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Abstract Agent interaction is a fundamental part of any multiagent system. Such interactions
are usually regulated by protocols, which are typically defined at design-time. However, in
many situations a protocol may not exist or the available protocols may not fit the needs of
the agents. In order to deal with such situations agents should be able to generate protocols
at runtime. In this paper we develop a three-phase framework to enable agents to create a
commitment protocol dynamically. In the first phase one of the agents generates candidate
commitment protocols, by considering its goals, its abilities and its knowledge about the
other agents’ services. We propose two algorithms that ensure that each generated protocol
allows the agent to reach its goals if the protocol is enacted. The second phase is ranking of
the generated protocols in terms of their expected utility in order to select the one that best
suits the agent. The third phase is the negotiation of the protocol between agents that will
enact the protocol so that the agents can agree on a protocol that will be used for enactment.
We demonstrate the applicability of our approach using a case study.

Keywords Commitment protocol · Generation · Ranking

1 Introduction

Interaction is a fundamental element of any multiagent system. Agents interact with each
other in order to exchange information, coordinate their activities and collaborate on tasks.
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These interactions are generally regulated by interaction protocols that specify the set of
messages that can be exchanged among agents and their meanings.

Typically, interaction protocols are defined at design-time and embedded into agents’
implementation [8,28,31]. However, there are a number of reasons why defining protocols
at design-time is, sometimes, too limiting. For instance, in open systems, where agents
enter the system at run-time, it is desirable to allow for run-time protocol construction. It
is also possible, even in closed systems, for there to be changes in the environment, or in
agent preferences, that suggest the need for run-time protocol construction. In other words,
designing protocols up front is not sufficient for three major reasons:

(1) Change in agents If the system is open, new agents can enter the system. There is no
guarantee that the new agents will use the same protocol as the agents inside the system.
For example, a typical pay-for-delivery protocol would not work with a barter agent who
would expect a different type of good, rather than money, to complete its transaction

(2) Change in environment Even if the agents are fixed, the environment can evolve in a
way that requires run-time adaptation of protocols. For example, if the delivery service
is temporarily unavailable, then the previous pay-for-delivery protocol will not suffice.
Hence, the agents need to find a way to carry out a different protocol, such as pay-and-
pickup, where the customer is expected to collect the goods after payment. Such cases
occur because the environment is dynamic. However, it is difficult to account for all such
cases when designing a protocol at design-time.

(3) Change in agent preferences It is also possible for agents’ preferences to change over
time. For example, an agent that runs out of cash may need to come up with a protocol in
which the agent either delays its payment or uses a different commodity in return. Since
the need becomes evident only at run-time, the agent should have the means to adapt
and formulate a protocol that reflects its preferences.

For these reasons we argue that in open systems, and in some closed (but highly dynamic)
systems, there is a need for agents to be able to derive new protocols at run-time, rather than
relying on design-time protocols that are embedded into the agents’ implementation.

There are two lines of work that are closely related to this problem. One line of work
studies the evolution of protocols in light of changing requirements. That is, is it possible
for designers to modify existing protocols in a systematic way such that the agents can just
receive the new protocol and continue working? Gerard and Singh [11] show that using
various refactoring mechanisms, this is possible. That approach assumes that there is already
an existing protocol and a dedicated designer who modifies the protocol. In our case, we do
not assume that there are any existing protocols available to the agents. The agents need to
generate and agree on the protocol on their own. The second line of work does not assume
an existing protocol but a centralized planning agency that knows the preferences, goals, and
services of all the agents [25]. As a result, using HTN planning, a central agent can generate
the right protocol to satisfy all agents. In our case, we do not assume that there is such an
agent for planning that would know all the details of all the agents. Hence, we need to develop
a method that will allow an agent to generate protocols using its own local knowledge and
facilitate agreement of a protocol by its participants without a central agency.

One key tradeoff to be considered in run-time development of protocols is the generality
of the protocols. At one extreme, we could consider protocols that are in effect more like
plans. That is, they support only a single possible way of realising the desired interaction.
Although such plans can work, since they are derived for a given context, they have a number
of major drawbacks.
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Firstly, they are rigid and, are thus not well aligned with the use of autonomous agents,
which may possess a range of means for achieving a given goal [24]. Furthermore, a design
process that focuses on messages tends to result in interaction protocols that are rigid and
overly constrain the agents [4]. Secondly, they are brittle in that if things do not go according
to the plan, the interaction is liable to fail, since it does not include any flexibility, or contin-
gencies. Thirdly, they are not generic or reusable, which means that the agent cannot reuse a
generated protocol, but has to repeatedly construct new protocols for any new situation, even
where the situation may be very similar to a previous situation.

In other words, what we want is not a single use plan, but a more generic specification
of the interaction that allows agents (some degree of) choice and freedom in their behaviour
when interacting, that is able to handle contingencies, and that is usable in a range of situations
(i.e. reusable).

Given these requirements, we propose to use protocols that are structured in terms of social
commitments [3,21], rather than in terms of message exchanges. Using commitment-based
protocols addresses the three concerns above:

– They allow agents to reason about and carry out their interactions in a flexible manner
preserving their autonomy [9,15,32].

– They tend to allow a high degree of flexibility in interactions: instead of an interaction being
defined as a specific sequence of messages with specifically defined deviations from the
sequence, the interaction is defined in terms of the commitments that need to be achieved
along the way. Any sequence of messages and actions that results in the commitments
being achieved is acceptable. This flexibility allows interactions to deal with a range of
contingencies, and a range of situations, thus enhancing reusability.

This paper therefore proposes to use run-time construction of commitment-based inter-
action protocols. Our contribution is not just a mechanism for creating a commitment-based
protocol at run-time, but also a framework for the life-cycle of such protocols. In other words,
we consider not just the creation of these protocols, but also what happens after protocol cre-
ation: how do agents reach agreement on a protocol to enact? How do agents reason about
which potential protocols they prefer?

Fig. 1 Overall process of an agent
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The general setting is depicted in Fig. 1. We assume that agents have some abilities, some
goals, and that they also have some domain knowledge about the environment and about
other agents’ goals and the services that they offer. We propose a four step process:

(1) Generation For the reasons listed above, predefined protocols will not be sufficient.
Hence, an agent that aims to achieve a certain goal state needs to generate a set of
possible candidate protocols that could be used to realize the desired interaction. The
generated protocols should support the goals of the generating agent and also take into
account the goals and services of other involved agents.

(2) Ranking Since multiple protocols can be generated to achieve the same goals, the agent
needs to evaluate the candidate protocols. A useful method is to rank the protocols based
on some criteria. This ranking is subjective by nature and different parties may prefer
different protocols over others. For example, a merchant may prefer a protocol in which
he is paid first before delivery, whereas a customer may prefer a protocol in which he
pays after delivery. For this purpose we develop a mechanism based on cost and risk
metrics to rank commitment protocols.

(3) Agreement After the ranking, the agent then engages in negotiation with the other agents
that will be involved in enacting the protocols in order to agree on which of the candidate
protocols to use. We provide a simple agreement protocol that agents use to choose a
protocol for enactment.

(4) Enactment After this step, the protocol that is chosen will be enacted by the agents.
Enactment of protocols and their various properties have been extensively studied in the
literature [26,33]. For that reason, our focus in this paper is on the first three steps of the
process explained above.

The rest of this paper is organized as follows. Section 2 describes our technical framework
in depth. Section 3 introduces our algorithms for generating commitment protocols based
on agents’ goals and abilities, compares their performances, and establishes formal results.
Section 4 defines ranking of commitment protocols. Section 5 describes how the ranked
protocols can be used in practice. Finally, Sect. 6 summarises, discusses our work in relation
to recent work, and outlines directions for future work.

2 Technical framework

In this section we present the technical framework and a running example that we use in the
rest of the paper. In the following we use the standard logical connectives � (true), ∧ (and),
⇒ (implication). We present the grammar of our framework’s elements in Table 1. In the rest
of the paper we use the variables x, xi , y for agents, g, gi for goals, a, ai for abilities, s, si for

Table 1 Grammar of the
framework elements Goal → GAgentID(Proposition)

Ability → AAgentID(Conjunction, Proposition)

Service → SAgentID(AgentID, Conjunction, Proposition)

Incentive → IAgentID(AgentID, Proposition, Proposition)

Belief → Service | Incentive

Commitment → C(AgentID, AgentID, Conjunction, Proposition)

Conjunction → Proposition | Conjunction ∧ Proposition

Proposition → Any atomic propositional symbol

AgentID → Any agent identifier
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services, n, ni for incentives, c, ci for commitments, p, p′, pi for protocols, q, qi , r, r ′, ri , w,

for propositions and d, di , d ′ for conjunctions.
An agent is an entity that acts in an environment to achieve its goals, has a set of abilities

to perform certain tasks and has a set of beliefs about other agents.

Definition 1 (Agent) An agent is a three tuple 〈G, A, B〉, where G is the agent’s goals, A is
the agent’s abilities and B is the agent’s beliefs.

A goal of an agent is a state of the world that the agent aims to achieve (e.g., a customer
aims to purchase some goods). A goal of an agent is achieved when the environment evolves
to that state.

Definition 2 (Goal) Gx (r) denotes the goal of agent x to bring about the proposition r .

An agent has a set of abilities, which can be used by the agent to change the state of the
world, if certain preconditions hold (e.g., a customer can make payments, if it has enough
money).

Definition 3 (Ability) Ax (d, r) denotes the ability of agent x to bring about the proposition
r , if the precondition d holds.

An agent has beliefs about the services provided by other agents (e.g., a merchant sells
goods) and possible properties that can be offered to those agents to create incentive for the
provision of their services (e.g., offering payment to a merchant when it sells a good).

Definition 4 (Belief) Sx (y, d, r) denotes that the agent x believes that the agent y can provide
a service to bring about the proposition r , if the precondition d holds. Ix (y, w, r) denotes
that the agent x believes that the agent y accepts the proposition w as an incentive for its
services to bring about r .

There is a conceptual difference between a service and incentive belief. A service
belief defines an instance of a service, which requires a certain precondition to hold, to
bring about a property. For instance, si = SCustomer(Courier, Address Provided, Delivered)

represents Customer’s belief about the delivery service that is provided by Courier,
which requires provision of the delivery address as a precondition. Similarly, s j =
SCustomer (Courier, Customer ID Provided, Delivered) represents Customer’s belief about
another delivery service that is provided again by Courier. However, this service requires a
user ID to be provided as a precondition, instead of the delivery address. On the other hand,
n = ICustomer(Courier, Delivery Paid, Delivered) represents that the Customer believes that
she has to pay, in order to create incentive for the provision of a delivery service. Note that
Customer can utilze n to create incentive for the provision of either s1 or s2.

An agent may acquire the information (i.e., beliefs) about the other agents’ services and
possible incentives for these services in various ways. For instance, in small and well-defined
domains, this information may already be encoded as part of the agent’s domain knowledge.
In addition to this, such information is usually publicly advertised by the service providers.
Even if the domain knowledge of an agent is incomplete or the other agents’ services are
not advertised, the agent may still infer this information by combining its partial domain
knowledge with its observations from previous interactions. Accordingly, in the rest of the
paper we assume that each agent has a set of beliefs about the services of the other agents
and their expected incentives. However, these beliefs may be incomplete (e.g., an agent may
not be aware of all provided services), out of date (e.g., some services may not be provided
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Fig. 2 Life cycle of a commitment

any more) or even be wrong (e.g., a provider may expect something different as an incentives
than what the agent believes). We assume that agents are capable of revising their beliefs in
the light of new information as is customary in the literature.

Agents interact with each other through their services and these interactions are regulated
by commitments. A commitment is a social contract between a debtor and a creditor, where
the debtor commits to the creditor to bring about a condition.

Definition 5 (Commitment) C(x, y, d, r) denotes the commitment of the debtor agent x to
the creditor agent y to bring about the consequent r if the antecedent d holds.

The lifecycle of commitments has been studied in detail in the multiagent systems litera-
ture [5,10,15,30,32]. Here we use a simplified lifecyle that we present in Fig. 2. A commit-
ment is created in a conditional state. When the antecedent of the commitment starts to hold,
the commitment is detached and the state of the commitment turns to active. A conditional or
an active commitment is discharged once the consequent of the commitment starts to hold,
which makes the commitment fulfilled. An active commitment is violated if the commitment
is canceled by its debtor, indicating that the consequent of the commitment is not going to
be brought about. The fulfilled and violated states are terminal states.

In general agents create several commitments in the context of an interaction. For example,
in a purchase scenario several commitments are created between the customer and merchant
to regulate different aspects of the whole transaction. Accordingly, a set of commitments in
the context of an interaction is called a commitment protocol. Traditionally, a commitment
protocol includes a set of messages in addition to the commitments, which are used by the
agents to manipulate the commitments in the protocol [15,27,29,32]. Here, we omit these
messages for readability. Our main goal is to generate the commitments. Once this goal is
achieved, the messages can be defined systematically in a straightforward manner.

Definition 6 (Commitment protocol) A commitment protocol p is a set of commitments.

A multiagent system is a system of agents and the commitments between these agents.

Definition 7 (Multiagent system) A multiagent system is two tuple 〈AG, C〉, where AG is a
set of agents and C is a set of commitments between the agents of AG.

Agents in a multiagent system act to achieve their goals either by utilizing their own
abilities or participating in commitments to use other agents’ services. Hence, in order to act
effectively, agents should be able to decide whether they can achieve their goals given their
abilities and existing commitments. In this context, we say that an agent supports a goal,
if the agent can guarantee to achieve the goal. In general, an agent supports a goal in two
situations: (1) the goal can be achieved by the agent itself using its own abilities, or (2) there
is a commitment from another agent to provide a service that causes the agent to achieve
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its goal. Let us explain the two conditions in detail in the context of our framework. For
brevity, below we define support over propositions instead of over goals. This is appropriate
since in our framework goals correspond to propositions. On the other hand, this does not
affect the generality of the notion of support and it can easily be extended if a more complex
representation of goal is used.

Definition 8 (Support) Given a conjunction of propositions d ′ = r1 ∧ · · · ∧ rn , an agent
x = 〈G, A, B〉 and a set of commitments C, x supports d ′ with respect to commitments C,
denoted as x, C � r1 ∧ · · · ∧ rn , with respect to the following conditions.

– x, C � d ′ if d ′ = �
– x, C � d ′ if d ′ = di ∧ d j and x, C � di and x, C � d j

– x, C � r if Ax (d, r ′) ∈ A and r ′ ⇒ r and x, C � d

or
C(y, x, d ∧ w, r) ∈ C and Sx (y, d, r ′) ∈ B and r ′ ⇒ r and
Ix (y, w, r) ∈ B and and x, C � d ∧ w

The first and second cases deal with the logical constructs� and∧. The third case considers
support for a proposition in two different situations. In the first situation, the agent x supports
the proposition r , if there is an ability of x (i.e., Ax (d, r ′)) and it is the case that r ′ ⇒ r . In
other words, if x has the ability to bring about r ′ that implies the desired condition r , then r
is supported. Furthermore, in order to be able to use its ability, x has to ensure that d , which
is the precondition of the ability, holds. In other words, x should also support d . Note that
d may be a conjunction. If this is the case, then x should support every proposition in the
conjunction.

In the second situation, agent x is not able to bring about the desired condition on its
own, so it needs to rely on another agent. Since other agents are, by definition, autonomous,
and hence not subject to x’s control, a commitment is needed to ensure that the other agent
(y) will bring about r . Specifically, there needs to be a commitment from y to x that, under
appropriate conditions, y will be committed to bring about r . We therefore require that C
include a commitment of the form C(y, x, d ∧ w, r). In addition to knowing that y has a
(conditional) commitment to bring about r , we also need to ensure that y is actually able to
bring about r (more precisely r ′, where r ′ ⇒ r ), i.e. that it has a service to do so (formally:
Sx (y, d, r ′) ∈ B). However, having a (conditional) commitment to bring about r , and having
a service to do so isn’t enough: we also need to ensure that the antecedent of the commitment
can be brought about by x (directly or indirectly), i.e. that the antecedent is supported. We also
need to ensure that the precondition of y’s service holds. We deal with both these conditions
at once by defining the antecedent to be d ∧ w, where d is the precondition of the relevant
service, and requiring that x, C � d ∧ w. Pulling the pieces together, so far, we have the
definition:

x, C � r if C(y, x, d ∧ w, r) ∈ C and Sx (y, d, r ′) ∈ B and r ′ ⇒ r and x, C � d ∧ w

There is one last part of the definition to explain. The definition so far is actually sufficient.
However, what is missing is a reason for agent y to accept the proposed commitment (more
generally, the protocol). In order to address this we introduce an incentive: in addition to the
antecedent offering to make d true, agent x also offers an incentive w, where w is known to
be an incentive of y for r (formally: Ix (y, w, r) ∈ B).

We now show that Definition 8 is sufficient for ensuring that a protocol does allow agent
x to achieve the desired condition.
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Lemma 1 Let x, C � r , and assume that all active (i.e. non-conditional) commitments in C
that can be fulfilled, are eventually fulfilled. Then there exists a way for agent x to act that
results in r becoming true.
Proof by induction. Trivial cases: (i) if r is � then it is trivially true, and the condition is
satisfied; (ii) if r is achievable by agent x acting alone, using its ability Ax (d, r ′) (where
r ′ ⇒ r) then from x, C � r we know that the ability’s precondition, d, is also supported
(x, C � d) and hence by induction agent x can ensure that d becomes true, and hence that
it is able to use its ability to then make r true.

The other case is where agent x does not have the ability to make r true. Since
x, C � r we know that: there exists an agent y which is committed to bringing about r
(i.e., C(y, x, d ∧ w, r)), that y has the ability to do so (Sx (y, d, r ′) where r ′ ⇒ r), and
that the antecedent of the commitment is supported (x, C � d ∧ w). Therefore, by induction,
agent x can act in such a way to make d ∧ w true. At this point the commitment becomes
active. By assumption, agent y eventually fulfills the commitment (since it is able to do so),
making r true as desired. 
�

Running example In our running example there are five agents, namely a customer (Cus), two
builders (Bui1 and Bui2), a merchant (Mer ) and a retail store (Ret). We examine the case
from the customer’s perspective. The customer wants to have a certain type of furniture. The
first builder (Bui1) offers a service to build custom furniture. However, as a precondition of
this service the builder requires the materials to build the furniture to be provided. Similarly,
the second builder (Bui2) also offers a service to assemble furniture. However, the second
builder, who is not a professional builder, requires both materials and also tools to be provided
as a precondition. On the other hand, the merchant sells ready to use furniture and the retail
store sells tools and materials for building furniture. From its domain knowledge, the customer
believes that all agents expect to be paid for their services. The objective of the customer is to
have a protocol that supports its goal. We summarize the propositions we use in our running
example in Table 2.

The goal of the customer is g1 = GCus(HaveFurniture) (i.e., G = {g1}). We list the
abilities of the customer (i.e., the contents of the set A) in Table 3. a1, a2 and a3 represent the
ability of the customer to provide building materials and tools to builder agents. However, as
a precondition it has to own the materials and tools beforehand. a4 − a8 represent different
abilities of the customer to make payments to other agents for their services. We assume that

Table 2 Propositions of the running example and their meanings

HaveFurniture The customer owns furniture

HaveMaterials The customer owns materials

HaveTools The customer owns tools

MaterialsPaid The customer has paid the retailer for the materials

ToolsPaid The customer has paid the retailer for the tools

FurniturePaid The customer has paid the merchant for the furniture

Bui1 Paid The customer has paid the service cost to the first builder

Bui2 Paid The customer has paid the service cost to the second builder

Bui1 Materials Provided The customer has provided materials to the first builder

Bui2 Materials Provided The customer has provided materials to the second builder

ToolsProvided The customer has provided the tools to the second builder
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Table 3 Abilities of the
customer a1 ACus (HaveTools, ToolsProvided)

a2 ACus (HaveMaterials, Bui1MaterialsProvided)

a3 ACus (HaveMaterials, Bui2MaterialsProvided)

a4 ACus (�, MaterialsPaid)

a5 ACus (�, ToolsPaid)

a6 ACus (�, FurniturePaid)

a7 ACus (�, Bui1Paid)

a8 ACus (�, Bui2Paid)

Table 4 Beliefs of the customer
s1 SCus (Ret,�, HaveMaterials)

s2 SCus (Ret,�, HaveTools)

s3 SCus (Mer ,�, HaveFurniture)

s4 SCus (Bui1, Bui1MaterialsProvided, HaveFurniture)

s5 SCus (Bui2, Bui2MaterialsProvided ∧ ToolsProvided,
HaveFurniture)

n1 ICus (Ret, MaterialsPaid, HaveMaterials)

n2 ICus (Ret, MaterialsPaid, HaveTools)

n3 ICus (Ret, ToolsPaid, HaveTools)

n4 ICus (Ret, ToolsPaid, HaveMaterials)

n5 ICus (Mer , FurniturePaid, HaveFurniture)

n6 ICus (Bui1, Bui1Paid, HaveFurniture)

n7 ICus (Bui2, Bui2Paid, HaveFurniture)

the customer has enough money to make all the payments. Hence, none of these abilities has
a precondition.

We list the customer’s beliefs (i.e., the contents of the set B) in Table 4. s1 and s2 denote the
services of the retailer to sell materials and tools, respectively. s3 is the service of the merchant
to sell the furniture. s4 and s5 are the services of the first and second builders, respectively,
to build the furniture. n1−n7 state that other agents expect payments as incentive for their
services. The incentives include some that are fairly clear, such as n1, stating that the customer
has domain knowledge that the retailer is incentivised to provide materials (HaveMaterials)
by the materials being paid for (MaterialsPaid). However, it can also be the case that the
customer’s beliefs about incentives and services may not reflect reality. An example to this is
n2, which states that the customer believes paying for materials is an incentive for providing
tools. If this is not an accurate incentive, a protocol generated based on this incentive would
be unpreferable by the agent providing the service. We return to this in Sect. 4.

Below, we provide an example commitment protocol that supports the goal (i.e.,
HaveFurniture) of the customer.

c1 = C(Ret, Cus, MaterialsPaid, HaveMaterials)

c2 = C(Ret, Cus, ToolsPaid, HaveTools)

c3 = C(Bui2, Cus, Bui2MaterialsProvided ∧ ToolsProvided ∧ Bui2 Paid,

HaveFurniture)

The commitment c3 states that the second builder will be committed to the customer to
deliver the furniture (i.e., bring about HaveFurniture), if the customer provides the required
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materials and tools, and also pays the costs (i.e., brings about Bui2 Materials Provided ,
T ools Provided and Bui2 Paid). Hence, once this commitment is fulfilled, the customer
achieves its goal HaveFurniture. However, in order to make c3 active by providing the tools
and materials to the builder, the customer should have them first. Accordingly, the protocol
includes c1 and c2, which, once fulfilled, ensure that the customer has materials and tools.

This protocol might be enacted and executed in a flexible manner. For instance, the cus-
tomer could make c1 and c2 active in any order she finds appropriate. She might chose to make
c1 active by bringing about Materials Paid first and might wait until c1 is fulfilled before
making c2 active by bringing about T ools Paid . Or the customer might chose to make both
c1 and c2 active at the same time by bringing about Materials Paid and T ools Paid con-
currently. Also note that the customer might not need to make c1 or c2 (or both) active if she
already had the necessary materials or tools. In this case the commitment stayed conditional
and would not put the retailer under any obligation. Finally, once the customer possessed the
materials and tools, she could make c3 active, by providing these to the builder and paying
the cost. Then, the builder would fulfil c3 by delivering the furniture.

3 Protocol generation

In this section we develop two algorithms that generate commitment protocols to support
the given goals of an agent, which corresponds to the first phase of our framework in Fig. 1.
The first algorithm is a depth-first traversal algorithm that uses the definition of support
(Definition 8) utilizing the agent’s abilities and beliefs to generate the protocols. The second
algorithm is also based on the definition of support and uses the agent’s abilities and beliefs,
however it takes advantage of the divide and conquer strategy to generate the protocols
more efficiently. We examine and compare the execution of the algorithms over our running
example. We also report on an empirical evaluation of the algorithms’ performance, and show
their formal properties.

3.1 ProtocolBased algorithm

We present our ProtocolBased algorithm in Algorithm 1. The algorithm uses a depth-first
traversal strategy to generate the protocols. Basically, this algorithm creates a tree structure
as follows. The root of the tree contains a set of unsupported initial goals of the agent that runs
the algorithm. One goal from this set is selected and for each ability and service that can be
used to support the selected goal, an edge is created. If the edge is created for a commitment,
the commitment is set as the label of the edge. Otherwise, if the edge is created for an
ability, the edge is not labeled. The destination node of each edge contains the remaining
unsupported goals of the agent. If the used ability or service requires new propositions to hold
(e.g., precondition of the service), then goals over these propositions are also added to the set
of unsupported goals in the destination node. This process is repeated for each subsequent
node until there is no unsupported goal left in any leaf node. As a result, the labels (i.e.,
commitments) on a path from the root to a leaf node correspond to a protocol that supports
all the initial goals (i.e., goals that are given as input to the algorithm) and also all the goals
that are created by the algorithm to use abilities and services.

The algorithm takes six parameters as input: the agent that runs the algorithm to generate
protocols (x), (2) x’s abilities (A), (3) x’s beliefs (B), (4) a queue of goals that are aimed to
be supported (Gp), (5) a set of goals that are already supported (Gs), and (6) the protocol
generated so far by the algorithm (�). When the algorithm is first invoked Gp consists of a
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Algorithm 1 P ProtocolBased (x, A, B, Gp, Gs,�)
Require: x , the agent that generates the protocols
Require: A, abilities of x
Require: B, beliefs of x
Require: Gp , the queue of goals pending for support
Require: Gs , the set of already supported goals
Require: �, protocol generated so far
1: if isEmpty(Gp) then
2: return {�}
3: else
4: g← dequeue(Gp)

5: r ← getGoalProposition(g)

6: P← ∅
7: for all {Ax (d, r ′) : Ax (d, r ′) ∈ A and r ′ ⇒ r} do
8: G′p ← Gp
9: for all q ∈ getConditions(d) do
10: if not isSupported(q, Gs ) then
11: enqueue(G′p, Gx (q))

12: end if
13: end for
14: G′s ← Gs ∪ {g}
15: P← P ∪ ProtocolBased(G′p, G′s , �′)
16: end for
17: for all {Sx (y, d, r ′) : Sx (y, d, r ′) ∈ B and r ′ ⇒ r} do
18: for all {Ix (y, w, r ′′) : Ix (y, w, r ′′) ∈ B and r ≡ r ′′} do
19: G′p ← Gp
20: if not isSupported(w) then
21: enqueue(G′p, Gx (w))

22: end if
23: for all q ∈ getConditions(d) do
24: if not isSupported(q, Gs ) then
25: enqueue(G′p, Gx (q))

26: end if
27: end for
28: enqueue(G′s , g)

29: �′ ← � ∪ {C(y, x, d ∧ w, r)}
30: P← P ∪ ProtocolBased(G′p, G′s ,�′)
31: end for
32: end for
33: return P
34: end if

set of x’s goals for which x aims to find support, (i.e., Gp ⊆ G). Both Gs and � are initially
empty. The algorithm returns the set of protocols P = {p1, . . . , pn}, where each protocol pi

is a set of commitments, such that each pi supports all the goals given initially by Gp . If it
is not possible to support every goal, the algorithm returns an empty set.

The auxiliary function getGoalProposition takes a goal and returns the proposition that
is the satisfaction condition of the goal. The auxiliary function getConditions takes a con-
junction and returns a set that includes every proposition in the conjunction. For example,
getConditions(r1 ∧ r2) = {r1, r2}. The auxiliary function isSupported takes a proposition
q corresponding to a goal, and Gs and returns true if the goal (or a more specific one that
implies the goal) is already supported by the protocol generated so far, and false otherwise.
We use the auxiliary functions isEmpty, enqueue and dequeue, for regular queue manipula-
tion, where dequeue (G) modifies G by removing and returning the first item in the queue.
Similarly, enqueue (G,g) modifies G by adding g.
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The details of the ProtocolBased algorithm are as follows. It starts by checking whether
the queue of pending goals (Gp) is empty (line 1).1 If this is the case, then the algorithm
returns {�}(line 2), i.e., a set of protocols that includes only a single protocol �, which
consists of the commitments generated so far. Otherwise, the algorithm gets the next pending
goal g from Gp (line 4).

In order to find support for g the algorithm first considers x’s abilities. For each matching
ability Ax (d, r ′), such that r ′ ⇒ r (line 6), the algorithm first iterates over the precondition
d of the ability by generating a new goal Gx (q) for each proposition q ∈ getConditions(d)

and adding these new goals to the queue of pending goals G′p , if the goal is not already
supported (lines 8–12). Then, g is added to the set of supported goals G′s (line 13). Finally,
the algorithm recursively invokes itself by supplying the updated data structures G′p , G′s and
�′ in order to find support for the next goal (line 14). These steps are performed for each
matching ability and accordingly an alternative protocol is generated for each such ability.

After considering x’s abilities to support g, the algorithm also considers other agents’
services to find alternative ways of supporting g. For this purpose, the algorithm checks x’s
beliefs to find appropriate services of other agents that can be used to support g. For each
matching service Sx (y, d, r ′), such that r ′ ⇒ r (line 16) and for each corresponding incentive
Ix (y, w, r ′′), where r ≡ r ′′ (line 17), the algorithm first adds the corresponding incentive
w and every precondition q ∈ getConditions(d) of the service as a pending goal into G′p ,
if they are not already supported (lines 19–26). Then, g is added to the set of supported
goals G′s (line 27). After that, the algorithm creates a new commitment C(y, x, d ∧ w, r)

and adds it to �′ (line 28). Then, the algorithm recursively invokes itself by supplying the
updated data structures G′p , G′s and �′ in order to find support for the next goal (line 29). As
result of this process the algorithm creates alternative protocols to support g considering all
combinations of matching services and their corresponding incentives. Finally, once every
matching ability and service is considered as explained above, the algorithm returns the set
of generated protocols P (line 32). If the desired goals cannot be supported, then P will be
empty, and hence the empty set is returned, indicating that no suitable protocols could be
generated.

3.2 GoalBasedalgorithm

Although the ProtocolBased algorithm corresponds fairly directly with the definition of
support (Definition 8), it is inefficient because it finds support for the same goal many times,
if the goal has to be supported in the context of different protocols. For instance, in our run-
ning example the customer should support HaveMaterials in order to use both the first and
second builders’ services that are part of different protocols. However, the ProtocolBased
algorithm considers each protocol in isolation and finds support for HaveMaterials redun-
dantly for each protocol. To overcome this drawback, we develop a more efficient algorithm
using the divide-and-conquer strategy, which we call GoalBased . This algorithm considers
goals independently from protocols. Accordingly, for each individual goal of the agent the
algorithm generates a set of sub-protocols that support only that goal. Then these sub-protocol
are merged to come up with a complete protocol to support all the goals of the agent. This
modular approach allows us to use memoization to reuse sub-protocols that are generated in
the context of different protocols. Hence, the algorithm generates supporting sub-protocols
for each goal only once and avoids redundant computation.

1 Recall that a set containing an empty set, i.e. {∅}, is distinct from the empty set ∅, for instance {a}∪∅ = {a}
but {a} ∪ {∅} = {a,∅}
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We present our GoalBasedalgorithm in Algorithm 2. The algorithm takes five parameters
as input: the agent that runs the algorithm to generate protocols (x), (2) x’s abilities (A), (3)
x’s beliefs (B), (4) a queue of goals that are aimed to be supported (G), and (5) a mapping
M from goals to a set of protocols that supports them (i.e., M takes a goal g and returns a set
of protocols P). When the algorithm is first invoked, G includes a subset of x’s goals (i.e.,
G ⊆ G), for which x aims to find support. M is initially empty. The algorithm returns the set
of protocols P = {p1, . . . , pn}, where each protocol pi is a set of commitments, such that
each pi supports all the goals given initially by G. If it is not possible to support every goal,
the algorithm returns an empty set.

The auxiliary function getGoalProposition takes a goal and returns the proposition that is
the satisfaction condition of the goal. The auxiliary function getConditions takes a conjunction

Algorithm 2 P GoalBased (x, A, B, G, M)

Require: x , the agent that generates the protocols
Require: A, abilities of x
Require: B, beliefs of x
Require: G, the queue of goals to be supported
Require: M, the mapping from goals to known protocols
1: if isEmpty(G) then
2: return {∅}
3: else if size(G) > 1 then
4: G′ ← dequeue(G)

5: return merge(GoalBased(G′, M), GoalBased(G, M))

6: else
7: //size(G) = 1
8: g← dequeue(GP )

9: r ← getGoalProposition(g)

10: if g ∈ getKeySet(M) then
11: return M[g]
12: end if
13: P← ∅
14: for all {Ax (d, r ′) : Ax (d, r ′) ∈ A and r ′ ⇒ r} do
15: G′ ← ∅
16: for all q ∈ getConditions(d) do
17: enqueue(G′, Gx (q))

18: end for
19: P′ ← GoalBased(G′, M)

20: P← P ∪ P′
21: end for
22: for all {Sx (y, d, r ′) : Sx (y, d, r ′) ∈ B and r ′ ⇒ r} do
23: for all {Ix (y, w, r ′′) : Ix (y, w, r ′′) ∈ B and r ≡ r ′′} do
24: G′ ← ∅
25: for all q ∈ getConditions(d) do
26: enqueue(G′, Gx (q))

27: end for
28: enqueue(G′, Gx (w))

29: P′ ← GoalBased(G′, M)

30: for all p ∈ P′ do
31: p← p ∪ {C(y, x, d ∧ w, r)}
32: end for
33: P← P ∪ P′
34: end for
35: end for
36: M[g] ← P
37: return P
38: end if
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and returns a set that includes every proposition in the conjunction. The auxiliary function
merge takes two sets of protocols P′ and P′′ and merges them by forming all possible pairs
(p′ ∈ P ′ and p′′ ∈ P ′′) and forming their union (p′ ∪ p′′). Formally merge(P ′, P ′′) =
{p′ ∪ p′′ | p′ ∈ P ′ and p′′ ∈ P ′′}. We use the auxiliary functions enqueue, dequeue, size
and isEmpty for regular queue manipulation as before. Additionally M is a mapping from a
goal to a set of protocols that supports the goal. The function getKeySet(M) returns the key
set of the mapping M (i.e., the set of goals). We use the notation M[g] to access the set of
protocols that support g.

Algorithm 2 starts by checking whether the goal queue (G) is empty (line 1). If this is the
case, then the algorithm returns a set of protocols that includes the empty protocol, to indicate
that the base case is reached. Otherwise, if G includes more than one goal, then the algorithm
divides the queue into two queues such that the first queue includes only the first goal in G
and the second queue includes the rest of the goals. Then, for each queue a recursive call is
made and the results are merged and returned (line 5).

If G includes only one goal (g), the algorithm first checks M to find whether the protocols
that support g are already generated. If this is the case, the algorithm immediately returns
the corresponding protocols (line 911). Otherwise, the algorithm checks x’s abilities to find
matching abilities that can be utilized to support g. For every matching ability Ax (d, r ′),
the algorithm first creates a queue (G′) and adds a new goal Gx (q) for each precondition
q ∈ getConditions(d) into G′ (lines 15–17). Then the algorithm calls itself to find support for
these goals (line 18) and the protocols returned by the recursive call are kept as alternatives
to support g (line 19).

After considering x’s abilities to support g, the algorithm also considers other agents’
services to find alternative ways of supporting g. For this purpose, the algorithm checks x’s
beliefs to find matching services of other agents that can be used to support g. For each match-
ing service Sx (y, d, r ′) and for each corresponding incentive Ix (y, w, r ′′), the algorithm first
creates a goal queue G′ (line 23) and adds every precondition q ∈ getConditions(d) of the
service and the corresponding incentive w as a goal into the queue (lines 24–27). Then, the
algorithm calls itself to find support for these goals (line 28). Finally, the algorithm adds the
commitment C(y, x, d ∧ w, r) to each protocol in P′ returned by the recursive call and adds
these modified protocols to P (lines 29–32).

Once all the abilities of x and other agents’ services have been considered, the algorithm
adds an entry to M for g, noting that g can be achieved using the protocol set P, which means
that if the algorithm has to consider g again later, it can reuse these protocols (line 35). Finally
the algorithm returns P (line 36).

3.3 Formal results

We now consider formal properties of the algorithm. We prove these results for the Goal-
Basedalgorithm (Algorithm 2), since this is the algorithm that we use. The two algo-
rithms do, in fact, generate the same protocols (and hence the results below also apply
to the first algorithm). However, we do not give a proof for the equivalence of the two
algorithms.

We begin with soundness. Intuitively, the algorithm is sound if all protocols generated
are able to support the generating agent’s goals. Note that whereas the notion of support
(Definition 8) takes a given protocol and assesses whether a given condition is supported with
respect to the protocol, the algorithms are given the goals, and generate possible protocols,
which contain commitments that allow the goals to be supported.
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Definition 9 (Soundness) Algorithm 2 is sound iff any protocol that it generates contains
sufficient commitments to support all of the propositions in the agent’s goals. Formally: Let
P = GoalBased (x .G,∅), then we have ∀p ∈ P : x, p � d where d = ∧

Gx (r)∈x .G r is a
conjunction of the agent’s goals.

We now prove that the algorithm is sound.

Theorem 1 (Soundness) Algorithm 2 is sound (see Definition 9).

Proof see Appendix. 
�
We now turn to completeness. One slight complication is that Definition 8 allows for an

infinite number of possible protocols that support a given condition, including all supersets of
a given protocol: given any commitment set C such that x, C � r , we also have that x, C′ � r
holds for any C′ that is a superset of C (C ⊂ C′). We therefore define completeness relative
to a minimal set of commitments that supports a given proposition r .

Definition 10 (Minimal commitment set) Given a condition r , we define C to be a minimal
commitment set supporting r if x, C � r , where additionally there does not exist a (strict)
subset of C (C′ ⊂ C) such that x, C′ � r . We realize this restriction by defining a variant of
definition 8, denoted x, C �̂ r , that constrains the set of commitments to be only as large as it
needs to be. That is, in the first case (x, C �̂ �) the only minimal commitment set is C = ∅.
Similarly, in the second case, if Ci and C j are both minimal for respectively supporting di

and d j , then we construct a minimal commitment set for supporting di ∧ d j by merging Ci

and C j . The first part of the last case is straightforward: if C is minimal for supporting d , then
it is also minimal for supporting r . Finally, if C′ is a minimal commitment set that supports
d ∧ w, then we can obtain a minimal commitment set for supporting r by adding to C′ the
commitment C(y, x, d ∧ w, r).

x, C �̂ � iff C = ∅
x, C �̂ di ∧ d j iff x, Ci �̂ di and x, C j �̂ d j and C = Ci ∪ C j

x, C �̂ r iff Ax (d, r ′) ∈ A and r ′ ⇒ r and x, C �̂ d

or Sx (y, d, r ′) ∈ B and r ′ ⇒ r and Ix (y, w, r) ∈ B
and x, C′ �̂ d ∧ w and C = C′ ∪ {C(y, x, d ∧ w, r)}

We now define completeness relative to the minimal commitment set. The intuition is that
the algorithm is complete if it returns all minimal commitment sets.

Definition 11 (Completeness) Algorithm 2 is complete iff given the agent’s goals and corre-
sponding condition d =∧

Gx (r)∈x .G r , for any minimal set of commitments C such that x, C
supports the agent’s goals according to Definition 10 (i.e. x, C �̂ d), the algorithm returns C
in its set of protocols generated. Formally, given x .G and the corresponding d:

x, C �̂ d ⇔ C ∈ GoalBased (x .G,∅)
We now show that the algorithm is complete.

Theorem 2 (Completeness) Algorithm 2 is complete (see Definition 11).

Proof see Appendix. 
�
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3.4 Comparison of algorithms and experimental results

The ProtocolBased and GoalBasedalgorithms generate the same protocols. We present
the protocols that are generated by these algorithms for our running example in Table 5.
Protocol p1 includes a single commitment from the merchant to the customer in order to
support the customer’s goal HaveFurniture. However, the customer should bring about
FurniturePaid to make this commitment active. In other words, the customer has to support
FurniturePaid . The customer supports this condition by its ability a6. Hence, there is no
need for another commitment in this protocol. In p2 and p3, the customer’s goal is supported
by the commitment of the first builder to the customer to build the furniture. However,
the customer has to support Bui1 Materials Provided in order to make this commitment
active, but the customer is not able to do that, since she does not have the necessary materials.
Accordingly, p2 and p3 include a commitment from the retailer to the customer for provision
of the materials, with alternative incentives Materials Paid (n1) and T ools Paid (n4).
Finally, protocols p4− p7 include a commitment from the second builder to the customer to
support the customer’s goal. However, the customer has to provide tools (T ools Provided) as
well as materials to the second builder to make this commitment active. Since the customer is
not able to provide either of them, these protocols include two commitments from the retailer
to the customer, one to support provision of the materials and one to support provision of the
tools. Each of these protocols uses different incentive in their commitments to stimulate the
retailer to provide the materials and tools.

Although both ProtocolBased and GoalBasedalgorithms generate the same protocols
for a given input, there are significant differences in their strategies to generate the protocols.

Table 5 Generated protocols for the running example

p1 C(Mer , Cus, FurniturePaid, HaveFurniture)

p2 C(Ret, Cus, Materials Paid, HaveMaterials)

C(Bui1, Cus, Bui1 Materials Provided ∧ Bui1 Paid, HaveFurniture)

p3 C(Ret, Cus, T ools Paid, HaveMaterials)

C(Bui1, Cus, Bui1 Materials Provided ∧ Bui1 Paid, HaveFurniture)

p4 C(Ret, Cus, Materials Paid, HaveMaterials)

C(Ret, Cus, T ools Paid, HaveT ools)

C(Bui2, Cus, Bui2 Materials Provided ∧ T ools Provided ∧ Bui2 Paid,

HaveFurniture)

p5 C(Ret, Cus, T ools Paid, HaveMaterials)

C(Ret, Cus, T ools Paid, HaveT ools)

C(Bui2, Cus, Bui2 Materials Provided ∧ T ools Provided ∧ Bui2 Paid,

HaveFurniture)

p6 C(Ret, Cus, Materials Paid, HaveMaterials)

C(Ret, Cus, Materials Paid, HaveT ools)

C(Bui2, Cus, Bui2 Materials Provided ∧ T ools Provided ∧ Bui2 Paid,

HaveFurniture)

p7 C(Ret, Cus, T ools Paid, HaveMaterials)

C(Ret, Cus, Materials Paid, HaveT ools)

C(Bui2, Cus, Bui2 Materials Provided ∧ T ools Provided ∧ Bui2 Paid,

HaveFurniture)
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The ProtocolBased algorithm uses a depth-first traversal strategy to create a tree structure,
in which each edge from a goal to a sub-goal represents a commitment and each path from the
root to a leaf corresponds to a complete protocol. Accordingly, the ProtocolBased algo-
rithm generates a complete protocol at a time. On the other hand the GoalBasedalgorithm
uses the divide-and-conquer strategy. Accordingly the GoalBasedalgorithm divides its goal
queue repeatedly until the queue contains only a single goal and then generates a sub-protocol
for that individual goal. Then these sub-protocols are merged into larger sub-protocols repet-
itively until a complete protocol is generated.

The major advantage of the GoalBasedalgorithm is reuse of the sub-protocols in different
alternative protocols via memoization. Consider for example the protocols p4 and p6. To
support the customer’s goal Bui2 Materials Provided , both of these protocols include the
commitment C(Ret, Cus, Materials Paid, HaveMaterials). Once this commitment is
generated in the context of one of these protocols by the GoalBasedalgorithm, it can
be reused whenever it is necessary to support Bui2 Materials Provided in the context of
another protocol. On the other hand, in the case of the ProtocolBased algorithm such
modularity cannot be achieved effectively, since every protocol is generated as a whole,
without taking the relations between goals and sub-protocols into account. Another advantage
of the GoalBasedalgorithm is elimination of the auxiliary isSupported function, which
is used in the ProtocolBased algorithm, in order to determine whether a goal is already
supported or not. In the GoalBasedalgorithm this check is not necessary, since memoization
handles already supported goals implicitly. More specifically, if an already supported goal
was added to the goal queue and reconsidered by the algorithm, the sub-protocols that support
the goal would be available in the mapping M and returned immediately by the algorithm.

In order to justify the above discussion and test the execution performance of our algo-
rithms we conduct computational experiments. To the best of our knowledge there does not
exist any large data set of commitment protocols for testing in the literature. Hence, we
conducted our experiment on a data set we generated parametrically.

The basic idea of this generation process is that we begin with a number of top-level goals.
We then repeatedly consider the goals, and for each goal generate services with preconditions
that can be used to fulfil the goal’s condition, and incentives that can be used to motivate the
other agent to adopt the commitment to provide its service. Once services and incentives are
generated, the propositions of the generated services and incentives are considered as new
goals and in the next iteration these new goals are handled by other services and corresponding
incentives. In other words the generation process follows the following outline:

(1) Generate initial goal(s).
(2) For each goal that has not yet been considered: generate services and incentives for it.
(3) For each generated service and incentive, create new goals to achieve the services’

preconditions and the incentives’ conditions.
(4) Go to step 2.

Now, this process clearly does not terminate, and so we modify it by only iterating a certain
number of times, and then finishing the generation by creating for each goal that has not yet
been considered an ability (with a true precondition) that allows the agent to achieve the goal.

This process generates a set of services (S), incentives (I), and abilities (A) that can be
used to create support for a given number of initial goals of an agent x . In generating the
services, incentives and abilities, we use a number of parameters to control the generation.
These are summarised in Table 6. Most of the parameters control the number of entities
generated at different points in the process (e.g. γ is the number of initial goals created in
the first step above, σ is the number of services created in step 2 above, etc.). The exception
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Table 6 Summary of parameters
to generate the experimental data
set

Parameter Description

γ Number of initial goals.

σ Number of services that can be requested from other
agents to achieve a goal.

ρ Number of preconditions required to use a service.

ε Number of possible incentives that can be offered to
the provider for each service.

λ Controls when a goal can be achieved using an
ability that has no precondition, instead of a
service.

Table 7 Example service and
incentive data generated using
γ = 1, σ = 2, ρ = 1, ε = 1 and
λ = 3

Level Services Incentives Abilities

1 s1 = Sx (y, r2, r1) n1 = Ix (y, r4, r1) None

s2 =Sx (y, r3, r1)

2 s3 = Sx (y, r5, r2) n2 = Ix (y, r7, r2) None

s4 = Sx (y, r6, r2)

s5 = Sx (y, r8, r3) n3 = Ix (y, r10, r3)

s6 = Sx (y, r9, r3)

s7 = Sx (y, r11, r4) n4 = Ix (y, r13, r4)

s8 = Sx (y, r12, r4)

3 None None a1 = Ax (�, r5)

.

.

.

a9 = Ax (�, r13)

is λ which specifies the number of iterations, i.e. if we consider the generated problem as a
tree of goals, then λ specifies the depth of the tree.

Table 7, shows an example set of services, incentives and abilities generated using our
data generation algorithm with the following parameter values: γ = 1, σ = 2, ρ = 1, ε = 1
and λ = 3. First we use γ to determine the number of initial goals, which is equal to one.
Hence, initially we generate only one goal to achieve the proposition r1. In the first iteration
we generate two services s1 and s2 to achieve r1, since σ is equal to two. Since ρ is equal to
one, a single precondition is generated for s1 and s2, namely r2 and r3, respectively. Finally,
since ε = 1, a single incentive over r4 is generated for the services that bring about r1. As
result of the generation of services s1 and s2, new goals for propositions r2 and r3, which are
the preconditions of these services, are also generated. Similarly, a goal for r4 is generated,
because of n1. In the second iteration we generate the services and incentives for r2, r3 and r4

as listed in Table 7 using the same method as in the first iteration. As a result of the generated
services and incentives in the second iteration, new goals for propositions r5 − r13, which
are the preconditions and incentives of the generated services, are introduced for the third
iteration. However, in the third iteration we generate abilities instead of services for these
goals, since iteration limit λ is reached.

Algorithm 3 defines our data generation process in detail, which returns a set of services
(S), set of incentives (I), and set of abilities (A), generated using the process outlined above,
and controlled by the parameters summarised in Table 6.
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Algorithm 3 Data generation procedure with parameters γ, σ, ρ, ε, λ.
1: S← ∅, I← ∅, A← ∅
2: currentGoals ← {Gx (r1), . . . , Gx (rγ )}
3: i ← γ + 1
4: for l ← 1 to λ− 1 do
5: nextGoals ← ∅
6: for all g ∈ currentGoals do
7: //g = Gx (r)

8: start← i // remember where we started generating propositions
9: for j ← 1 to σ do
10: S← S ∪ {Sx (y, qi ∧ . . . ∧ qi+ρ−1, r)}
11: i ← i + ρ

12: end for
13: I← I ∪ {Ix (y, qi , r), . . . , Ix (y, qi+ε−1, r)}
14: i ← i + ε

15: nextGoals ← nextGoals ∪ {Gx (qstart), . . . , Gx (qi−1)}
16: end for
17: currentGoals ← nextGoals
18: end for
19: for all g ∈ currentGoals do
20: //g = Gx (r)

21: A← A ∪ {Ax (�, r)}
22: end for
23: return S, I, A

The algorithm first generates the set of initial goals for x and keeps them in currentGoals
(line 2). The number of initial goals is determined by the parameter γ . Then the algorithm
generates the services and incentives that can be used to support the goals in currentGoals.
For each goal, the algorithm generates a set of services provided by some agent y (lines
6–12). The number of services is controlled by the parameter σ (line 9). For each generated
service, the algorithm generates a set of preconditions and the number of preconditions is
determined by the parameter ρ (line 10). Next, the algorithm generates a set of incentives for
the current goal g, where the number of incentives is controlled by the parameter ε (line 13).

Remember that in our algorithms ProtocolBased and GoalBased , once a commit-
ment is generated to guarantee provision of a service to support a goal in the context of a
protocol, the preconditions of that service and of the incentive are added to the goal queue
of the algorithm in order to find support for them. Accordingly, while generating our data
set, we generate supporting services and abilities for preconditions and incentives of gen-
erated services. In order to achieve that, we generate a new goal for each precondition and
incentive (line 15). These new goals are kept in a separate set called nextGoals. Once we
generate services and incentives for all the goals in currentGoals, we replace the goals in
currentGoals with the goals in nextGoals (line 17) and generate services and incentives
to support these new goals in the next iteration. In this way the data generation algorithm
iteratively creates services for the preconditions and incentives created in the previous iter-
ation. In order to control the number of such iterations we use λ. Once the algorithm makes
λ− 1 iterations, it stops generating new services for the preconditions and incentives of the
previous iteration. Instead, the algorithm generates an ability, which has no precondition,
in order to satisfy the preconditions and incentives of the previous iteration. Hence, these
preconditions and incentives can be supported by the agent’s abilities without requiring any
other commitment.

Note that this algorithm generates a set of services and incentives for the worst possible
case. That is, there is no duplication of preconditions and incentives for different services.
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Fig. 3 Comparison of execution times of the ProtocolBased and GoalBasedalgorithms based on the
number of available services for each goal

Hence, our protocol generation algorithms should always generate a new protocol for each
utilized service, while working on this data.

In the rest of this section we present results of our experiments. We implemented2

both ProtocolBased and GoalBasedalgorithms and the data generation algorithm we
explained above in Java. We performed our experiments on an Intel i7-2620 2.7 GHz proces-
sor with 2 GB memory running Ubuntu 11.04 Linux. Each time measurement reported is the
average of thirty runs.

In our first experiment we observed the effect of the σ parameter on the execution perfor-
mance of our algorithms. This parameter controls the number of different services that can
be used to support each goal. Since we generate an alternative protocol for each service, this
parameter has a direct impact on the number of alternative protocols that can be generated. In
order to investigate this issue further we conducted an experiment where we took the initial
value of σ as 1 and then increased it up to 10, while measuring the execution time of our
algorithms (in milliseconds). In this experiment we fix the other parameters as γ = 1, ρ = 2,
ε = 2 and λ = 3. In other words, there is initially one goal. Each service has two precon-
ditions, hence whenever a service is used, two new goals are introduced. Given a service,
there are two alternative incentives, hence two alternative protocols are generated for each
service. Note that we selected these particular values for other parameters after conducting
trials with different values. For larger values of these parameters, the search space (i.e., num-
ber of services and incentives) grows rapidly and it is not possible for us to observe how the
ProtocolBased algorithm performs, since it does not terminate in a reasonable amount
of time (e.g., in 10 min). On the other hand, for smaller values, the difference between the
algorithms’ performance is not adequate to make any conclusions (e.g., a few milliseconds).

We show the results of the experiment in which we observe the effect of σ in Fig. 3. In the
figure the x-axis is the number of services that can be requested for each goal and the y-axis
is the execution time in milliseconds. The execution time of the ProtocolBased algorithm
grows exponentially. On the other hand the GoalBasedalgorithm scales well even for 10
services per goal. Note that in practice we would expect to see that a given goal typically has

2 The code is available from: http://mas.cmpe.boun.edu.tr/akin/protgen.html
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a relatively low number of different service types that could be used to achieve it. In other
words, 10 possible service types per goal is quite a high value. In order to verify that the
difference between the execution time of ProtocolBased and GoalBased is statistically
significant, we conducted t-tests on the mean execution times (over thirty runs) of these
algorithms for each different value of σ . In these t-tests our null hypothesis is “for a given σ ,
execution time of ProtocolBased and GoalBasedare not different” and our alternative
hypothesis is “for a given σ , execution time of GoalBased is faster than ProtocolBased”.
The results of the t-tests show that for σ = 1 we have p < 0.05 and for σ ≥ 2 we have
p < 0.005. Hence, we reject the null hypothesis for all the reported σ values and conclude
that GoalBased is significantly faster than ProtocolBased.

By examining the execution traces of our algorithms, we conclude that the main reason
for this performance difference between the algorithms is the reuse of sub-protocols by the
GoalBasedalgorithm. The ProtocolBased algorithm generates the same sub-protocols
many times in different protocols. On the other hand the GoalBasedalgorithm reuses previ-
ously generated sub-protocols effectively to avoid redundant computation. In order to exam-
ine this issue in detail, we conducted another experiment, in which we fixed the number of
alternative services and used different values for ρ and ε. These parameters have the follow-
ing effects on the execution of our algorithms. If there are two incentives n1 and n2 for a
service (i.e., ε = 2), then our algorithms generate two alternative protocols for each service,
such that each protocol includes a commitment that contains one of these incentives to use
the service. On the other hand, since both protocols use the same service, all the precondi-
tions of this service should be supported by both protocols. For example, if there are two
incentives n1 and n2 for a goal and two preconditions r1 and r2 for the service that brings
about the goal, then there are two protocols, such that the first protocol supports n1, r1 and r2,
and the second protocol supports n2, r1 and r2. Since the ProtocolBased algorithm does
not reuse sub-protocols, for this example it has to find support for r1 and r2 separately for
each protocol. More generally, when ε grows, the number of redundant computations of the
ProtocolBased algorithm also grows, since more incentives means more protocols. On the
other hand, ρ determines the total number of preconditions for a service and a higher value
for ρ also results in more redundant computation done by the ProtocolBased algorithm
for each protocol, since there are more preconditions to be supported.

We present our results in Fig. 4. Each sub-figure shows the execution time of the Proto-
colBased and GoalBasedalgorithms for different values of ε (i.e., number of incentives)
between one and five. Additionally, in each sub-figure the value of ρ (i.e., number of precon-
ditions) is different. Specifically, ρ is equal to one, two and three in Fig. 4a–c, respectively.
For this experiment, we use the other parameters γ = 1, σ = 3 and λ = 3. In Fig. 4a the
number of preconditions for each service is just one. Hence, the time required to find support
for a service’s precondition is short. Accordingly, even though the amount of redundant com-
putation increases with the number of incentives, the ProtocolBased algorithm’s execution
time still increases almost linearly. However, as Fig. 4b, c show, when the time required to
find support for a service’s precondition is longer, since there are more preconditions, the
total execution time of the ProtocolBased algorithm grows exponentially with the number
of incentives. On the other hand, for all ε and ρ values, the GoalBasedalgorithm scales
well. In order to verify that the difference between the execution time of ProtocolBased
and GoalBased is statistically significant, we conducted t tests on the mean execution times
(over thirty runs) of these algorithms for each different combination of ε and ρ values. In
these t tests our null hypothesis is “for a given ε and ρ value, execution time of Protocol-
Based and GoalBasedare not different” and our alternative hypothesis is “for a given ε and
ρ value, execution time of GoalBased is faster than ProtocolBased”. The results of the
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Fig. 4 Comparison of execution
times of the ProtocolBased
and GoalBasedalgorithms
based on the number of
preconditions (ρ) and incentives
(ε) for each service
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t-tests show that for every combination of ε and ρ we have p < 0.005. Hence, we reject the
null hypothesis for all the reported combinations of ε and ρ and conclude that GoalBased is
significantly faster than ProtocolBased.

4 Protocol ranking

After the protocols are generated, the next phase in our framework is for the agent to evaluate
these protocols and rank them to reflect its own preferences. The ranking results are used to
guide the agent that generated the protocols (e.g., in our running example, the customer) in
selecting and offering a protocol to the potential participants, since essentially the ranking
captures how preferred each protocol is. Different agents might have different strategies to
utilize these rankings. For example, an agent might begin by offering its most preferred
option, and if it is rejected, it can proceed to offer its second most preferred option, i.e., the
agent slowly concedes over his preferences. An alternative customer agent that is hoping to
reach an agreement early on, may prefer to offer a protocol that is more likely to be accepted
by the retailer. Various negotiation techniques can be applied at this step to decide on the
protocol that will be chosen by the participants [14].

Ranking the protocols then means evaluating each protocol based on a set of criteria. We
employ two important criteria: the utility of a protocol, how beneficial the protocol is when
the benefit and the cost are considered, and the risk-discounted utility of a protocol, the utility
taking into account risk. Note that since both of these criteria are subjective, the rankings of
the same protocols for different agents might vary. That is, two different agents may have
different rankings of a given protocol.

The utility of a protocol for an agent reflects how much an agent would gain by enacting
the protocol. The utility is basically the difference between the benefit of the protocol and
its cost (utility = benefit − cost). Intuitively, each agent would want to maximize its utility,
given that two protocols achieve the same goals. There may also be some protocols that are
not acceptable to a given agent, i.e., if the utility is negative (i.e. the cost exceeds the benefit).

The risk-discounted utility extends the utility by also considering risk. Since various agents
are involved in enacting the protocol, it is possible for some of the agents to fail to fulfill
their commitments. This means that the expected benefit may not be realised. We therefore
extend the definition of utility by discounting the benefits based on the risk of the protocol.
The risk of a protocol is based on how trustworthy the agents enacting the protocol are for
the various services that they provide in the context of the protocol. If all agents are fully
trustworthy, then there is no risk associated for a protocol. In that situation, risk-discounted
utility is equivalent to utility. However, if any of the agents in the protocol are somewhat
untrustworthy, then the protocol would be in risk, and the expected utility of the protocol
may be jeopardized.

4.1 Utility of protocols

We define the utility of a protocol in terms of the benefit that the agent may derive from the
protocol’s successful enactment, discounted by the cost that the agent incurs in playing its
part in the protocol (i.e. utility = benefit − cost). As noted earlier, this means that the utility
of a protocol is specific to an agent: in assessing benefit vs. cost, an agent is considering the
benefit that it derives, and the costs that it incurs.

We assume that we know the cost of each service [denoted costx (Ax (d, r))]. For example,
the customer, may incur a cost of 5 units in providing tools [that is, costCus(a1) = 5], a cost
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Table 8 Cost of services and
benefit of relevant propositions
from customer’s perspective

Ability Cost

a1 = ACus (HaveTools, ToolsProvided) 5

a2 = ACus (HaveMaterials, Bui1MaterialsProvided) 1

a3 = ACus (HaveMaterials, Bui2MaterialsProvided) 1

a4 = ACus (�, MaterialsPaid) 2

a5 = ACus (�, ToolsPaid) 3

a6 = ACus (�, FurniturePaid) 12

a7 = ACus (�, Bui1 Paid) 4

a8 = ACus (�, Bui2 Paid) 5

Proposition Benefit

HaveFurniture 15

HaveTools 8

HaveMaterials 0

of 1 in providing materials to either builder (a2 and a3), and a cost of 2 in paying for materials
(a4). These (and other) example costs are summarised in Table 8. In fact, when assessing the
utility from a given agent’s perspective, the costs are incurred from the services of that agent,
i.e. from its abilities.

Given the costs of using services, we define the cost of a proposition as the maximal
possible cost over the services that could be used to bring about the proposition. We use a
maximum since in general we may not be able to decide or control which service is usable
to achieve the desired property. Formally:

costx (r) = max
Ax (d ′,r ′)∈A∧r ′⇒r

costx (Ax (d
′, r ′))

We also assume that each agent is aware of the benefit that it derives from each proposition
[benefitx (r)]. For example, the customer agent may derive a benefit of 15 units from having
furniture [i.e. benefitCus(HaveFurniture) = 15], a benefit of 8 from having tools, and no
benefit from having materials (see Table 8). Note that agents do not need to know each other’s
assigned benefits.

To calculate the overall cost (respectively benefit) of a protocol we need to consider
the overall set of propositions involved, and then sum their costs (respectively benefits).
We can’t just calculate the cost for each commitment and then add them up, because a
proposition that occurs in more than one commitment is only achieved once. For exam-
ple, in protocol p5 (see Table 5), the customer only pays for tools once, even though
T ools Paid appears in two commitments in the protocol. In other words, we compute the
cost (respectively benefit) of a protocol by accumulating the relevant propositions in the
protocol, then working out what services are needed, and finally working out their costs
(respectively benefits). For example, to derive the cost of protocol p5 from the customer’s
perspective, the relevant propositions (that the customer has to bring about) are T ools Paid ,
Bui2 Materials Provided , T ools Provided , and Bui2 Paid . Each of these propositions
in fact can only be achieved by a single ability (respectively a5, a3, a1 and a8). Given the
example costs in Table 8, we have that the cost of p5 from the customer’s perspective is just:
costCus(a5)+ costCus(a3)+ costCus(a1)+ costCus(a8) = 3+1+5+5 = 14. On the other
hand, the benefit of p5 from the customer’s perspective is the benefit of the relevant propo-
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sitions, which are HaveMaterials, HaveT ools and HaveFurniture, giving a benefit of
0+ 8+ 15 = 23, and the utility of p5 is then 23− 14 = 9.

Formally, we define the utility of a protocol p that was derived to achieve goals G, from
the perspective of agent x [denoted utilityx (p)] as follows:

utilityx (p) = benefitx (p)− costx (p)

benefitx (p) =
∑

r∈m∪g

benefitx (r) (1)

where m =
⋃

c∈p

relbenefit
x (c) and g = {r | Gx (r) ∈ G}

costx (p) =
∑

r∈m

costx (r)

where m =
⋃

c∈p

relcost
x (c)

Note that when calculating the benefit we also include the top-level goals g: these goals are
achieved by all of the protocols, but are not always explicitly a condition within the commit-
ments generated. Given the utility of a protocol, we conclude that a protocol is acceptable if
it has a non-negative utility.

The definitions above make use of a notion of relevant propositions which we now define.
The intuition is that when considering the cost of a commitment C(x, y, d, r) from the
perspective of agent x then, since x is responsible for bringing about r , the relevant proposition
for cost is r . Similarly, from the perspective of agent y, the relevant proposition for cost
calculations is d . On the other hand, when considering the calculation of benefit, this is
reversed: the relevant proposition from the perspective of x when calculating benefit is d , and
from y’s perspective it is r . Formally, we define this using auxiliary functions relcost

x (c) (for

cost) and relbenefit
x (c) (for benefit). In essence, the function relcost

x (c) extracts the propositions
that agent x is responsible for bringing about, since these are the basis for the costs that the
agent will incur when the protocol is enacted. If x is the debtor, then it is responsible for the
consequent of the commitment, if it is the creditor then it is responsible for the antecedent,
and if x is neither the debtor nor creditor then it does not have any responsibilities with
respect to c (i.e. relcost

x (c) = ∅). Note that if the antecedent is a conjunction then we break it

up (first case below). We also define a reversed function (denoted relbenefit
x ) that extracts the

propositions that the agent will benefit from. Formally, we have:

relcost
x (C(x1, x2, q1 ∧ · · · ∧ qn, r)) =

⋃

i=1,...,n

relcost
x (C(x1, x2, qi , r))

relcost
x (C(x1, x2, q, r)) =

⎧
⎪⎨

⎪⎩

{r}, if x = x1

{q}, if x = x2

∅, otherwise

relbenefit
x (C(x1, x2, q1 ∧ · · · ∧ qn, r)) =

⋃

i=1,...,n

relbenefit
x (C(x1, x2, qi , r))

relbenefit
x (C(x1, x2, q, r)) =

⎧
⎪⎨

⎪⎩

{q}, if x = x1

{r}, if x = x2

∅, otherwise
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Example values for costs and benefits are given in Table 8. These values were
picked to reflect realistic assumptions about our example. For instance, having furniture
(HaveFurniture) has the highest benefit, since this is the ultimate goal of the customer.
Having tools (HaveT ools) has some benefit since tools can be reused but yields less benefit
compared to having the furniture. Having materials by itself has no benefit. The scenario that
we model assumes that tools are provided as a temporary loan, so the benefit from having
tools (HaveT ools) is realised even in protocols that involve providing (i.e. lending) the tools
to the builder (i.e. making T ools Provided true).

In terms of costs, we select costs that make sense for the domain. Specifically, we select
costs that make buying furniture from the merchant cheaper than the combined cost of obtain-
ing tools, materials, and paying the second builder (but the first builder is still cheaper, since
only materials need to be provided). However, if the agent already has tools and materials,
then paying the second builder is cheaper than buying ready-made furniture from the mer-
chant. Specifically, if the customer does not already have tools and materials, then the cost
of obtaining the furniture is less than the costs of first obtaining materials (a4 = 2) and tools
(a5 = 3), then providing the tools (a1 = 5) and the materials to the second builder (a3 = 1)
and finally paying for assembly (a8 = 5). However, if the customer already has materials
and tools, then the cost of buying furniture (a6 = 12) is greater than the combined costs
of providing the materials to the builder (a3 = 1), providing tools (a1 = 5) and paying for
assembly (a8 = 5).

Table 9 provides an evaluation of the generated protocols. The first three labelled columns
denote the benefit, cost and utility of the protocol, respectively and the remaining columns,
the respective ranks (i.e., the protocol with the lowest cost has Cost Rank of 1, and the
protocol with the highest utility has Utility Rank of 1; ties are split: e.g. p4 and p7 have the
same cost, and so instead of ranking them as 6th and 7th, they are both given rank 6.5).

The cost by itself is an important indicator for a protocol, since it is a bound on the worse
case. If other agents fail to fulfil their commitments, then this is the highest possible cost
that the agent will pay whilst receiving no benefit. Note that this “worst case scenario” may
actually be too pessimistic. For example, in p4, if the retailer fails to fulfil its role (the first
two commitments, making HaveMaterials and HaveT ools true) then the customer will
not be able to proceed to interacting with the builder. So in this case even though the cost of
the protocol is 16, this cost can only be incurred if the retailer plays its role, in which case
even if the builder fails, the customer still derives some benefit from having tools. The dual
of this is the “best case scenario” when everyone fulfils their commitments. In that case, the
agent will also receive some benefit and the overall gain will be reflected in the utility. For
example, even though p4 incurs the highest cost, it is not the worst protocol in terms of utility
since it has a benefit of 23 and the overall utility comes out to be 7. On the other hand p1

Table 9 Customer’s evaluation
of protocol utility

Benefit Cost Utility Cost Rank Utility Rank

p1 15 12 3 3 7

p2 15 7 8 1 3

p3 15 8 7 2 5

p4 23 16 7 6.5 5

p5 23 14 9 5 2

p6 23 13 10 4 1

p7 23 16 7 6.5 5
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is the worst protocol in this respect, since even if all the agents fulfil their duties, the gain is
only 3.

4.2 Incorporating risk

As expected, looking from the worst-case and the best-case ranks the protocols differently.
The next obvious question is how likely is the worst-case? This intuitively will help us
understand how risky a protocol is. In this section we extend the definition of benefit to
include a risk assessment. In essence, we discount a given benefit by the risk that the benefit
may not be realised.

Note that in the discussion below we are always calculating risk from the point of view
of the agent that generates the protocol. This is because, in effect, the generating agent (e.g.
customer) takes on all the risk. For other agents, e.g. builder, or retailer, all the commitments
are of the form C(me, Cus, d ∧ w, r), in other words, the builder or retailer is only committed
to do something after the customer has done its part, including providing an appropriate
incentive. This means that there is no risk: if the precondition and incentive are not brought
about, then the agent is not committed to act, since the commitment is still conditional.

In order to quantify the risk of a protocol, we start from the trust relation among the
agents that are involved in that protocol. In general, an agent’s trust in another depends on
the particular service in question. An agent might trust a retailer for delivering furniture
but may not trust him or her for actually assembling the furniture. Hence, we consider the
trust of an agent x for another agent y with respect to a particular service s, denoted as
Tx (y, Sx (y, d, r)) ∈ [0, 1]. This trust value represents how likely y is to complete service
Sx (y, d, r) from agent x’s perspective. As is customary in the trust literature, we assume that
the higher values represent more trust, whereas lower values represent low trust. Hence, a trust
value of 1 would mean that agent x believes y would definitely carry out the service, whereas
a trust value of 0 would mean that x believes y will definitely not carry out the service. In
general, the trust value is updated dynamically based on the outcomes of agents’ interactions
or new information coming in about the agent from other (trusted) sources. There are many
existing mechanisms in the literature for managing and disseminating trust (e.g. [19,20,23]).
Here, we assume that the agent has such a mechanism to maintain an accurate trust evaluation
of other agents.

The actual values of Tx (y, Sx (y, d, r)) are subject to a number of constraints. First, since
we consider trust between agents based on a particular service, agent x can only consider y
trustful for a service s which x believes y provides, formally, if Sx (y, d, r) �∈ B (recall that
B is the agent’s beliefs about other agents’ services) then Tx (y, Sx (y, d, r)) = 0. Second,
if the service is trivial, then trust is always 1, formally, Tx (y, Sx (y, d,�)) = 1. Third, an
agent always trusts itself, formally, Tx (y, Sx (y, d, r)) = 1 if x = y. Note that to simplify
the definitions in this section we assume for convenience that for any ability that an agent
has Ax (d, r) ∈ A there is also a corresponding implicit service belief: Sx (x, d, r) ∈ B.

Given Tx (y, Sx (y, d, r)), we proceed to define the trust that an agent x has in agent y to
bring about a proposition r (denoted Tx (y, r)). This can be defined in terms of the relevant
services. One special case is that if y does not have any relevant services, then the trust is 0.
Otherwise we define Tx (y, r) by considering all the relevant services that y can use to bring
about r ′ such that r ′ implies r :

Tx (y, r) =
{

0, if ¬∃ Sx (y, d, r ′) ∈ B such that r ′ ⇒ r
⊕

Sx (y,d,r ′)∈B∧r ′⇒r Tx (y, Sx (y, d, r ′)), otherwise
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Thus, x considers all services that would enable r to be realized and combines the trust for
these services using an auxiliary function ⊕. This auxiliary function can be defined using
max, i.e. Tx (y, s1)⊕Tx (y, s2) = max(Tx (y, s1), Tx (y, s2)), meaning that the combined trust
can at most be equal to the most trusted service.

However, this definition is not complete yet: given a service Sx (y, d, r ′), in order to assess
the risk that the service will not be successfully used to bring about r ′ there are actually two
sources of risk: one is that agent y will fail to carry out its role, which is captured by the
definition above; the other source of risk is that the precondition d may not be brought about.
To capture this source of risk we define the function T p

x (y, r) [see Eq. (2) below], which is
an extension of Tx (y, r) (note the superscript p which is a parameter bound to the generated
protocol). When considering a given service, we multiply the trust in that service by the
trust that agent x has in the precondition d being achieved in the context of protocol p,
denoted T p

x (d).
The function T p

x (d) [see Eqs. (3) and (4) below] takes the protocol p as an argument,
as well as the identifier of the agent (x) and the condition that is desired (d). The function
computes the trust that x has in the condition d being achieved by other agents operating
with the protocol p. Equation (3) below simply decomposes conjunctions and accumulates
trust using an auxiliary function (“⊗”) which can be defined in a number of ways. In the
examples later we use the definition⊗ ≡ ×, where× is multiplication. Equation (4) uses the
protocol: it identifies those agents that are relevant, according to the protocol, to achieve r ,
and uses T p

x (y, r) to assess for each such agent y the level of trust that x has in y’s ability to
bring about r in the context of p. In addition to considering agents that are relevant according
to the protocol, we also consider the agent itself relevant, since the agent’s abilities are
available.

T p
x (y, r) =

{
0, if ¬∃ Sx (y, d, r ′) ∈ B such that r ′ ⇒ r
⊕

Sx (y,d,r ′)∈B∧r ′⇒r Tx (y, Sx (y, d, r ′))× T p
x (d), otherwise

(2)

T p
x (q1 ∧ q2) = T p

x (q1)⊗ T p
x (q2) (3)

T p
x (r) = T p

x (x, r)⊕
⊕

C(y,x,d∧w,r ′)∈p ∧ r ′⇒r

T p
x (y, r) (4)

Now, given that the agent can assess the trust value for a proposition, we reflect this in the
calculation of the utility, to derive an expected value on the utility. The intuition is to calculate
how likely it is that the commitment will be fulfilled, thereby yielding its expected value.
Hence, rather than using the utility measure defined earlier, we extend it by adding T p

x (r):

benefitx (p) =
∑

r∈m∪g

benefitx (r)× T p
x (r)

where m =
⋃

c∈p

relbenefit
x (c) and g = {r | Gx (r) ∈ G}

The difference here, compared with the previous definition (Eq. (1) in Sect. 4.1), is that the
benefit is being discounted based on the trust that agent x has in the ability of the condition
r to be brought about by the relevant agents in the system. Note that if the trustworthiness
(T p

x (r)) is 0, then the benefit will be 0. Conversely, if the trustworthiness is 1, then the utility
will reflect the best outcome, reflecting the “best case scenario”.
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Table 10 Customer’s trust of
services

Service Trust

s1 = SCus (Ret,�, HaveMaterials) 0.7

s2 = SCus (Ret,�, HaveTools) 0.6

s3 = SCus (Mer ,�, HaveFurniture) 0.9

s4 = SCus (Bui1, Bui1MaterialsProvided, HaveFurniture) 0.8

s5 = SCus (Bui2, Bui2MaterialsProvided ∧ ToolsProvided,

HaveFurniture) 0.2

Let us now consider how this risk-based discount of benefit applies to our example.
Suppose the customer has the following trust relations as reflected in Table 10, and consider
protocol p4 = c1, c2, c3 in Table 5, where the commitments are:

– c1 = C(Ret, Cus, MaterialsPaid, HaveMaterials)
– c2 = C(Ret, Cus, ToolsPaid, HaveTools)
– c3 = C(Bui2, Cus, Bui2MaterialsProvided ∧ ToolsProvided ∧ Bui2 Paid,

HaveFurniture)

The cost of p4 is calculated as in the previous section. We first determine the set of
relevant propositions for the customer, which is m = {Materials Paid, T ools Paid,

Bui2 Materials Provided, T ools Provided, Bui2 Paid}. We then determine the cost of
each proposition, and sum them. In this case each proposition has exactly one relevant ability
(respectively a4 with costCus(a4) = 2; a5 with cost 3; a3 with cost 1; a1 with cost 5; and a8

with cost 5), which gives a total cost of 2+ 3+ 1+ 5+ 5 = 16.
Now let us consider the discounted benefit of protocol p4. We firstly determine the set of

relevant propositions m = {HaveMaterials, HaveT ools, HaveFurniture} and the set
of top-level goals g = {HaveFurniture}. For each of the three resulting propositions, we
look up the benefit (Table 8) and compute the risk-based discount:

benefitCus(p4) = (benefitCus(HaveMaterials)× T p4
Cus(HaveMaterials))

+ (benefitCus(HaveTools)× T p4
Cus(HaveTools))

+ (benefitCus(HaveFurniture)× T p4
Cus(HaveFurniture)

= 0+ (8× T p4
Cus(HaveTools))+ (15× T p4

Cus(HaveFurniture))

We now consider the two instances of T p
x (r). For T p4

Cus(HaveT ools) we consider the com-
mitments in p4 and find that only c2 is relevant, and hence that the retailer is the only relevant
agent. Similarly for T p4

Cus(HaveFurniture) there is only a single relevant commitment (c3)
and only Bui2 is relevant. In both cases, the agent itself does not have a relevant ability, and
so the T p

x (x, r) term reduces to 0. It’s worth noting that although in general the first builder
and the retailer are also relevant to bringing about the proposition HaveFurniture, in the
context of p4, they are not relevant. We therefore have:

T p4
Cus(HaveTools)

= TCus(Ret, SCus(Ret,�, HaveTools))× T p4
Cus(�) = 0.6× 1 = 0.6

T p4
Cus(HaveFurniture)

= TCus(Bui2, SCus(Bui2, Bui2MaterialsProvided

∧ ToolsProvided, HaveFurniture))

× T p4
Cus(Bui2MaterialsProvided ∧ ToolsProvided)

= 0.2× T p4
Cus(Bui2MaterialsProvided)⊗ T p4

Cus(ToolsProvided)
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We then need to determine T p4
Cus(Bui2 Materials Provided) and T p4

Cus(T ools Provided).
In both cases there are no relevant agents according to the protocol, but the customer itself is
relevant, and we therefore consider T p4

Cus(Cus, r) which, since agents trust themselves (recall
the constraint on trust), and there is in each case a single relevant ability, reduces to T p4

Cus(d)

where d is the precondition for the ability that achieves r .

T p4
Cus(Bui2 Materials Provided)

= T p4
Cus(HaveMaterials) = TCus(Ret, s1)× T p4

Cus(�) = 0.7× 1 = 0.7

T p4
Cus(T ools Provided) = T p4

Cus(HaveT ools) = 0.6

We therefore have that

T p4
Cus(HaveFurniture)

= 0.2× T p4
Cus(Bui2 Materials Provided)⊗ T p4

Cus(T ools Provided)

= 0.2× 0.7× 0.6 = 0.084

benefitCus(p4)

= 0+ (8× T p4
Cus(HaveT ools))+ (15× T p4

Cus(HaveFurniture))

= 0+ (8× 0.6)+ (15× 0.084) = 6.06

Since the cost of p4 is 16 and the risk-discounted benefit is 6.06, we have that the overall
expected value of the utility is 6.06 − 16 = −9.94. In other words, since the customer’s
trust in the retailer is not that high, and the customer’s trust in the second builder quite low,
protocol p4 is too risky to be considered acceptable.

Table 11 shows the results for all of the protocols. It includes the risk-discounted benefit,
the cost (unchanged from Table 9), the expected value for the utility (risk-discounted benefit
minus cost), and the rank of the protocol by expected value for utility.

We see that the rank of a protocol is dependent on both the utility of the protocol and the
trustworthiness of the participating agents. Even though a protocol has a potential to create a
high utility for an agent, if others do not play their parts, the outcome might not be as desired.
By factoring in the trustworthiness of the agents, we can compute the expected values for the
utilities, which reflect a more realistic outcome. For example, if we look at p1 (in Table 9)
we see that it is the worst protocol in terms of utility; however, it is the best one in terms of
expected value for utility (Table 11). The high trustworthiness of the merchant in the protocol
means a low risk for the protocol, yielding a high overall expected value for utility. Contrast
that with p6, which is the best protocol in terms of utility (Table 9). However, the players in

Table 11 Customer’s evaluation
of protocol’s expected value for
utility

Risk-discounted
benefit

Cost Expected value for
utility

Expected
rank

p1 13.5 12 1.5 1

p2 8.4 7 1.4 2

p3 8.4 8 0.4 3

p4 6.06 16 −9.94 6.5

p5 6.06 14 −7.94 5

p6 6.06 13 −6.94 4

p7 6.06 16 −9.94 6.5
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that protocol are untrustworthy for the service they provide, yielding a lower expected value
for utility (ranked 4th in Table 11).

5 Using generated protocols

In the two previous sections we studied how an agent can generate a set of protocols to support
its goals and how the agent can rank these generated protocols combining trust and benefit.
The next phases are reaching agreement on one of these protocols to use it, and enactment
of the agreed protocol.

In order to reach an agreement on a protocol we propose a procedure in Algorithm 4 which
can be used by the agent that has generated and ranked the protocols. This section presents
an example of how the third phase, reaching agreement, can be realised. There are many
alternatives possible to the procedure that we present below.

Algorithm 4 Agreement procedure to reach an agreement on a protocol.
Require: P , list of generated protocols
1: P ′ ← order(P)

2: for all p ∈ P ′ do
3: C = ∅
4: for all C(x, y, d, r) ∈ p do
5: response← propose(x, C(x, y, d, r))
6: if response = ACC E PT then
7: C ← C ∪ {C(x, y, d, r)}
8: else if response = RE J ECT then
9: for all C(x, y, d, r) ∈ C do
10: informCancel(x, C(x, y, d, r))

11: end for
12: goto 2 // next protocol …
13: end if
14: end for
15: return p
16: end for
17: return null

In this procedure, the agent first selects one of the generated protocols. Then, the agent
proposes creation of the commitments of the protocol to the corresponding debtors. If all
the debtors accept to create the proposed commitments, an agreement is established over
the protocol. Note that the debtor only accepts to create the commitments, but they do not
actually create the commitments at this stage. Actual creation of the commitments happens
in the enactment phase.

A question that we should answer is how the agent selects the protocols that it offers to
other agents. This can be done in several ways depending on the design of the agent. For
example, the agent may first select the protocol, which has the highest utility, to offer to the
other agents. If the selected protocol is rejected (i.e., at least one debtor rejects an offered
commitment), then the agent may concede and selects the next protocol that has a lower
utility than the previously offered protocol. The agent concedes until either an agreement is
reached on a protocol (i.e., every commitment in the protocol is accepted by its debtor) or
there is no protocol left that has a positive utility for the agent. In our procedure, we do not
specify a fixed method for the ordering of protocols. Instead we use the order function that
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takes a set of protocols P and returns an ordering of these protocols with respect to some
criteria specified in the agent’s design.

Let us explain the agreement procedure we present in Algorithm 4 in detail. The procedure
requires the list of protocols (P) as input and returns the agreed protocol, or null if no
agreement is established. The function order(P) is an agent specific function, which takes
a set of protocols and returns the protocols in a specific order to offer the other agents.

The procedure iterates over P ′ and performs the following operations for each protocol
p that has a positive utility. For each commitment C(x, y, d, r) in p, the agent offers the
commitment to its debtor x using the propose function. If the debtor accepts the commitment,
it is added to the list of accepted commitments (C). Finally, if every commitment in a protocol
is accepted (i.e., there is agreement on the protocol), then the protocol is returned.

Otherwise, if at least one of the commitments in p is rejected by its debtor, the agent
omits p and concedes to the next protocol in P , which has a lower utility than p. Also
note that, when a protocol is rejected, the agent informs other debtors, who have already
accepted a commitment in the context of the protocol, about the cancellation of the protocol
using informCancel function. Finally, if the agent offers all the protocols and none of them
is accepted, then the procedure returns null, which indicates that there is no agreement on
any protocol.

Our agreement procedure is inspired by the monotonic concession procedure proposed
by Rosenschein and Zlotkin [18]. One difference in our case is that the offers are only made
by the agent that generates the protocols and the other agents only reply to the offers by
accepting or rejecting the proposed commitments.

For our running example, the customer agent orders the protocols as they are ranked in
Table 11. Accordingly, the first protocol that it would propose to the other agents is p1. In this
protocol, the only other involved agent is the merchant. If the merchant agrees to participate,
the protocol is set to be p1. If the merchant rejects the proposed protocol, then the agent
would offer its second best alternative, p2 to the retailer and the first builder. If both agree to
participate, only then p2 would be chosen as the protocol. If either one rejects, the customer
would move on to its third best choice, and so on. Once the protocol is agreed upon, then the
agents will enact the protocol as explained in Section 2.

Note that the other agents involved would themselves evaluate each proposed protocol
using an appropriate metric, such as the definition of utility that we propose here. Using such
a mechanism, each agent can decide if it would be beneficial for itself to take part in a protocol
and act accordingly. For example, from the merchant’s perspective, the utility of protocol
p1 is the benefit that the merchant derives from being paid minus the cost of providing the
furniture to the customer. This would be normally greater than zero (otherwise the merchant
would be making a loss on every sale).

6 Discussion

This paper has made a number of contributions. Firstly, we proposed that agents should be
able to generate commitment protocols at run-time and accordingly developed a framework
to enable agents to generate, rank and negotiate over protocols. Secondly, for the genera-
tion of protocols we developed two algorithms that use the generating agent’s abilities and
beliefs about other agents’ services. A distinctive feature of these algorithm is considera-
tion of incentives to persuade other agents to provide their services. We showed, using an
experimental evaluation, that the GoalBasedalgorithm, which is based on the divide-and-
conquer strategy, is more efficient than the ProtocolBased algorithm that uses depth-first
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traversal. We also proved the soundness and completeness of the GoalBasedalgorithm.
Thirdly, for the ranking of protocols we proposed a utility based calculation, using cost
and benefit. We then extended this to include risk-based discounting, using trust relations
between the agents. Applying these ranking metrics to the case study showed that even
if a protocol has a high utility, the protocol may not be as desired when the participating
agents are untrustworthy. Finally, for negotiating over protocols, we provided a concession
procedure.

This paper significantly extends our earlier work [12] which proposed an algorithm for
generating commitment protocols, but did not consider ranking. Additionally, the earlier
work did not include formal results (soundness and completeness), or an experimental eval-
uation. Furthermore, this paper defined the more efficient GoalBasedalgorithm. In addi-
tion, the older algorithm incorporated the agent’s current state into protocol generation.
Thus, the generated protocols would not always be applicable in other settings. Here, the
generated protocols are independent of the current world state. This enables the agent to
choose the protocol that best suits its current state, enabling flexibility in carrying out the
interactions.

We now review related work in three areas: protocol generation, ranking and trust, and
more broadly, the relationship between commitments and goals.

There have been a few papers that have considered, in various forms, the issue of how to
plan an effective interaction between agents. Telang, Meneguzzi and Singh [25] use Hierar-
chical Task Network (HTN) planning: given a set of agents and their goals, their objective
is to come up with a global plan to satisfy these goals. The resulting plan is a set of com-
mitments and the operations that are required to fulfil these commitments, which lead to the
achievement of the agents’ goals. By contrast, in our approach we do not aim to generate a
complete plan that specifies the operations that should be carried out by the agents. Instead,
our objective is to come up with a protocol, without enforcing agents to take certain actions.
Their approach is centralized both in terms of knowledge representation, and plan genera-
tion. In other words they assume that there is a central planner, which knows the goals and
capabilities of all agents. Besides, it is assumed that the agents’ preferences are available to
the central planner. On the other hand, in our approach the agent that generates a commitment
protocol uses only the locally available knowledge.

Alberti et al. [1] study service discovery and automatic contracting in semantic Web
services. They assume that the services advertise for their functionalities through behavioral
interfaces, which are declarative specifications. The system can then match agents to services
based on the compatibility of the agents’ expectations and the functionality of the services.
While their aim is to create matching between services and agents, our aim is to generate
protocols to fulfil a set of goals. Contrary to them, we provide a set of alternatives and rank
them based on risk and cost criteria.

Pham and Harland [17] also derive protocols to achieve a given goal based on the services
of other agents. A key difference is that their derivation of protocols is interleaved with the
protocol’s enactment. This means that it is possible for the agents to find themselves pursuing
dead ends in their interaction. Their approach does not generate all candidate protocols
(although it probably could be extended to do so) and thus does not rank the protocols.
Additionally, as they note, their framework requires expertise in temporal linear logic (an
extension of Girard’s linear logic with temporal operators, not to be confused with linear
temporal logic), which is complex, and not widely-known.

Artikis develops an infrastructure for dynamic adaption of protocols at run-time [2]. In
the proposed infrastructure a protocol is specified as a set of core rules, which are static, and
a set of dynamic rules, which can be modified at run-time dynamically by the agents. To

123



Auton Agent Multi-Agent Syst

modify a dynamic rule, agents initiate a meta-protocol and as a result of the meta-protocol’s
execution the modification is either applied or rejected depending on the decisions of the
agents. The proposed infrastructure does not specify how an alternative for a dynamic rule is
generated by an agent, which is our main focus in this study. Artikis discusses evaluation of
a modification using metric space, however this evaluation depends on shared definition of a
desired specification. We consider evaluation of a protocol from an agent’s perspective. On
the other hand, the proposed infrastructure can be used to realize our agreement procedure
on a protocol. In this respect, Artikis’ infrastructure is complementary to our work.

We now turn to considering trust and ranking of protocols. Johnson et al. [13] study
when two dialgoue-game protocols can be considered equivalent. To do this, they compare
protocols in terms of their length, the utterances they allow, and what they achieve in the end.
In our case, all protocols are generated to satisfy the same set of goals, and hence intrinsically
achieve end equivalence. Even then, we argue that protocols will vary based on the value
they offer to their users and show that protocols can be preferred over each other based on
how costly or risky they are.

Mallya and Singh [15] attack a similar problem for commitment protocols. They compare
and evaluate commitment protocols based on the runs that the protocols can generate. To
do this, they provide a commitment algebra that can reason on the various relations of runs,
such as subsumption. Through this, they can identify whether two protocols are similar or
whether one can be used in place of another one. However, they do not provide an explicit
mechanism to rank protocols as we have done here.

Yolum and Singh [33] develop a valuation function that compares commitments with each
other in terms of benefit and risk. They use the valuation function to design concession rules
that enable agents to enact an already available protocol in concession. Our focus here is
not on enactment but in ranking and agreeing on generated protocols. Hence, in this work,
once the agents have ranked the protocols, they concede over protocols (rather than single
commitments) to agree on a protocol to enact.

Singh [22] represents trust as dependence between two agents and develops a logic-based
approach to understand and reason on trust. Singh provides various reasoning postulates
on trust and compares them to those on commitments. Through this analysis, he identifies
principles for engineering agent-based software. While we are also concerned with commit-
ment and trust, we use the latter to decide which commitments are more likely to be carried
out. Hence, our notion of trust between two agents is only meaningful if the two agents are
involved in a commitment relation.

Finally, considering the broader question of the relationship between goals and commit-
ments, Chopra et al. [6] study what it means for an agent’s goals and commitments to be
compatible and whether a set of commitments can realize a goal. There, a set of commit-
ments is given and the check is performed. Here, we are generating the set of commitments
to realize a goal from scratch. There is also no ranking in their work as we have done here.
The work of Dalpiaz et al. [7] builds on this, developing a notion of adaptation, where an
agent adapts to threats or opportunities by considering variants of its goal model that are
supported by its capabilities and commitments. The paper (which unfortunately is somewhat
light on details) appears to consider subsets of the goal model, and consequently selects a
subset of the known commitments. By contrast, we provide an algorithm to generate possible
commitment protocols from the goals and domain knowledge.

Marengo et al. [16] define control of a proposition and safety of a commitment. An agent
has control over a proposition, if it can realize the proposition. They define two types of
control: innate, which means that the agent can bring about the proposition by itself, and
social, which means that the agent has a commitment to bring about the proposition from
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an agent that controls the proposition. Then, if an agent has control over the proposition(s)
that it is responsible for, due to a commitment, then the commitment is safe. Our notion of
support is analogous to this notion of control and safety. However, our notion of support is
more general since it considers both propositions and commitments together. Hence, it does
not require two separate notions. Further, we can generate support for a set of goals and rank
the produced protocols.

Our work here opens up interesting directions for future research. Perhaps the most sig-
nificant is developing a wider range of larger examples. Unfortunately, there does not exist
any repository of commitment-based protocols, or interaction problems that we could use to
benchmark our generation algorithm and ranking metrics (which is why our experimental
evaluation had to resort to synthetic generated problems). Our agreement procedure pro-
vides a basic mechanism for agents to reach agreement on one of the generated protocols.
However, our procedure does not consider some important issues, such as how agents can
negotiate when more than one agent generate protocols, and how agents can make counterof-
fers. Accordingly, we plan to develop a complete negotiation protocol in the future to handle
such issues.

There are also a number of extensions to the work. One direction is considering variations
to the benefit calculation that reflect other concerns about protocol executions. For example,
an agent that would want minimal loss in any protocol can compute all subsets of a protocol,
calculate each subset’s benefit, and require that the benefit be positive for all subsets. Another
interesting question is to explore to what extent the rankings proposed are robust against the
agent’s domain knowledge not being entirely correct. Finally, another direction could be in
incorporating rankings from different metrics.
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Appendix: formal proofs

This appendix provides the formal proofs for the theorems in Section 3.3.

Theorem 3 (Soundness) Algorithm 2 is sound (see Definition 9).

Proof we need to show that the algorithm, when given a set of goals, generates commitments
that are sufficient to ensure support for these goals. The algorithm closely follows the struc-
ture of Definition 8, and we prove the desired result by induction over the structure of the
algorithm’s first argument.

– Lines 1–2 of the algorithm correspond to the base case: if there are no propositions to be
supported, then the agent’s goals (�) are trivially supported by the empty protocol.

– Lines 3–5 correspond to the second case: the condition d1∧d2 is supported if both d1 and d2

are supported, (and more generally, d1∧· · ·∧dn is supported if all of the di are supported).
By the induction hypothesis, the recursive calls to GoalBasedyield sets of protocols P1

and P2 such that for d1 we have that for any p1
i ∈ P1 : x, p1

i � d1, and respectively for
d2 we have that for any p2

j ∈ P2 : x, p2
j � d2. Consider now pi j = p1

i ∪ p2
j (recall that

protocols are just sets of commitments, so they can be merged using set union). We have
that x, pi j � d1 and x, pi j � d2 and therefore, by the second case of Definition 8, that
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x, pi j � d1 ∧ d2 as desired. This holds for any selection of p1
i and p2

j which is exactly
what the merge in line 5 does.

– Lines 13–20 correspond to the first part of the last case of Definition 8 (agent using its
own ability): The loop in line 13 finds all cases where the first part of the condition in
Definition 8 is satisfied. Line 14 creates a fresh goal queue, and lines 15–17 decompose
d into propositions. The recursive call in line 18 generates protocols P ′ such that (by
inductive hypothesis) for all p ∈ P ′ : x, p � d . Given this, and that (as per line 13)
Ax (d, r ′) ∈ A where r ′ ⇒ r , by Definition 8 we conclude that for all p ∈ P ′ : x, p � r
as desired.

– Lines 21–34 correspond to the second part of the last case of Definition 8: The loops in
lines 21–22 find all cases where Sx (y, d, r ′) ∈ B (where r ′ ⇒ r ) and Ix (y, w, r) ∈ B. The
next few lines create a fresh goal queue, and decompose d into propositions, inserting them
into the goal queue, and then (line 27) also inserting w into the goal queue. The recursive
call in line 28 thus, by induction hypothesis, generates a set of protocols P such that for
any p ∈ P : x, p � d ∧ w. We then define P ′ = {p ∪ {C(y, x, d ∧ w, r)} | p ∈ P}. By
Definition 8 we then conclude that for any p′ ∈ P ′, we have that x, p′ � r as desired. 
�

Theorem 4 (Completeness) Algorithm 2 is complete (see Definition 11).

Proof Algorithm 2 follows Definition 10, and the proof, by induction over the structure of
the first argument to the algorithm, follows the algorithm’s structure.

– The first case of Definition 10 corresponds to lines 1–2: if there are no conditions to be
supported, then a single empty protocol is returned. This meets the completeness require-
ment: the only minimal commitment set in this case is the empty set, and this is exactly
what the algorithm returns.

– The second case corresponds to lines 3–5: given di ∧d j the algorithm is called recursively
to obtain support for each of the conjuncts. By the induction hypothesis we have that Pi

and Pj (respectively the set of protocols that support di and d j ) contain all (and only)
minimal commitment sets. The merge in line 5 selects p ∈ Pi and p′ ∈ Pj and merges
them (p∪ p′) in line with Definition 10. Hence the algorithm, which considers all possible
combinations of p and p′, generates exactly all possible minimal protocols that support
di ∧ d j .

– The first part of the last case corresponds to lines 13–20: by induction hypothesis the
recursive call generates all minimal commitment sets that support d , and, by Definition 10
these are exactly the ones that support r in this case, which is what the algorithm returns.

– The final part of the last case corresponds to lines 21–34: by the induction hypothesis the
recursive call generates all minimal commitment sets that support d ∧ w. The algorithm
then considers these commitment sets, and adds the extra commitment C(y, x, d ∧ w, r)

to each one, yielding exactly the complete collection of minimal commitment sets for r .

�
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