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MATHEMATICS OF COMPUTATION 
VOLUME 46, NUMBER 174 
APRIL 1986, PAGES 537-549 

Newton's Method for the Matrix Square Root* 

By Nicholas J. Higham 

Abstract. One approach to computing a square root of a matrix A is to apply Newton's 
method to the quadratic matrix equation F(X) _ x2 - A = 0. Two widely-quoted matrix 
square root iterations obtained by rewriting this Newton iteration are shown to have excellent 
mathematical convergence properties. However, by means of a perturbation analysis and 
supportive numerical examples, it is shown that these simplified iterations are numerically 
unstable. A further variant of Newton's method for the matrix square root, recently proposed 
in the literature, is shown to be, for practical purposes, numerically stable. 

1. Introduction. A square root of an n X n matrix A with complex elements, 
A E C ,n , is a solution X E CfnXfn of the quadratic matrix equation 

(1.1) F(X) X2-A = 0. 

A natural approach to computing a square root of A is to apply Newton's method to 
(1.1). For a general function G: Cnxn -_ CnXn, Newton's method for the solution of 
G(X) = 0 is specified by an initial approximation X0 and the recurrence (see [14, p. 
140], for example) 

(1.2) Xk+l = Xk- G`(Xk)1G(Xk), k = 0,1,2,..., 

where G' denotes the Frechet derivative of G. Identifying 

F(X+ H) = X2 -A +(XH+ HX) + H2 

with the Taylor series for F we see that F'(X) is a linear operator, F'(X): 
CnXn n_ CcnXn, defined by 

F'(X)H = XH + HX. 

Thus Newton's method for the matrix square root can be written 
X0 given, 

(1.3) XkHk+ HkXk= A - X2 012 
(1 3) ~(N): XkH ) k = 0, 1, 2,.... (1.4) ()Xk X+ Hk 

Applying the standard local convergence theorem for Newton's method [14, p. 
148], we deduce that the Newton iteration (N) converges quadratically to a square 
root X of A if X - X0 I is sufficiently small and if the linear transformation F'( X) 
is nonsingular. However, the most stable and efficient methods for solving Eq. (1.3), 
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[1], [6], require the computation of a Schur decomposition of Xk, assuming Xk is 
full. Since a square root of A can be obtained directly and at little extra cost once a 
single Schur decomposition, that of A, is known, [2], [9], we see that in general 
Newton's method for the matrix square root, in the form (N), is computationally 
expensive. 

It is therefore natural to attempt to "simplify" iteration (N). Since X commutes 
with A = X2, a reasonable assumption (which we will justify in Theorem 1) is that 
the commutativity relation 

XkHk = HkXk 

holds, in which case (1.3) may be written 

2XkHk = 2HkXk = A -Xk2 

and we obtain from (N) two new iterations 

(1.5) (I): Yk+1 = ?2(Yk + Yj A) 

(1.6) (II): Zk+l 2(Zk+AZk-) 

These iterations are well-known; see for example [2], [7, p. 395], [11], [12], [13]. 
Consider the following numerical example. Using iteration (I) on a machine with 

approximately nine decimal digit accuracy, we attempted to compute a square root 
of the symmetric positive definite Wilson matrix [16, pp. 93, 123] 

10 7 8 7 

8 6 10 9 
7 5 9 10, 

for which the 2-norm condition number K2(W) = IIW I 211W112 - 2984. Two imple- 
mentations of iteration (I) were employed (for the details see Section 5). The first is 
designed to deal with general matrices, while the second is for the case where A is 
positive definite and takes full advantage of the fact that all iterates are (theoreti- 
cally) positive definite (see Corollary 1). In both cases we took YO = I; as we will 
prove in Theorem 2, for this starting value iteration (I) should converge quadrati- 
cally to W1/2, the unique symmetric positive definite square root of W. 

Denoting the computed iterates by Yk, the results obtained were as in Table 1. 
Both implementations failed to converge; in the first, Y20 was unsymmetric and 
indefinite. In contrast, a further variant of the Newton iteration, to be defined in 
Section 4, converged to W1/2 in nine iterations. 

Clearly, iteration (I) is in some sense "numerically unstable". This instability was 
noted by Laasonen [13] who, in a paper apparently unknown to recent workers in 
this area, stated without proof that for a matrix with real, positive eigenvalues 
iteration (I) "if carried out indefinitely, is not stable whenever the ratio of the largest 
to the smallest eigenvalue of A exceeds the value 9". We wish to draw attention to 
this important and surprising fact. In Section 3 we provide a rigorous proof of 
Laasonen's claim. We show that the original Newton method (N) does not suffer 
from this numerical instability and we identify in Section 4 an iteration, proposed in 
[4], which has the computational simplicity of iteration (I) and yet does not suffer 
from the instability which impairs the practical performance of (I). 
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TABLE 1 

Implementation 1, Implementation 2 

k llW/ - klll l l/- YkIll 

0 4.9 4.9 
1 1.1 x 101 1.1 x 101 
2 3.6 3.6 
3 6.7 X 10-1 6.7 x 10-1 
4 3.3 x 10- 3.3 x 10- 
5 4.3 x 10-4 4.3 x 10-4 

6 3.4 x 10- 6.7 x 10-7 
7 9.3 x 10-4 1.4 x 10-6 
8 2.5 x 10-2 1.6 x 10 - 

9 6.7 x 10-1 2.0 x 10-4 

10 1.8 x 101 2.4 x 10- 
11 4.8 x 102 2.8 x 10-2 
12 1.3 x 104 3.2 x 10-1 
13 3.4 x 105 Error: Yk not positive definite 
20 1.2 x 106 

We begin by analyzing the mathematical convergence properties of the Newton 
iteration. 

2. Convergence of Newton's Method. In this section we derive conditions which 
ensure the convergence of Newton's method for the matrix square root and we 
establish to which square root the method converges for a particular set of starting 
values. (For a classification of the set { X: X2 = A ) see, for example, [9].) 

First, we investigate the relationship between the Newton iteration (N) and its 
offshoots (I) and (II). To begin, note that the Newton iterates Xk are well-defined if 
and only if, for each k, Eq. (1.3) has a unique solution, that is, the linear 
transformation F'(Xk) is nonsingular. This is so if and only if Xk and -Xk have no 
eigenvalue in common [7, p. 194], which requires in particular that Xk be nonsingu- 
lar. 

THEOREM 1. Consider the iterations (N), (I) and (II). Suppose X0 = YO= ZO 
commutes with A and that all the Newton iterates Xk are well-defined. Then 

(i) Xk commutes with A for all k, 

(ii) Xk = Yk = Zk for all k. 

Proof. We sketch an inductive proof of parts (i) and (ii) together. The case k = 0 
is given. Assume the results hold for k. From the remarks preceding the theorem we 
see that both the linear transformation F'(Xk), and the matrix Xk, are nonsingular. 
Define 

Gk = 2(X0A1A - Xk)- 

Using XkA = AXk we have, from (1.3), 

F'(Xk)Gk = F'(Xk)Hk. 
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Thus Hk = Gk, and so from (1.4), 

(2.1) Xk+l = Xk + Gk = 2(Xk + X0A) 

which commutes with A. It follows easily from (2.1) that Xk+l = Yk+1 = Zk+l. O 
Thus, provided the initial approximation X0 = YO = ZO commutes with A and the 

correction equation (1.3) is nonsingular at each stage, the Newton iteration (N) and 
its variants (I) and (II) yield the same sequence of iterates. We now examine the 
convergence of this sequence, concentrating for simplicity on iteration (I) with 
starting value a multiple of the identity matrix. Note that the starting values YO = I 
and YO = A lead to the same sequence Y1 = !(I + A), Y2. 

For our analysis we assume that A is diagonalizable, that is, there exists a 
nonsingular matrix Z such that 
(2.2) Z-1AZ = A = diag(X1, ..., n), 

where X1,..., AXn are the eigenvalues of A. The convenience of this assumption is 
that it enables us to diagonalize the iteration. For, defining 

(2.3) Dk = Z1lYkZ 

we have from (1.5), 

(2.4) Dk~l= 4(z-lYkZ +(Z-lYkZ) Z AZ) = A(Dk + 

so that if Do is diagonal, then by induction all the successive transformed iterates Dk 
are diagonal too. 

THEOREM 2. Let A E C nXIn be nonsingular and diagonalizable, and suppose that 
none of A 's eigenvalues is real and negative. Let 

YO= mI, m>O. 

Then, provided the iterates { Yk } in (1.5) are defined, 
lim Yk= X 

k-boo 

and 

(2.5) I1Yk+l - X < IIYk- 

where X is the unique square root of A for which every eigenvalue has positive real part. 

Proof. We will use the notation (2.2). In view of (2.3) and (2.4) it suffices to 
analyze the convergence of the sequence {Dk}. Do = mI is diagonal, so Dk is 
diagonal for each k. Writing Dk = diag(d (k)) we see from (2.4) that 

d~k+l) - I(d(k) + XA/d(k)), 1 < i < n, 

that is, (2.4) is essentially n uncoupled scalar Newton iterations for the square roots 

rX1, 1 < i < n. 
Consider therefore the scalar iteration 

Zk?+ = 2(Zk + a/Zk). 

We will use the relations [17, p. 84] 

(2.6) Zk = (zk- )(2Zk) 

- k+1 

(2.7) Zk +1 
- 

_ I ZO- )k 

Zk+l + Z0+Vj 
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If a does not lie on the nonpositive real axis then we can choose Va to have positive 
real part, in which case it is easy to see that for real zo > 0, IyI < 1. Consequently, 
for a and zo of the specified form we have from (2.7), provided that the sequence 
{ Zk } is defined, 

lim Zk = V, ReV > O. 
ka-oo 

Since the eigenvalues X1 and the starting values d(?) = m > 0 are of the form of a 
and zo, respectively, then 

(2.8) lim Dk 12 = diag(XV 2), Re X2 > 0, 
kaz-+oo 

and thus 
lim Yk= ZA1/2Z-1 = X 

k-boo 

(provided the iterates { Yk } are defined), which is clearly a square root of A whose 
eigenvalues have positive real part. The uniqueness of X follows from Theorem 4 in 
[9]. 

Finally, we can use (2.6), with the minus sign, to deduce that 

Dk l-A12 = iDi-(Dk A1/2)2; 

performing a similarity transformation by Z gives 

Yk+l - 2= 2Yk( - 

from which (2.5) follows on taking norms. E 
Theorem 2 shows, then, that under the stated hypotheses on A iterations (N), (I) 

and (II) with starting value a multiple of the identity matrix, when defined, will 
indeed converge: quadratically, to a particular square root of A the form of whose 
spectrum is known a priori. 

Several comments are worth making. First, we can use Theorem 4 in [9] to deduce 
that the square root X in Theorem 2 is indeed a function of A, in the sense defined 
in [5, p. 96]. (Essentially, B is a function of A if B can be expressed as a polynomial 
in A.) Next, note that the proof of Theorem 2 relies on the fact that the matrix 
which diagonalizes A also diagonalizes each iterate Yk. This property is maintained 
for YO an arbitrary function of A, and under suitable conditions convergence can 
still be proved, but the spectrum { ? Xi, ..., +? / } of the limit matrix, if it exists, 
will depend on YO. Finally, we remark that Theorem 2 can be proved without the 
assumption that A is diagonalizable, using, for example, the technique in [13]. 

We conclude this section with a corollary which applies to the important case 
where A is Hermitian positive definite. 

COROLLARY 1. Let A Es C" be Hermitian positive definite. If YO = mI, m > 0, 
then the iterates { Yk } in (1.5) are all Hermitian positive definite, lim k XoYk = X, 
where X is the unique Hermitian positive definite square root of A, and (2.5) holds. 

3. Stability Analysis. We now consider the behavior of Newton's method for the 
matrix square root, and its variants (I) and (II), when the iterates are subject to 
perturbations. We will regard these perturbations as arising from rounding errors 
sustained during the evaluation of an iteration formula, though our analysis is quite 
general. 
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Consider first iteration (I) with Y0 = ml, m > 0, and make the same assumptions 
as in Theorem 2. Let Yk denote the computed k th iterate, Yk = Yk, and define 

Ak = Yk -Yk 

Our aim is to analyze how the error matrix Ak propagates at the (k + 1)st stage 
(note the distinction between Ak and the "true" error matrix Yk - X). To simplify 
the analysis we assume that no rounding errors are committed when computing 
Yk + 1, so that 

(3.1) ~Yk+1 = 2(Yk + YijA) = 2(Yk + Ak +(Yk + Ak)A)- 

Using the perturbation result [15, p. 188 ff.] 

(3.2) (A + E -1 A-1 -A-EA-' + o(IIE 112) 

we obtain 

Yk+1 = 1(Yk + Ak + YA - YiAkYA1) + O(IIAk 12). 
Subtracting (1.5) yields 

(3.3) Ak+l = 2(Ak - YAkYA) + 0(1 AkI ) 

Using the notation (2.2) and (2.3), let 

(3.4) Ak = Z lAkZ, 

and transform (3.3) to obtain 

(3.5) Ak+1 2 -( - DJ AkDJ1A) + 0(11 Ik 112) 

From the proof of Theorem 2, 

(3.6) Dk = diag(d k)), 

so with 

(3.7) Ak (8ij)) 

Eq. (3.5) can be written elementwise as 

8,.(jk1) = 112),(k)+?|^||) 1<i j < n, 

where 

Xi) -21 - XA/(d k)d(k))). 

Since Dk -) A112 as k -+ o (see (2.8)) we can write 

(3.8) df~k) = X12 + Elk) 

where E(k) O) 0 as k - oo. Then, 

(3.9) (k) = -1 -(Xj/Xi)'/2) + O(e(k)), 

where 
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To ensure the numerical stability of the iteration we require that the error amplifica- 
tion factors be bounded in modulus by 1; hence we require, in particular, that 

(3.11) 1| (XA/i)'I/ < 1, 1 j i, n- 

This is a severe restriction on the matrix A. For example, if A is Hermitian positive 
definite the condition is equivalent to (cf. [13]) 

(3.12) K2(A) < 9, 

where the condition number K2(A) = IIAI12 11 A-12. 
To clarify the above analysis it is helpful to consider a particular example. 

Suppose A is Hermitian positive definite, so that in (2.2) we can take Z = Q where 
Q = (q*, q.,) is unitary. Thus, 

(3.13) Q*AQ = A =diag(Xl,...,Xn), Q*Q = I 

and (cf. (2.3)) 

(3.14) QYkQ = Dk = diag(d ~k)). 

Consider the special (unsymmetric) rank-one perturbation 

A k=Eqiqj, i*j; IIAkL2 = E > O. 

For this Ak the Sherman-Morrison formula [7, p. 3] gives 

(Yk + Ak) = Yk - _YAkykl 

Using this identity in (3.1) we obtain, on subtracting (1.5), 

(3.15) Ak+l = 2(Ak - YkAkYkA), 

that is, (3.3) with the order term zero. Using (3.13) and (3.14) in (3.15), we have 

Ak+l = 2(Ak - (QD-jQ*)(Eqiqj*)(QDkjQ*)(QAQ*)) 

2 ~(A - k EQDkeiej*Dl1AQ*) 
=i(Ak - 

__Qk_ 

2 j ( d (k) ) dj( k)j 

2 ( d 't dj ) A k 

Let Yk A1/2 (the Hermitian positive definite square root of A), so that Dk = A112, 
and choose i, j so that Xj/Xi = K2(A). Then 

A = '(1 - K2(A)1)Ak 
. A 

Assuming that Yk+2' Yk+3 ... , like Yk+ , are computed exactly from the preceding 
iterates, it follows that 

Ik+r 

= 
A1/2 + 

[?(i 
- K2() /2 )] Ak 

r > 
0. 

In this example, Yk is an arbitrary distance E > 0 away from A1/2 in the 2-norm, yet 
if K2(A) > 9 the subsequent iterates diverge, growing unboundedly. 
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Consider now the Newton iteration (N) with X0 = mI, m > 0, so that by 
Theorem 1, Xk Yk, and make the same assumptions as in Theorem 2. Then 
(3.16) Xk-X--+O ask--xoo 
(quadratically), where X is the square root of A defined in Theorem 2. Let Xk be 
perturbed to Xk = Xk + Ak and denote the corresponding perturbed sequence of 
iterates (computed exactly from Xk) by { Xk + r } r > 0> The standard local convergence 
theorem for Newton's method implies that, for IIk- XII sufficiently small, that is, 
for k sufficiently large and IlAklI sufficiently small, 
(3.17) Xk+r -X -0 as r -o 
(quadratically). From (3.16) and (3.17) it follows that 

Ak+r = Xk+r - Xk+r 0 as r -- o. 

Thus, unlike iteration (I), the Newton iteration (N) has the property that once 
convergence is approached, a suitable norm of the error matrix Ak = Xk - Xk is not 
magnified, but rather decreased, in succeeding iterations. 

To summarize, for iterations (N) and (I) with initial approximation mI (m > 0), 
our analysis shows how a small perturbation Ak in the kth iterate is propagated at 
the (k + 1)st stage. For iteration (I), depending on the eigenvalues of A, a small 
perturbation Ak in Yk may induce perturbations of increasing norm in succeeding 
iterates, and the sequence { Yk ) may "diverge" from the sequence of true iterates 
{ Yk ). The same conclusion applies to iteration (II) for which a similar analysis 
holds. In contrast, for large k, the Newton iteration (N) damps a small perturbation 
Ak in Xk. 

Our conclusion, then, is that in simplifying Newton's method to produce the 
ostensibly attractive formulae (1.5) and (1.6), one sacrifices numerical stability of the 
method. 

4. A Further Newton Variant. The following matrix square root iteration is derived 
in [4] using the matrix sign function: 

P0 = A, Q0 = I, 

(4.1) Pk l-( 1 Q1 

(4.2) (III): Qk+1 =(Qk +P-)j k=O,1,2. 

It is easy to prove by induction (using Theorem 1) that if { Yk } is the sequence 
computed from (1.5) with Y0 = I, then 

(4.3) Pk = Yk ) 

(4.4) Qk = A'1YkI k= 2 

Thus if A satisfies the conditions of Theorem 2 and the sequence {Pk,Qk} is 
defined, then 

lim Pk= X, lim Qk= X- 
k- oo k -oo 

where X is the square root of A defined in Theorem 2. 
At first sight, iteration (III) appears to have no advantage over iteration (I). It is in 

general no less computationally expensive; it computes simultaneously approxima- 
tions to X and X-1, when probably only X is required; and intuitively the fact that 
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A is present only in the initial conditions, and not in the iteration formulae, is 
displeasing. However, as we will now show, this "coupled" iteration does not suffer 
from the numerical instability which vitiates iteration (I). 

To parallel the analysis in Section 3 suppose the assumptions of Theorem 2 hold, 
let Pk and Qk denote the computed iterates from iteration (III), define 

Ek = Pk -Pk, Fk =Qk -Qk, 

and assume that at the (k + 1)st stage Pk+, and Qk+l are computed exactly from 
Pk and Qk. Then from (4.1) and (4.2), using (3.2), we have 

Pk~l = 2(Pk + Ek + Qk Qk FkQJ) + 0(1 Ek1 2) 

Qk+l 2(Qk + Fk + Pk7 - P/jEkPkl) + o(IIEk )- 

Subtracting (4.1) and (4.2), respectively, gives 

(4.5) Ek~l = (Ek- QFkQ1) + 0( ) 

(4 .6) Fk l+1 = 21(Fk - PC EkPhi) + k 

where gk = max{ 11EkI1, F/FkCij. 
From (2.2), (2.3), (4.3), (4.4) and (3.6), 

Z1PPkZ = Dk, Z1lQkZ = A1DDk, D/ = diag(d (k)); 

thus, defining 
E/C = Z1lE/Z, FCk = ZF/kZ, 

we can transform (4.5) and (4.6) into 

E/C+ 1 2 ( -Ek Dk AF/kD-1A) + ?(g2)9 

Fk+1 = 2 ( tk- Dk kE/Dk ) + ?(kg,)- 

Written elementwise, using the notation 

Pk_ (-@P) Fk = 

these equations become 
(4.7) e (k+ 1) - (0e(/) - + (g2 ) 

(4.8) f(/k+l) - i(f(/k) - + ?(g2) 

where 

dk ;J -( j) 1/2 + o(k) ij d~k) djlk) (ij 

and 

(k) = T = 2 + ?(?~~~(k)) 
fIcY. d~ k)dJ() ( j)1/2 + 9(~) 

using (3.8) and (3.10). It is convenient to write Eqs. (4.7) and (4.8) in vector form: 

(4.9) h(k+l) = M(jk)h(9) + O(g2), 

where 

- i I 
[ (/k)J 
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and 

M k [k) j ( + O( |(k) 

=Mij + O(e(k)). 

It is easy to verify that the eigenvalues of Mij are zero and one; denote a 
corresponding pair of eigenvectors by x0 and xl and let 

h(k) = a (k)X + a(k)Xi. 

If we make a further assumption that no new errors are introduced at the (k + 2)nd 
stage of the iteration onwards (so that the analysis is tracing how an isolated pair of 
perturbations at the kth stage is propagated), then for k large enough and gk small, 
we have, by induction, 
(4.10) h(k+r) . Mrh(k) = M,.j(a(k)xo + a(k x) = a (k)x, r > 0. 

While II h (k+)11 may exceed II hI(k)1 by the factor IIM/fk)jj IIM1jj1 >? 1 (taking 
norms in (4.9)), from (4.10) it is clear that the vectors hij hij2I,... remain 
approximately constant, that is, the perturbations introduced at the kth stage have 
only a bounded effect on succeeding iterates. 

Our analysis shows that iteration (III) does not suffer from the unstable error 
propagation which affects iteration (I) and suggests that iteration (III) is, for 
practical purposes, numerically stable. 

In the next section we supplement the theory which has been given so far with 
some numerical test results. 

5. Numerical Examples. In this section we give some examples of the performance 
in finite-precision arithmetic of iteration (I) (with Y0 = I) and iteration (III). 

When implementing the iterations we distinguished the case where A is symmetric 
positive definite; since the iterates also possess this attractive property (see Corollary 
1) it is possible to use the Choleski decomposition and to work only with the "lower 
triangles" of the iterates. 

To define our implementations, it suffices to specify our algorithm for evaluating 
W = B-1C, where B = Yk, C = A in iteration (I), and B = Pk or Qk' C = I in 
iteration (III). For general A we used an LU factorization of B (computed by 
Gaussian elimination with partial pivoting) to solve by substitution the linear 
systems BW = C. For symmetric positive definite A we first formed B-1, and then 
computed the (symmetric) product B-1C; B-1 was computed from the Choleski 
decomposition B = LLT, by inverting L and then forming the (symmetric) product 
B-1= LTL1. 

The operation counts for one stage of each iteration in our implementations, 
measured in flops [7, p. 32] are as follows. 

TABLE 2 

Flops per stage: A E Rnxn General A Symmetric positive definite A 

Iteration (I) 4n3/3 n3 
Iteration (III) 2n3 n 
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The computations were performed on a Commodore 64 microcomputer with unit 
roundoff [7, p. 33] u = 2-32 2.33 x 10-1o. In the following X(A) denotes the 
spectrum of A. 

Example 1. Consider the Wilson matrix example given in Section 1. W is 
symmetric positive definite and (K2(W)1/2 - 1)/2 = 27, so the theory of Section 3 
predicts that for this matrix iteration (I) may exhibit numerical instability and that 
for large enough k 

(5.1) 11 Yk+ 1 - W |111 YIIk+1 Y- k+ 111 < 27j Yk - Yk 111 
= 27I Yk - Ill. 

Note from Table 1 that for Implementation 1 there is approximate equality 
throughout in (5.1) for k > 6; this example supports the theory well. Strictly, the 
analysis of Section 3 does not apply to Implementation 2, but the overall conclusion 
is valid (essentially, the error matrices Ak are forced to be symmetric, but they can 
still grow as k increases). 

Example 2 [8]. 

5 4 1 1 

A = | 4 2 1 
] X(A)= {1,2, 5,10}, K2(A) 10. 

-1 1 2 4 
Iterations (I) and (III) both converged in seven iterations. 

Note that condition (3.12) is not satisfied by this matrix; thus the failure of this 
condition to hold does not necessarily imply divergence of the computed iterates 
from iteration (I). 

Example 3. 

1 0 0 0 

A- -1 .01 0 0 
_ -1 -1 100 100, 

-1 -1 -100 100 

X(A) = {.01, 1, 100 ?lOOi}. 
Note that the lower quasi-triangular form of A is preserved by iterations (I) and 
(III). Iteration (I) diverged while iteration (III) converged within ten iterations. 
Briefly, iteration (I) behaved as follows. 

TABLE 3 
k 11 Yk _ Yk - 111 

1 9.9 X 10' 

6 2.3 x 10-1 
7 2.1 x i-0 
8 4.0 x 10-2 
9 2.1 

12 4.8 x 105 

Example 4 [3]. 

0 .07 .27 -.33 

[1.31 -.36 1.21 .411 A= 6 - 2 -1 1 (A) =.03 303 19 i 

-2.64 -1.84 -.24 -2.01 
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Iteration (I) diverged, but iteration (III) converged in eight iterations to a real square 
root (cf. [3] where a nonreal square root was computed). 

Example 5 [8]. 

4 1 1 
A = 4 1 X (A) = (3,3,6); A is defective. 

LO 1 4 - 

Both iterations converged in six steps. 
We note that in Examples 3 and 4 condition (3.11) is not satisfied; the divergence. 

of iteration (I) in these examples is "predicted" by the theory of Section 3. 

6. Conclusions. When A is a full matrix, Newton's method for the matrix square 
root, defined in Eqs. (1.3) and (1.4), is unattractive compared to the Schur decom- 
position approach described in [2], [9]. Iterations (I) and (II), defined by (1.5) and 
(1.6), are closely related to the Newton iteration, since if the initial approximation 
XO = YO = ZO commutes with A, then the sequences of iterates { Xk }, { Yk } and 
{ Zk } are identical (see Theorem 1). In view of the relative ease with which Eqs. (1.5) 
and (1.6) can be evaluated, these two Newton variants appear to have superior 
computational merit. However, as our analysis predicts, and as the numerical 
examples in Section 5 illustrate, iterations (I) and (II) can suffer from numerical 
instability-sufficient to cause the sequence of computed iterates to diverge, even 
though the corresponding exact sequence of iterates is mathematically convergent. 
Since this happens even for well-conditioned matrices, iterations (I) and (II) must be 
classed as numerically unstable; they are of little practical use. 

Iteration (III), defined by Eqs. (4.1) and (4.2), is also closely related to the Newton 
iteration and was shown in Section 4 to be numerically stable under suitable 
assumptions. In our practical experience (see Section 5) iteration (III) has always 
performed in a numerically stable manner. 

As a means of computing a single square root, of the form described in Theorem 
2, iteration (III) can be recommended: it is easy to code and it does not require the 
use of sophisticated library routines (important in a microcomputer environment, for 
example). In comparison, the Schur method [2], [9] is more powerful, since it yields 
more information about the problem and it can be used to determine a "well-condi- 
tioned" square root (see [9]); it has a similar computational cost to iteration (III) but 
it does require the computation of a Schur decomposition of A. 

Since doing this work, we have developed a new method for computing the square 
root A1/2 of a symmetric positive definite matrix A; see [10]. The method is related 
to iteration (I) and the techniques of this paper can be used to show that the method 
is numerically stable. 
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