
[14] ESPRIT Consortium AMICE (Eds.), CIMOSA: Open System Architecture for CIM.

Berlin et al.: Springer, 1993.
[15] S. Feng, L.X. Li, L. Cen, An object-oriented intelligent design tool to aid the

design of manufacturing systems, Knowledge-Based Systems 14 (5–6) (2001)
225–232.

[16] A. Fleischmann, C. Stary, Whom to Talk to? A Stakeholder Perspective on
Business Process Management, Universal Access in the Information Society,
Springer-Verlag, 2011. pp.1–26.

[17] U. Frank, Multi-perspective enterprise modeling (MEMO) – Conceptual
framework and modeling languages, Hawaii international conference on
system sciences, in: 35th Annual Hawaii International Conference on System
Sciences (HICSS’02), vol. 3, 2002, pp. 1258–1267.

[18] J.R. Galbraith, Organization Design, Addison-Wesley Publishing Company,
London, Amsterdam, Sydney, 1978.

[19] A. Habel, B. Hoffmann, Parallel independence in hierarchical graph
transformation, in: Proceedings of International Conference on Graph
Transformation, LNCS, vol. 3256, Springer-Verlag, Heidelberg, 2004, pp. 178–
193.

[20] J. He, X. Li, Z. Liu, Component-based software engineering, in: D.V. Hung, M.
Wirsing (Eds.), Theoretical Aspects of Computing, LNCS, vol. 3722, Springer,
2005, pp. 70–95.

[21] C.M. Jonker, A. Sharpanskykh, J. Treur, P. Yolum, A framework for formal
modeling and analysis of organizations, Applied Intelligence 27 (1) (2007) 49–
66.

[22] C.M. Jonker, J. Treur, A temporal-interactivist perspective on the dynamics of
mental states, Cognitive Systems Research Journal 4 (3) (2003) 137–155.
[23] M. Kilbridge, L. Wester, An economic model for the division of labor,
Management Science (1966) 255–269.

[24] K. Liu, L. Sun, J. Barjis, J.L.G. Dietz, Modelling dynamic behaviour of business
organisations – extension of DEMO from a semiotic perspective, Knowledge-
Based Systems 16 (2003) 101–111.

[25] J.W. Lorsch, P.R. Lawrence, Organization Design, Richard D. Irwin Inc., USA,
1970.

[26] M. Manzano, Extensions of First Order Logic, Cambridge University Press,
1996.

[27] K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
[28] H. Mintzberg, Structure in Fives: Designing Effective Organizations, Prentice-

Hall, NJ, 1993.
[29] I. Nonaka, R. Toyama, T. Hirata, Managing Flow: A Process Theory of the

Knowledge-based Firm, Palgrave Macmillan, Basingstoke, New York, 2008.
[30] J. Pfeffer, Organizational Design, AHM Publishing Corp., Illinois, USA, 1978.
[31] V. Popova, A. Sharpanskykh, Process-oriented organisation modelling and

analysis, Enterprise Information Systems Journal 2 (2) (2008) 157–176.
[32] V. Popova, A. Sharpanskykh, Modeling organizational performance indicators,

Information Systems Journal 35 (4) (2010) 505–527.
[33] V. Popova, A. Sharpanskykh, Formal analysis of executions of organizational

scenarios based on process-oriented specifications, Applied Intelligence
Journal 34 (2) (2011) 226–244.

[34] V. Popova, A. Sharpanskykh, Formal modelling of organisational goals based on
performance indicators, Data & Knowledge Engineering 70 (4) (2011) 335–
364.

[35] R.F. Port, T. van Gelder (Eds.), Mind as Motion: Explorations in the Dynamics of
Cognition, MIT Press, Cambridge, Mass, 1995.

[36] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph
Transformation, Foundations, vol. 1, World Scientific, 1997.

[37] A.-W. Scheer, M. Nüttgens, ARIS architecture and reference models for
business process management, in: W.M.P. van der Aalst, J. Desel, A.
Oberweis, Business Process Management – Models, Techniques, and
Empirical Studies, LNCS 1806, Berlin et al. 2000, pp. 366–379.

[38] L.C. Schmidt, J. Cagan, Recursive annealing: a computational model for
machine design, Research in Engineering Design 7 (1995) 102–125.

[39] W.R. Scott, Organizations: Rational, Natural and Open Systems, Prentice Hall,
USA, 1998.

[40] P.M. Senge, The Fifth Discipline: The Art and Practice of the Learning
Organization, Doubleday, New York, 1990.

[41] A. Sharpanskykh, On Computer-Aided Methods for Modeling and Analysis of
Organizations, PhD thesis, Vrije Universiteit Amsterdam, 2008a.

[42] A. Sharpanskykh, Authority and its implementation in enterprise information
systems, Enterprise Information Systems Journal 4 (3) (2008) 66–79.

[43] A. Sharpanskykh, J. Treur, Verifying interlevel relations within multi-agent
systems, in: Proceedings of the 17th European Conference on Artificial
Intelligence, ECAI’06, IOS Press, 2006.

[44] A. Sharpanskykh, J. Treur, A temporal trace language for formal modelling and
analysis of agent systems, in: M. Dastani, K. Hindriks, J.-J. Meyer (Eds.),
Specification and Verification of Multi-Agent Systems (book chapter), Springer
Verlag, 2010, pp. 317–352.

[45] G. Stiny, The algebras of design, Research in Engineering Design 2 (1991) 171–
181.

[46] W.M.P. Van der Aalst, The application of Petri nets to workflow management,
Journal of Circuits, Systems and Computers 8 (1) (1998) 21–66.

[47] W.M.P. Van der Aalst, Formalization and verification of event-driven process
chains, Information and Software Technology 41 (10) (1999) 639–650.

[48] N. Wijngaards, Re-design of Compositional Systems, PhD Thesis, SIKS
dissertation Series, 99-6, Vrije Universiteit Amsterdam, 1999.

	Formal framework to support organizational design
	1 Introduction
	2 Format for an organizational model as a design object description
	3 Representing design operators for organizational design
	3.1 Operators for roles
	3.1.1 Role introduction operator
	3.1.2 Role retraction operator
	3.1.3 Role dynamic property addition operator
	3.1.4 Role dynamic property revocation operator

	3.2 Operators for links
	3.2.1 Interaction link addition operator
	3.2.2 Interaction link deletion operator
	3.2.3 Interaction dynamic property addition operator
	3.2.4 Interaction dynamic property revocation operator
	3.2.5 Interlevel link introduction operator
	3.2.6 Interlevel link retraction operator

	3.3 Operators for groups
	3.3.1 Grouping operator
	3.3.2 Degrouping operator
	3.3.3 Group-to-Role operator
	3.3.4 Role-to-Group operator

	4 Composing operators
	4.1 Refinement operator (integrity definition)

	5 Consistency of organizational specifications
	6 A prototype tool to support the design of organizations
	7 Discussion
	Acknowledgments
	Appendix A Screen print of a trace illustrating the dynamics of the design process for role refinement
	References

