Numerical Methods for Time-Dependent PDEs

Example questions for an Exam (Tentamen): WISL602

May 2024
$\uparrow_{\text {It will be a closed book exam. }}$
${ }^{\top}$ Check the exercises from lectures 1-12, as listed on the webpage, as well!
$\nabla_{\text {Normally, (around) }} 8$ questions will be asked in a typical exam.

Question 1

METHOD OF UNDETERMINED COEFFICIENTS
(a) Use the method of undetermined coefficients to derive a fourth-order accurate central approximation of u_{x} at the grid point $x_{j}=j \Delta x, j=0,1, \ldots, J$ with $\Delta x=\frac{1}{J}$ of the form (find the constants A and B):

$$
\frac{-A u_{j+2}+B u_{j+1}-B u_{j-1}+A u_{j-2}}{\Delta x}
$$

(b) Determine the constants C and p in the error term: $C(\Delta x)^{4} u^{(p)}(\xi)$.

Question 2

TIME-INTEGRATION/LOCAL TRUNCATION ERROR/STABILITY
(a) Consider the following method for the ODE $\quad \dot{y}=f(t, y)$:

$$
y^{n+1}=y^{n}+\Delta t\left[\frac{1}{7} f\left(t^{n+1}, y^{n+1}\right)+\frac{6}{7} f\left(t^{n}, y^{n}\right)\right]
$$

Calculate the local truncation error τ for this method.
(b) Derive the stability function ${ }^{1} R(z)$ for the method in (a). Is the method (un)conditionally stable? Explain.
(c) Show that the stability region is bounded by a circle: determine α and r in:

$$
[\Re(z)+\alpha]^{2}+[\Im(z)]^{2}=r^{2}
$$

[^0]
Question 3

BOUNDARY LOCUS/STABILITY POLYNOMIAL/ZERO-STABLE
Consider the ODE: $\dot{y}(t)=f(y(t))$.
(a) Give the definition of the boundary locus and explain why it plays an important role in the numerical solution of ODEs.
(b) Let the following six functions be defined for $\varphi \in[0,2 \pi]$:

F1. $g_{1}(\varphi)=1-\mathrm{e}^{-\mathbf{i} \varphi}$, with $\mathbf{i}=\sqrt{-1}$.
F2. $g_{2}(\varphi)=\frac{3}{2}-2 \mathrm{e}^{-\mathbf{i} \varphi}+\frac{1}{2} \mathrm{e}^{-2 \mathbf{i} \varphi}$.
F3. $g_{3}(\varphi)=\mathbf{i} \sin (\varphi)$.
F4. $g_{4}(\varphi)=\frac{3 \mathbf{i} \sin (\varphi)}{\cos (\varphi)+2}$.
F5. $g_{5}(\varphi)=1+\mathrm{e}^{-\mathbf{i} \varphi}+\frac{1}{2}\left(1-\mathrm{e}^{-\mathbf{i} \varphi}\right)^{2}+\frac{1}{3}\left(1-\mathrm{e}^{-\mathbf{i} \varphi}\right)^{3}$.
F6. $g_{6}(\varphi)=\mathrm{e}^{\mathrm{i} \varphi}-1$.
and also the following six time-integration methods:
M1: Euler-Forward.
M2. BDF2 (an extension of Euler-Backward).
M3. Euler-Backward.
M4. explicit Midpoint.
M5. implicit Milne-Simpson: $y^{n+2}=y^{n}+\Delta t\left[\frac{1}{3} f\left(y^{n}\right)+\frac{4}{3} f\left(y^{n+1}\right)+\frac{1}{3} f\left(y^{n+2}\right)\right]$. M6. BDF3 (an extension of BDF2).

Associate each method M1, ..., M6 with one of the functions F1, .., F6 and explain your choice. What do the functions $g(\varphi):[0,2 \pi] \rightarrow \mathbb{C}$ represent?
(c) Sketch the curves F1, F3 and F6 in the complex plane.
(d) Find the stability polynomial $\pi(z ; \zeta)$ for the 3-step Adams-Bashforth method:

$$
y^{n+3}=y^{n+2}+\frac{\Delta t}{12}\left[5 f\left(y^{n}\right)-16 f\left(y^{n+1}\right)+23 f\left(y^{n+2}\right)\right]
$$

(e) Consider the following two linear multistep methods:

$$
3 y^{n+2}=4 y^{n+1}-y^{n}+2 \Delta t f\left(y^{n}\right)
$$

and

$$
y^{n+2}=4 y^{n+1}-3 y^{n}-2 \Delta t f\left(y^{n}\right)
$$

Verify whether these methods are consistent and zero-stable. ${ }^{2}$

[^1]
Question 4

HEAT/ADVECTION
Consider the advection equation:

$$
u_{t}+\gamma u_{x}=0, \quad u(x, 0)=\mathrm{e}^{-x^{2}}, \quad x \in(-\infty, \infty), \quad \gamma \in \mathbb{R} .
$$

(a) What is the exact solution $u(x, t)$ of this model?
(b) Show, using Von Neumann stability analysis, that the numerical scheme

$$
u_{j}^{n+1}=\left(1+\frac{\gamma \Delta t}{\Delta x}\right) u_{j}^{n}-\frac{\gamma \Delta t}{\Delta x} u_{j+1}^{n}
$$

is always unstable for $\gamma=1$ and conditionally stable for $\gamma=-1$.
(c) The method in (b) is first-order accurate. What happens for $\frac{\gamma \Delta t}{\Delta x}=-1$?

Question 5

FINITE ELEMENTS
Apply a finite element method with piecewise linear functions ϕ_{j}, both as approximating and test functions, to the PDE: $u_{t}=u_{x x}+f(t)$.

- Show that a semi-discrete ODE-system is obtained of the form:

$$
\mathcal{A} \dot{\vec{u}}(t)+\mathcal{B} \vec{u}(t)=\vec{f}
$$

- Describe the inner products $\langle\cdot, \cdot\rangle$ appearing in the matrices \mathcal{A} and \mathcal{B}.
- Which names are usually associated with the matrices \mathcal{A} and \mathcal{B} ?

Question 6

ADAPTIVE/NON-UNIFORM GRIDS

The equidistribution principle with monitor function $\omega>0$ reads:

$$
\begin{equation*}
\left[x_{\xi} \omega\right]_{\xi}=0, \quad x(0)=0, x(1)=1 \tag{1}
\end{equation*}
$$

A non-uniform grid in the variable x is determined via the grid function $x(\xi)$ on a uniform grid distribution for ξ.
(a) Calculate the grid function $x(\xi)$ for $\omega=1$. Which grid distribution follows from (1) in this case?
(b) Which property for the derivative of the transformation $\xi \rightarrow x$ ensures a non-distorted (= non-singular) non-uniform grid, i.e., a grid with $\Delta x_{j}>0, \forall j$.
(c) Let the transformation $x(\xi)=4 \xi^{3}+\xi^{2}-4 \xi$ be given. Make clear that the property in part (b) is violated.
(d) Next, consider $x(\xi)=\xi^{4}$. Check that the property in part (b) is satisfied for this grid function.
(e) Define the five grid points $\xi_{j}=j \Delta \xi, j=0,1, \ldots, 4$. Sketch x from parts (c) and (d) as a function of $\xi \in[0,1]$ and explain how you obtain the values of the non-uniform grid points x_{j} from these graphs (and mark those points).

Question 7

EXACT/NONSTANDARD FDs
(a) Verify that the scheme:

$$
\left\{\begin{array}{l}
\frac{y^{n+1}-y^{n}}{1-\mathrm{e}^{-\Delta t}}=-y^{n}, \quad n=0,1,2, \ldots ; \quad \Delta t>0 \\
y^{0}=1, \quad \text { with } y^{n} \approx y\left(t^{n}\right)=y(n \Delta t)
\end{array}\right\}
$$

is an exact finite difference (FD) scheme for the ODE: $\left\{\begin{array}{l}\dot{y}(t)=-y(t), \\ y(0)=1 .\end{array}\right\}$.
(b1) Which denominator function ϕ is being used in this case?
(b2) What is the essential property of ϕ in exact and nonstandard FDs?
(b3) Which ϕ is related to the Euler-Forward method?
(b4) Is the above scheme a nonlocal one? Explain!

Question 8

HAMILTONIAN PDE
Consider the time-dependent PDE: $\quad u_{t}=u^{q} u_{x}-\epsilon u_{x x x}$ with $q \geq 2, \epsilon>0$ and $u(x, t) \rightarrow 0$ as $|x| \rightarrow+\infty$.
(a) Calculate the variational derivative of the functional:

$$
\mathcal{H}=\int_{-\infty}^{\infty}\left[\frac{\epsilon}{2} u_{x}^{2}+\frac{1}{(q+1)(q+2)} u^{q+2}\right] \mathrm{d} x .
$$

(b) Show that the PDE is a Hamiltonian PDE.
(c) Briefly ${ }^{3}$ describe a discretization on the finite spatial interval $[-L, L]$ with $L \gg 1$ and a useful time-integration method for the Hamiltonian PDE in (b).

[^2]
Question 9

TRAVELLING WAVES
Please check the exercises on TWs in lecture 11.

Question 10

CLASSIFICATION/METHOD OF LINES/TIME-INTEGRATION/STABILITY Consider the Telegraph equation:

$$
\begin{equation*}
u_{t t}+\alpha u_{t}+\beta u=c^{2} u_{x x}, \alpha \in \mathbb{R}, \beta \in \mathbb{R}, c \in \mathbb{R} \tag{2}
\end{equation*}
$$

(a) Classify PDE (2): is it elliptic, parabolic or hyperbolic?
(b) Re-write the PDE as a system of first-order PDEs in time, semi-discretize in space (the first step in the Method-of-Lines) and write the resulting ODE system ${ }^{4}$ as:

$$
\begin{equation*}
\dot{\vec{\eta}}=M \vec{\eta} . \tag{3}
\end{equation*}
$$

and verify that:

$$
M=\left(\begin{array}{cc}
\mathcal{O} & \mathcal{I} \\
c^{2} D_{2 c}-\beta \mathcal{I} & -\alpha \mathcal{I}
\end{array}\right) \quad \text { with } \quad \vec{\eta}:=[\vec{U}, \vec{V}]^{T}
$$

It can be derived that the eigenvalues μ of the matrix M satisfy ${ }^{5}$:

$$
\mu^{2}+\alpha \mu+\beta-c^{2} \lambda=0
$$

where λ is an eigenvalue ${ }^{6}$ of the matrix $D_{2 c}$.
Next, consider in the second step of the Method-of-Lines, the following four time-integration methods:

1. Euler-Forward (EF).
2. Euler-Backward (EB).
3. (explicit) Midpoint method (MP).
4. Boundary-Value method (MP as underlying method with EB final condition).
(c) For the case $\alpha=\beta=0, c=1$: which methods would you recommend regarding their stability properties and which ones not? Motivate your choice!
(d) Same question as in part (c), but now for the case: $\alpha=2, \beta=0, c=2$.
(e) Same question as in part (c) for the case: $\alpha=c=0, \beta=-100$
[^3]
[^0]: ${ }^{1}$ It is convenient to define $z=\lambda \Delta t$ with $z=\Re(z)+\Im(z) \mathbf{i}$ and $\mathbf{i}=\sqrt{-1}$.

[^1]: ${ }^{2}$ Hint: use properties of the characteristic polynomials: $\rho(\zeta)$ and $\sigma(\zeta)$.

[^2]: ${ }^{3}$ For this answer, use (at most) three lines!

[^3]: ${ }^{4}$ As you have learned during the lectures: the second-order three-point central approximation for $u_{x x}$ at the grid point x_{p} can be represented by the matrix $D_{2 c}$.
 ${ }^{5}$ You do not have to prove this.
 ${ }^{6}$ The eigenvalues of the matrix $D_{2 c}$ are: $\lambda_{p}=\frac{2}{(\Delta x)^{2}}(\cos (p \pi \Delta x)-1), p=1,2, \ldots, M$.

