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Abstract
More and more, devices around us are being con-
nected to each other in the realm of Internet of
Things (IoT). Their communication and especially
collaboration promises useful services to be pro-
vided to end users. However, the same commu-
nication channels pose important privacy concerns
to be raised. It is not clear which information
will be shared with whom, for which intents, under
which conditions. Existing approaches to privacy
advocate policies to be in place to regulate privacy.
However, the scale and heterogeneity of the IoT en-
tities make it infeasible to maintain policies among
each and every entity in the system. Conversely,
it is best if each entity can reason on the privacy
using norms and context autonomously. Accord-
ingly, this paper proposes an approach where each
entity finds out which contexts it is in based on in-
formation it gathers from other entities in the sys-
tem. The proposed approach uses argumentation
to enable IoT entities to reason about their context
and decide to reveal information based on it. We
demonstrate the applicability of the approach over
an IoT scenario.

1 Introduction
Preserving privacy online is being studied extensively. In-
ternet of Things (IoT) is emerging as an area where privacy
is crucial but difficult to preserve. Important characteristics
of IoT that set it apart from other computational systems in
terms of privacy are the following:

• Dynamic: In Web-based systems, users enter the system
through well-defined means, such as logging in. With
this, it is possible to establish a common grounds, e.g.,
through a privacy policy. However, IoT vision is based
on entities being everywhere, without a central point of
entry. A human that enters a room will not be aware
of all the IoT entities, their capabilities, let alone their
policies.
• Large: Privacy policies are generally conducted between

a user and an entity. Even when creating a policy is pos-
sible, the scale of IoT makes it infeasible to realize and

maintain. Each user would have to agree to a privacy
policy from all entities. Every time a user walks into a
new environment or a new device is being installed in
an existing setting, the privacy policy has to be talked
about [Weber, 2010].

• Heterogeneous: Many of the entities in an IoT will be
from different vendors, installed for different reasons,
have varying capabilities and possibly managed by dif-
ferent principals. Hence, when an IoT entity reports on
a piece of information, the quality and accuracy of that
information may not be sufficient. For example, a sensor
can sense the existence of a human, whereas a 3D cam-
era can report on the identity as well as the recent actions
of the human. This requires information from different
entities to be treated and trusted differently [Sicari et al.,
2015].

In order to preserve privacy under these properties, it is best
if each entity can reason on the privacy of the information
it is collecting, processing, or sharing, based on the current
context. Nissenbaum’s theory on contextual integrity [Nis-
senbaum, 2004] achieves this by categorizing information as
sensitive or non-sensitive regarding the role and the social
context of a user. In each context, some types of informa-
tion are appropriate to share. For example, a medical expert
should not ask the salary of a patient in the medical context.
Hence, it is important to respect the norms of appropriate-
ness, which dictate what information to reveal and dissemi-
nate in a particular context. We follow this intuition in this
work with two main differences: (i) We enable an agent to be
in more than one context at the same time with varying de-
grees of belief. (ii) We define context using relations rather
than roles as IoT enables entities to take different parts in dif-
ferent organizations.

We represent each IoT entity as a software agent that can
perceive, reason, act and communicate with other agents.
Each agent in the system calculates the appropriateness of
sharing information with others using argumentation [Fox et
al., 2007]. Argumentation enables an agent to reason on its
existing rules, facts and assumptions. With each new infor-
mation that is received from another agent in the system, the
agent can come to a new conclusion as to which context is
active and based on that decides to share or not share the in-
formation. The collected information can be wrong or contra-
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dictory with each other. To make inference based on others’
information, a trust model needs to be in place so that the
agent can factor in the trustworthiness of the agents.

The rest of this paper is organized as follows: Section 2
develops our computational model and Section 3 explains
the agent’s autonomous decision making process. Section 4
describes our realization of the model using argumentation.
Section 5 walks through the execution on the running scenar-
ios and gives theoretical results. Section 6 discusses our work
in relation to the literature.

2 Approach
Most of the times, people are not aware that they are sur-
rounded with smart entities, which can collect their informa-
tion. For example, there are surveillance cameras in many
places where people walk by (or work in or live in). It is not
realistic to assume that each entity will be aware of all the
privacy expectations of each user separately and act accord-
ingly. Instead, each entity needs to make privacy decisions
autonomously based on information it can access. This will
result in entities to make privacy decisions. The following
example illustrates this:
Example 1. A surveillance camera at Alice’s work place
records a video 24/7. The footage is not shared with others
except when there is an emergency. Alice’s boss Bob would
like to access Alice’s footage taken on November 30, with
the claim that Alice might be in trouble and that her recent
footage might help solve the situation. The camera needs to
make a decision autonomously. Should the camera share the
footage?

On one hand, the camera has a policy not to share footage;
on the other hand, if the footage would help Alice, it might
be in Alice’s interest that it was shared.

We represent each IoT entity as a software agent that ob-
serves its physical environment, communicates with other
agents when necessary, and reasons on the information it
gathers. We primarily focus on how each agent decides to
share information autonomously taking into account the pri-
vacy aspects as necessary. To do this, we capture the idea of
context and the norms associated with them. The information
received from others enables an entity to reason on the con-
text and then apply the norms associated with that context to
decide whether to share a piece of information.

2.1 Context
Context can be defined as the necessary information to iden-
tify the situation of an entity correctly [Abowd et al., 1999].
Various pieces of information such as time (e.g., Nov30), lo-
cation (e.g., atWork), properties of the environment (e.g., fire)
and such can be used to derive context. Possible contexts in
the running example are :work context, the emergency con-
text (:em) and the :party context. By definition of context, it
is subjective; e.g., two entities in the same location and time
can be in different contexts.

More interestingly, an agent can be in multiple contexts
at the same time [Criado and Such, 2015]. Following the
example, assume that Alice and Bob are at a party at work,
talking about a recent report they wrote. Alice is at work

context because of her location and is at party context because
of the ongoing party. Because of the nature of IoT systems,
we need to allow for multiple contexts to be active at the same
time, possibly at varying degrees of belief. We achieve this
by associating degree of beliefs to possible contexts an agent
can be in. The degree of belief (dob) value is associated with
each piece of information that an agent has. The dob value
is a real value between zero and one. A high dob value of an
information shows a high confidence in that information. For
example, Alice can be at work context with a degree of 0.6
and at party context with a degree of 0.9.

In contextual integrity (CI), each context is associated with
a set of roles [Nissenbaum, 2004]. For example, in the work
context, it is possible to define roles such as boss, employee
and so on. In a single organization, it is convenient to come up
with a set of contexts and define roles in these contexts since
users can play their roles within the organization. However, in
IoT as multiple contexts exist, capturing the relations instead
of roles are more realistic [Fong, 2011].

In each context, we define a set of relationships (as op-
posed to roles in CI). In Example 1, the following relation-
ships are defined. In :work context, isBossOf is a relation-
ship between an employee and a boss (e.g., isBossOf(:bob,
:alice)). In :party context, isFriendOf relationship is defined
between people. In :em context, homeSensorOf is a relation-
ship to connect the home sensor to its owner (e.g., homeSen-
sorOf(:home, :alice)), and isResponsibleFor relates a police
officer to a person (e.g., isResponsibleFor(:jack, :alice)).

2.2 Norms
Similar to CI, in this work, agents behave according to a set
of norms that are defined in contexts. To reason about their
environments, agents only use the norms that are appropri-
ate in specific contexts. The dynamic nature of IoT environ-
ments would require a large number of privacy policies be-
tween entities and users, which would not be scalable. Hence,
agents decide how to disseminate information that they col-
lect [Solove, 2006]. We define context formally in Defini-
tion 1.
Definition 1 (Context). Context is a two tuple 〈N ,R〉, where
N is a set of norms and R is a set of binary relationships.
Each norm can be associated with a dob value between zero
and one.

In Table 1, the example norms of the camera agent are
shown as Prolog rules. Each norm is denoted as Ni, where i
is the norm id. The body of the rule consists of a conjunction
of predicates from the language, and the head of the rule is a
single predicate. Negations are allowed both in the body and
the head of a rule. Each norm can be associated with a dob
value as well (e.g., N1). We refer to each entity as :entity-
name (e.g., :cam). inContext(A, C, T) represents an agent
A that is in context C at time T. atWork(A, T), onleave(A,
T), atHome(A,T), missing(A, T) show that agent A can be at
work, on leave, at home or missing at time T, respectively.
Agent-independent predicates omit agent A (e.g., fire(T) or
workday(T) means there is a fire or T is a workday, respec-
tively.). These terms can be nested in info(X) to capture the
information flow. The decision predicate is share(A, F, T),
which takes values based on the context.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4739



Table 1: Example Norms of :cam as Prolog Rules

N1 : inContext(A, Cd, T)⇐ 0.5.
N2 : ∼share(A, F, T)⇐ inContext(A, Cd, T).
N3 : inContext(A, :work, T)⇐ info(atWork(A, T)).
N4 : inContext(A, :em, T)⇐ info(missing(A, T)).
N5 : inContext(A, :em, T)⇐ info(atWork(A, T)),

info(fire(T)).
N6 : ∼share(A, F, T)⇐ inContext(A, :work, T).
N7 : share(A, F, T)⇐ inContext(A, :em, T).
N8 : share(A, F, T)⇐ inContext(A, :party, T).
N9 : info(missing(A, T))⇐ info(∼onleave(A, T)),

info(workday(T)),
info(∼atHome(A, T)).

We formally define the default context in Def-
inition 2. In Example 1, the default context is
〈∪5i=1Ni ∪ N9, {}〉. All other contexts are associated
with norms, which have a decision predicate in the
head of the rule (e.g., N6 - N8). For example, :em
= 〈{N7}, {isResponsibleFor, homeSensorOf}〉.

Definition 2 (Default Context). Cd = 〈N ,R〉 is the default,
unique context, where {N1, N2} ⊆ N .

Agents can be in multiple contexts at a time. For this, the
agent should infer active contexts regarding what it already
knows. We capture this in Definition 3.

Definition 3 (Active Context). If inContext(:a, :c, :t) is in-
ferred by agent a, then :c is an active context for agent :a at
time :t.

An agent has a predefined set of contexts and starts exe-
cution in the default context (Cd) with a dob value of 0.5
(N1). The default context is always active because N1 has
an empty body; i.e., the head predicate is always inferred by
the agent. When dob value of any other context is above 0,
then that context also becomes active. When an agent is in
context Cd at time T, then a not share predicate is inferred
(N2). N3 states that if an agent A is at work at time T, then
this agent is in :work context at time T. A same context can
be inferred in different situations; e.g., N4 and N5 are two
different rules that can be used to conclude that an agent is in
an emergency context. N4 states that if an agent A is missing
at time T, then this agent is in :em state at T. The presence of
a fire when an agent is at work could mean that the agent is
in emergency state as well (N5). The norms N6-N8 specify
when the camera agent could share or not share an agent’s
footage depending on the agent’s context. :cam can share an
agent’s footage in an emergency state (N7) or for the purpose
of organizing a party for an agent (N8). However, :cam would
not share an agent’s footage when it is in work context. N9 is
a rule to understand when an agent would be missing. If an
agent A is not on leave at time T, which is a workday, and A
is not at home at time T; then A could be missing at time T.

3 Decision Making
In order to reach a privacy decision, an agent can use its own
knowledge base (KB) that consists of facts and norms, as-
sociated with a dob value, but it can also decide to consult
other agents to collect more information. An agent should
decide what information to collect, from whom, and how to
process the received information. Example 2 illustrates how
:cam consults others for information. In our model, each
agent is equipped with a belief base (BB), which includes
information that is collected from others. In BB, each piece
of information is associated with a dob value as well.
Example 2. The camera decides to consult Alice’s home de-
vice and it turns out that Alice was not at home that day, ei-
ther. Next, the camera consults the police department and
finds out that there is a missing report for Alice. Is this
enough evidence to decide Alice is in an emergency?

We propose Algorithm 1 to show the decision making steps
of the agent. An agent makes a request to the other agent to
reveal some of its data via an initial question q0. The agent
uses its own knowledge base KB and its belief base BB to
make a privacy decision, which is returned as the result.

Algorithm 1: DECIDETOSHARE (q0)
Input: q0, the initial question
Output: d, the final decision (share or not share)
Data: KB, the knowledge base of the agent q0.aj
Data: v, the view of the agent q0.aj

1 BB ← applyNorms(KB);
2 C ← getActiveContexts(BB);
3 foreach c in C do
4 qSet← getQuestionsToAsk(KB,BB);
5 aSet← getAgentsToAsk(c.R, v.A);
6 rSet← getResponses(qSet, aSet);
7 foreach r in rSet do
8 BB ← eval(r, v);
9 BB ← applyNorms(KB);

10 C ← getActiveContexts(BB);
11 d← getStrongestDecision(KB,BB);
12 return d;

Information Collection: When external entities ask the
agent to reveal some data of a user, the agent initializes its
BB by applying its norms in KB (line 1). The user can
be in multiple contexts (Definition 3), it finds out the active
contexts of the user by using getActiveContexts (line 2). In
Example 1, :cam is in two active contexts Cd and :work.
:cam infers Cd via N1 and :work context via N3 because
info(atWork(:alice, Nov30)) exists in its KB.

The agent tries to apply the norms that come from active
contexts. For this, it generates a list of predicates with the
missing facts. In the running example, to prove that Alice
is an emergency state, :cam should know whether Alice is
missing but this information does not exist either in KB or in
BB of :cam. Therefore, missing(:alice, :Nov30) is added to
the list of predicates to be asked for. A question set (qSet) is
prepared by the agent to collect information from other agents
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according to the list of predicates (line 4). We give a formal
definition of a question in Definition 4. For example, q1 = 〈
:cam, :bob, missing(:alice, Nov30) 〉 is a question that :cam
asks :bob to learn whether Alice is missing.

Definition 4 (Question). qn = 〈ai, aj , X〉 denotes a question
where ai is the question owner agent, aj is the asked agent
and X is the requested information, which is a complex term
from the language. n is the question id.

Asking Agents: Once the agent knows the context informa-
tion of the user, it can find the set of relationships that are
defined within each active context (c.R). The auxiliary func-
tion getAgentsToAsk is used to instantiate these relationships
with the user in question and the agents that it already knows
(v.A), and the result is a set of agents aSet (line 5). The agent
contacts agents in this set to ask questions in qSet, and col-
lects responses in rSet (line 6). Definition 5 specifies what a
response is. For example, r1 = 〈 :bob, :cam, missing(:alice,
Nov30), 0.9, q1 〉 is a message that is sent by :bob to :cam as
a response to q1. According to :cam, Alice is missing with a
dob value of 0.9.

Definition 5 (Response). rn = 〈ai, aj , X, b, q〉 denotes a re-
sponse that is sent from agent ai to agent aj . X is the content
of the response, which is a complex term from the language.
b is the dob value of ai for information X , and takes a real
value between zero and one. The response is given for ques-
tion q (Definition 4). n is the response id.

Information Processing: An agent decides how to process
the received information. An easy approach would be to add
the received information directly to the belief base. However,
the agent can come up with wrong conclusions if it keeps
noisy data in its BB. The best way to take into account
such data is to consider the trustworthiness of information
sources [Wang and Singh, 2007]. Each agent has access to its
own view and getTrustValue function that assigns trust values
to agents it knows. This work does not consider the seman-
tics of the function; however, in principle we expect the agent
to have evolved such a function over interactions with other
agents in the system.

Definition 6 (View). 〈C,A,F , getTrustV alue〉 is a view,
where C is a set of contexts such that Cd ∈ C, A is a set of
agents that the agent knows, and F is a set of facts. There is
a function getTrustV alue: A → [0, 1] that assigns a trust
value to every agent in A.

The world view of the agent is subjective as captured in
Definition 6. In Example 1, :cam’s view is as follows: 〈{Cd,
:work, :em, :party}, {:bob, :home, :jack}, {atWork(:alice,
Nov30) 0.8, ∼onleave(:alice, Nov30), workday(Nov30)}, {
:bob (0.3), :home (0.9), :jack (0.9)}〉.

getDob(r, v) = v.getTrustV alue(r.from) ∗ r.b (1)

The agent evaluates the received responses in rSet accord-
ing to the following steps. First, the agent computes its own
dob value for the received information regarding the trust
value of the asked agent, and the dob value associated with it
(r.b). In Equation 1, we show how the message receiver agent

(r.to) computes its own dob value for the response r by us-
ing getDob function. getTrustV alue(a) is a function that
returns the trust value for an agent a in its view v. Second,
the agent (r.to) uses eval(r, v) function to evaluate a response
r as shown in Equation 2 (line 8). All the received informa-
tion is added to the agent’s belief base via upBB(r.X, y),
where y is a low or high dob value chosen by the agent ini-
tially. The agent checks whether the computed dob value
(getDob(r, v)) is greater than its threshold (TH), which is
also set initially. In this case, the agent adds the received
information to its belief base with the high dob value (H).
Otherwise, the low dob value (L) is associated with the re-
ceived information. The agent updates its belief base using
applyNorms function, and retrieves the set of active contexts
(line 10).

eval(r, v) =

{
upBB(r.X,H) getDob(r, v) > TH

upBB(r.X,L) otherwise
(2)

We will keep on trying the previous steps as long as there
are active contexts in BB (lines 3-10). Finally, the agent de-
cides to share or not to share the content in question (q0.X).
Different decisions can be made regarding different active
contexts. The agent wants to find the strongest decision that
can be inferred from its knowledge base and belief base. The
strongest decision is the decision predicate with the highest
dob value that is not falsified by any other information (line
11), DECIDETOSHARE returns this final decision. Note if
two conflicting actions are inferred with the same dob value,
then doing that action or not would both be a correct decision.

4 Argumentation
Argumentation is an approach where arguments with justifi-
cations are derived from a knowledge base, and strong argu-
ments attack weak ones. The goal is to find a winning argu-
ment according to chosen semantics. In this paper, we use
ASPIC [Fox et al., 2007], which is a structured argumenta-
tion framework that is based on Dung’s framework [Dung,
1995]. The agent is equipped with an ASPIC engine (i) to
reason about its knowledge base and belief base, (ii) to com-
pute dob values for the received information, and (iii) to find
the strongest decision.

ASPIC: The knowledge base consists of: facts, strict rules
and defeasible rules. Each strict rule is of the form σ1,...,σm
← σ0 (m ≥ 0, σi ∈ L), and each defeasible rule is of the
form σ1,...,σm ⇐ σ0 (m ≥ 0, σi ∈ L) where L is a logi-
cal language and σi is a first-order predicate. In strict rules,
the conclusion is always true if the premises hold whereas in
defeasible rules, the conclusion may be true hence it can be
refuted. Each fact and defeasible rule can be associated with
a dob value. The default dob value of a defeasible rule is
0.9 unless specified explicitly (e.g., N1). The strength of an
argument is evaluated according to dob values. In ASPIC,
an argument can be attacked on its uncertain premises, on its
defeasible inferences (e.g., undercutting), or on the conclu-
sions of its defeasible inferences. We use the weakest-link
principle, where dob value of an argument is the minimum
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Table 2: Trust Norms of an :agent as ASPIC Rules

C1 : [keep(A, X)] info(X)⇐ says(A, X, B) H .
C2 : dob(A, info(X), V3)← trust(A, V1), says(A, X, V2),

mult(V1, V2, V3).
C3 : mult(V1, V2, V3)← is(V3, ∗(V1, V2)).
C4 : ∼keep(A, X)← dob(A, info(X), V3), <(V3, TH).
C5 : info(X)⇐ ∼keep(A, X) L.

dob value over all of its sub-arguments. The norm head is as-
signed the lowest of dob values of the norm body predicates.
For example, in N9, ∼atHome(:alice, Nov30) is the weak-
est sub-argument with a computed dob value of 0.2. Hence,
missing(:alice, Nov30) is inferred with this same dob value.
In argumentation theory, it is possible to choose different se-
mantics to compute extensions (i.e., sets of arguments). Then,
the agent can use a credulous or skeptical inference for its de-
cision making. In our work, the default behavior of the agent
is not to share a specific content. Hence, finding an argument
in at least one preferred extension is enough for the agent to
share the content. Therefore, agents accept arguments under
preferred credulous semantics.

In Table 2, we show the norms that an agent follows to
compute a dob value for the received information. In AS-
PIC, we can define defeasible rules with schemes, which can
contain any variable used in the rule itself. Hence, undercut-
ters can be formulated per instance of a scheme. The scheme
names are enclosed in square brackets at the beginning of a
rule as shown in C1. C1 states that if an agent A gives infor-
mation X with a dob value B, then there is new information
X that should be considered with a belief ofH by the receiver
agent. The keep scheme consists of two variables: the agent
A and the information X. When C1 is applied, a scheme in-
stance will be generated as well. C2 is used to compute a dob
value for the received information. V1 is the trust value for
the agent A, V2 is the dob value of the agent A for the infor-
mation X and V3 is the multiplication of V1 and V2 (ruleC3).
V3 becomes the new dob value for the received information.
The rules C2 and C3 are used for the dob value computation
according to Equation 1. In C4, the agent decides not to keep
the received information in case the computed dob value is
below its threshold (TH). Note that C4 is an undercutter for
C1. If C4 is applied, the agent keeps information with a low
belief L (C5). In other words, the agent keeps the informa-
tion with a belief of H while other received information is
kept with a belief of L in the agent’s belief base. C1 and
C5 are used to evaluate the received information as shown in
Equation 2. Recall thatH and L are high and low dob values
specified by the agent. Here, L and H values are set to 0.2
and 0.9, respectively.

5 Evaluation

We first demonstrate how our approach handles our running
examples and then show its theoretical results. Our imple-

mentation uses the ASPIC tool1. The norms in Tables 1-2
and the factual information of the agent are specified, and
the decision to share is checked as a query (e.g., share(:alice,
:footage, Nov30)).

5.1 Execution
In Figure 1, we show the interactions between four agents
of Examples 1 and 2. For clarity, we only depict the rele-
vant information being exchanged in questions and responses
(Definitions 4 and 5). Each agent instance name is followed
by the trust value of :cam for that agent. For example, :cam
has a trust value of 0.3 for :bob. :bob requests Alice’s footage
taken in November 30. :cam evaluates this request according
to its knowledge base and belief base. At this point, there are
two active contexts: Cd and :work. :cam has a piece of in-
formation atWork(:alice, Nov30) with a dob value of 0.8. It
applies the norms of active contexts. All missing predicates in
KB are generated in form of questions (e.g., missing(:alice,
Nov30)). There is only one active relationship in :work con-
text since isBossOf(:bob, :alice) holds in KB. Hence, it asks
:bob a set of questions and gets to know that Alice is miss-
ing with a dob value of 0.9. :cam evaluates this information
according to its trust norms (Table 2). :cam’s threshold value
is 0.7, the computed dob value for the received information
is below threshold, hence :cam keeps this information with a
low dob value of 0.2. Now, :em becomes an active context
as well (N4). In :em context, :homeSensorOf and :isRespon-
sibleFor are the defined relationships. Therefore, :cam can
ask questions to :home and :jack. :home reports that Alice
is not at home with a dob value of 0.6. :cam has a trust
value of 0.9 for :home. However the computed dob value
for the received information is not enough, hence :cam keeps
this information with a low confidence. It finds out that Al-
ice is missing since :cam knows that workday(Nov30) and
∼onleave(:alice, Nov30) (N9 and N4). From :jack, it learns
that Alice is missing with a dob value of 0.9. :cam has a high
trust value for :jack, thus the computed dob value for this in-
formation is above threshold and keeps this information with
a high dob value of 0.9. It finds out that Alice is in an emer-
gency state with a high confidence this time (N4). It cannot
collect any more information from other agents. According
to its ASPIC engine, the decision with the highest dob value
(0.9) is share(:alice, :footage, Nov30), which is not attacked
by any other information. Hence, the strongest decision is to
share Alice’s footage.

5.2 Results
Theorem 1 (Privacy Decision). Given a world view
〈C,A,F , getTrustV alue〉 of an agent aj and a question
qn = 〈ai, aj , X〉 where X is an instance of a share predi-
cate, aj can always reach a decision to share or not to share
the content specified in X using Algorithm 1.
Proof Sketch. In order to come up with a privacy decision,
the agent should infer share or ∼share instances in its knowl-
edge base and belief base. The agent will ask agents in A
for all the missing predicates in C.N . In the worst case, all
agents in A will be related to aj with a relation in C.R and

1http://aspic.cossac.org
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:bob (0.3) :cam (1.0) :home (0.9) :jack (0.9)

share(:alice, :footage, Nov30)?

missing(:alice, Nov30)?

missing(:alice, Nov30) [0.9]

atHome(:alice, Nov30)?

∼atHome(:alice, Nov30) [0.6]

missing(:alice, Nov30)?

missing(:alice, Nov30) [0.9]

share(:alice, :footage, Nov30)

Figure 1: The sequence diagram showing the interactions between agents

will be contacted. Since C is finite, the algorithm will always
reach line 10. Assume that C ′ ⊆ C is the set of active con-
texts in line 10. By Definitions 2, 3 and 6 we know that at
least Cd is in C ′ and its norms will reach a decision.

Theorem 2 (Best Effort). Given a question qn = 〈ai, aj , X〉
whereX is an instance of a share to aj , Algorithm 1 produces
a sound privacy decision with respect to a given world view
〈C,A,F , getTrustV alue〉.
Proof Sketch. Assume that the agent decides to share a
content that it should not. This could happen for two reasons:
(i) There is a missing information in KB and BB of the agent.
The agent uses its internal knowledge, and it can also consult
other agents. Algorithm 1 ensures all agents in A are con-
tacted for all predicates in C.N . With the given view, it is not
possible to access any more information than that is accessed
by agent aj . Hence, with the given view, it is not possible to
access more information. (ii) KB and BB include complete
information but the final decision is wrong. In KB and BB
of the agent, all information is associated with dob values.
All attack relations between arguments are generated accord-
ingly. The final decision is the strongest argument, which
may be attacked by weaker arguments. The strongest argu-
ment is the correct decision to be inferred regarding the world
view of the agent as guaranteed by the preferred credulous
semantics of ASPIC. Hence, the final decision on the given
information must be correct. Since neither of these reasons is
possible, the privacy decision computation is sound.

6 Discussion
Privacy problems in IoT resemble the privacy problems in
online social networks the most, because of the interaction
and distribution of nodes. There have been various works
to detect and avoid privacy violations in online social net-
works. Kökciyan and Yolum develop PRIGUARD, a system
that models online social networks semantically and reasons
on the correct processing and dissemination of information
through policies [Kökciyan and Yolum, 2016]. Kafalı et al.
develop Revani, where they provide patterns to revise norma-
tive privacy specifications and use model checking to verify
privacy requirements [Kafalı et al., 2016]. Kökciyan et al.

propose an argumentation-based approach to preserve privacy
collaboratively [Kökciyan et al., 2017].

Other computational models for Contextual Integrity (CI)
have been proposed before. Barth et al. propose a logi-
cal framework where a privacy policy is a set of distribution
norms represented as temporal formulas [Barth et al., 2006].
They show the expressiveness of their model by represent-
ing various privacy provisions such as HIPAA. In their work,
users can be active in a single context that is an input to their
model. However, in our work users can be involved in multi-
ple contexts, which are inferred by the agent itself.

Krupa and Vercouter propose a CI-based framework to de-
tect privacy violations in virtual communities [Krupa and Ver-
couter, 2012]. The information subject is allowed to spec-
ify privacy policies that should be respected at dissemination
time. In our work, since an IoT entity cannot collect privacy
policies of people individually and enforce them, an IoT en-
tity uses its own knowledge base, which can be enriched by
external information, to make a privacy decision.

Criado and Such propose a computational model where an
agent can learn implicit contexts, relationships and appropri-
ateness norms to prevent privacy violations to occur [Criado
and Such, 2015]. Similar to our work, users can be involved
in multiple contexts. Contrary to Criado and Such, in our
work, agents use trust values to compute a dob value for the
received information. Moreover, the context is not defined as
a set of users; but through a set of norms and relations (see
Definition 1).

Murukannaiah and Singh develop Platys, a framework tar-
geted for place-aware applications [Murukannaiah and Singh,
2015]. They formalize the concept of place through location,
activity and social circle. In our work, we enable agents to
reason on privacy correctly based on a derived context. Accu-
rate calculation of place could help understand context better
and thus would complement our work.

For future work, we want to capture the relations between
contexts so that a context can inherit norms and relations from
a second context. This will help the system function even
when the contexts are not specified fully. An important direc-
tion is to enable the system to learn the norms of the contexts
over time so that the system can scale better.
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