Example 2.6 Consider the following problem in a domain QcR2:
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(2.23b) u=0onT,

where u and the B, are constants with #>0. Thisis an cxamplc of a stationary
convection-diffusion problem; the Laplace term onrresponds to diffusion with
diffusion coefficicnt u and the first order detivatives correspond to convectivn
in the direction =(f3,. B2). Let us here assume that #~1 and that the size
of |3 is moderate (for convection-diffusion problems with |f/u large, sce
Chapter 9). By multiplying (2. 23a) by a tcst function ve V= HY(Q). integrating
over €2 and using Green’s formula for the Laplace-term as usual, we arc led
to the following variational (ormulation of (2.23): Find ueV such that

(2.24) a(u. v)=L(v) YveV,

where

2. W= (Vv Twe (B 25 48 8 yvpunan, Liv)=fiv dx.
i 8x) 9x; )
It is clear that a(. , .) is V-elhplic since if veV. we have by Green's tormula:
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Existence of a unique weak solution of (2.23) nuw follows trom Remark 2.1,
Starting from (2.24) we may formulate the following finite clement method
for (2.23). Find upe Vy, such that

(2.25) a(uy, v)=L(v) Vve Vy,

where V), s a finite-dimensional subspace of V. If {q(.. . ., ¢gm) s a basis
fur Vi, we have as above that (2.25) is equivalent to the linear system AE=b
where A=(a;). y;=a(«,,@;), and b=(b;), b,=(f.¢;). Note that in this case the
matrix A is nol symmetric.

By the V-elhpticity it follows that solutions of (2.25) arc unique and thus
A is non-singular so that AE=0 admits a unique solution, i1e. there exists a
unique solution up of (2.25). By the same argument as in the proof ot | heorem
2.3, we also have the error cstimate (here a=1):

lu-uwlln@<yllv-vllnq) VYveVy. O









Ca
o The continuous problem

We shall now give an abstract formulation of the finite clement method for
clliptic problems of the type that we have studied n Chapter 1. This is not
a goal in itself, hut makes il possible to give a unificd treatment of many
problems in mechanics and physics so that we do not have 10 rcpeat in principle
the same argument in different concrete cases. Further the abstract formu-
lation is very easy to grasp and helps us o understand the basic structure of
the finite etentent method.

Thus, let V be a Hilbert space with scalar product (. . .)v and corresponding
norm || - [lv (the V-norm). Suppose that (cf Section 1.5) a(.,.) is a bilincar
form on VXV and L a linear form on V such that

(1) (a. ..) Is symmetric.
(ii) a(. ,.) is continuous, ie, there is a constant y>0 such that
(2.1) |a(v. wsvyliviiviiwlly -~ Vv, weV,
(i) a(.,.) is V-ellipiic, ie, there is a constant a>0 such that
(2.2) a(v, v)zallv|iy VveV,
(iv) L is continuous, 1 ¢, there 1s a constant A >0 such that
(2.3) IL(v)=A]ivliv VveV.
Let us now consider the following abstract minimization problem (M): Find
ueV such that
(2.4) F(u)=Min F(v),
veV



where

F(v)=; alv,v)—L(v),

and consider also the following abstract vatiational problem (V): Find ueV
such that

(2.5) a(u,v)=L(v) VveV

Let us now first prove:

Theorem 2.1 The problems (2.4) and (2.5) are equivalent, 1¢, ucV satisfies
(2.4) if and only if u satisfies (2.5). Moreover, there exists a unique solution
ueV of these problems and the following stability estimate holds
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Proof Existence of a solution follows from the Lax-Milgram thevrem which
is variant of the Riesz' representation theorem in Hilbert space theory (see
e g [Ne], [Ci), cf also Theorem 13.1 below). The reader unfamiliar with these
concepts may simply bypass this remark. To prove that (2.4) and (2.5) are
cquivalent, we argue exactly as in Section 1.1. We first show that if ueV
satisfies (2.4), then also (2.5) holds, and we leave the proof of the reverse
implication to the reader. Thus, lct veV and t¢R be arbitrary. Then
(utev)eV so that since u 1S a minimum,

F(u)<sFlu+ev) VeeR.
Using the notation g(e)=F(u+ev), eeR, we thus have
g(0)=p(¢) VeeR,

s0 that g has ¢ mimimum at e=0 Hence 2°(0)=0 if the derivative g'(¢€) exists
at ¢=0. But

g(t:)c% a(utev, u+ev)-L{utev)

-l-a(u u)+ §a(u v)+ -e-a(v u)+ f—z-a(v v)—L(u)—¢eL(v)
2 2 2 2

:
2

where we used the symmetry of af. . .). It follows that

i

afu, u)—-L(u)+ea(u. v)—el(v)+ Ezia(v. v).

D= (th=atu. v)- L(v).



which proves (2.5). To prove the s1ability result we choose v=u in (2.5) and
use (2.2) and (2.3) to obtain

a/jull$=a(u, w)=L(w)<Aljvllv.

which proves (2.6) upon division by |lu}lv#0. Finally, the uniqueness follows
from the stability cstimate (2.6) since if u; and u; are two solutions so that
eV and

a(u;,v)=L(v) WveV. i=], 2,
then by subtraction we sec that uy—~uw eV satisfies
a(uy—uy,v)=0 VveV.
Applying the stability estimate to this situation (with L=0, ie, A=0) we
conclude that [ju;~uy/lyv=0, ie, uyy=u,. O
Remark 2.1 Even without the symmctry condition (i) and with only (ii)—(iv)
satisfied, one can prove that there exists a unique u€V such that
a(u,v)=L(v) VveV,

and the stability estimate (2 6) of course holds (¢f Example 2.6 below). In this
case there 13 huwever no associated minimization problem. D
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Theorem 2.4 Let ueV be the solution of (2 5) and upe V), that of (2.9) where
Viyc V. Then

Hu—upllvs l‘;"“-"”\/ VveVh.

Proof Since VycV we have from (2.5) w particular
a(u.w)=L(w) Vwe Vy,

s0 that afier subtracting (2.9).

(2 14) a(u - up,w)=0 Vwe Vi,

For an arbitrary vc Vp, define w=uy~v. Then we Vi, v=uyp - w and by (2.2)
and (2.14), we have

alfu—up|i¥ <a(un, u- up)=a(u—up, u-uy)+a(u—uy, W)
=a(u—uy, U—up+w)=alu—uy, u=v)syllu~up|lviu-viv,

where the last inequality follows from (2.1). Dividing by |lu—up/lv we obtain
the desired estimate. O
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which proves (2.5). To prove the stability result we choose v=u in (2.5) and
use (2.2) and (2.3) to obtain

alju{,<a(u, uy=L({u)<Allully.

which proves (2.6) upon division by |lully#0. Finally, the unigueness follows
from the stability cstimate (2.6) since if u; and u; are two solutions so that
w,eV and

a(u;,v)=L(v) YveV. i=1, 2,
then by subtraction we sec that uy—w €V satisfies
a(u;—uy,v)=0 Vve V.
Applying the stability estimate to this situation (with L=0, ie, A=0) we
conclude that |juy~u;/ly=0. ie, uy=u;. O
Remark 2.1 Even without the symmctry condition (i) and with only (ii) —(iv)
satisfied, one can prove that there exists a unique ueV such that
a(u,v)=L(v) YveV,

and the stabihty estimate (2 6) of course holds (¢f Example 2.6 below). In this
case there iy huwever no associated minimization problem. 0O
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Now let V), be a finite-dimensional subspace of V of dimension M. Let
{1, - - -, M} be a basis for Vy, so that g;c V), and any veVy, has the unique
representation

M
(27) ve 'E' nigi, where n,eR.

We can now founulate the following discrcte analogues of the problems (M)
and (V): Find uycVy, such that

(2.8) F(up)<F(v) Vve Vy,

or equivalently: Find uyeV), such that

(2.9) a(up, v)=L(v) VveVy.



As in Section 1.2 we see that (2.9) is equivalent to

a(uh) ‘P])""-"L(‘Pi)‘ j"‘lyv ..o M.
Using the represcentation

M
(2100 w=xEe. EeR,

(2.9) can be written as '

M
Eia(wn‘l’;)ga"l—(%)' 1=h... M,

or, in matrix form,

(2.11) AE=b,

where E=(E)eRM, b=(b)eRM with b;=L(g;). and A=(a;;) 1s an MxM
matrix with clements a,=a(¢,.q)). From the rcprescntation (2.7), we have

M M M
a(\’.V)""“( |Izr1"iWi',§‘qi¢l)m| ﬁ.ma(cp“q:i)nj-"-n ’ A’],

M M '
L(v)=1[ Elm%‘)'—"f‘m'-(%)“b"l- |
where the dot denotes the usual scalar product in RM; ;

M
E ‘n= z El'h'
L] |

It follows that (2.8) may be formulated as NO‘(;
212)  le.as-v.g=Min (14 -An-bm) =~ ;=
2 ncRM "2 Ff()f P {,o
We also have, recalling (2.2), He matriy iy \
- An=a(v,v)2al|vi{|}>0, s net Sym .Z-'
n-An=a(v.v)2allvily et/

if v0, 1e. if n#0. Since also alyi ) =u(@,.@,), this proves the following
result.

Theorem 2.2 The stiffness matrix A is symmetric and positive definite.

We can now prove the following basic result where the equivalence follows
as above
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Refore going into the discussion of the numcrical methods for (8.2) we shall
briefly indicate some of the main properties of the exact solution u of (8.2).
For simplicity we will then consider the following one-dimensional model
problem modelling heat conduction in a bar (cf (1.3)):

(8.3n) N 5 f O<x<r. >0,
(8.3b) u(0.)y=u(r 1)=0 1>0,
(8.3¢) u(x,0)=ul(x) D=<x<n.

In the case {=0, we have by scparation of variables that the solution of (8.3)
1s given hy

R.4 0= £ ule M sin(ix). '
(8.4) ulx.1) uje sin(qx) Qa'\

A\



where

-
u?': V2/a [ u(x)sin (jx)dx. j=1.2. .,
0

are the Fourier coefhicients of the initial data u? with respect to the ortho-
norinal system { VZasin(jx)}] ) in 1.2(0,1). By (8.4) we see that u(x.t) is a
linear combination of sine waves sin (jx) with frequencies j and amplitudes
u exp({ —j3) We may say that cach component sin (jx) lives on & time scale
of order 0() 2) since exp{—j2) is very small for j’t moderately large. In
particular we have that high frequency components quickly get damped. Thus,
the solutivn u(x.t) will become smoother as t increases. This of course fits with
the intuitive idea of the nature of a diffusion pracess such as heat conduction.
However, in general u(x.t) will not be smooth for 1 small, and we may have
that [la(y)|]=|la( - .)|{ -+ « as 120, where ||- || denotes the Ly(0. x)-norm

Moare precisely, the size of the derivates of u (with respect to t or x) tor t small
will depend on how quickly the Fousicr coefficients u! decay with incrcasing
j: For example, if u%(x) =n~x for 0<x<x, then u?z(‘lj. in which case
Al ~Cr® with «=3/4 as t--0, and if u®x) is the “hat function"
wI(x) = min(x.nn - x) for 0<x <, then u?-— C/j? in which case | u(1)/|~Ct ¢
with a = 1/4 as (~ 0 (cf Problem 8 1) If u}’ decays faster than j~ 23 a5 ) — =,
then {la(1)|| will be bounded as (— 0, but higher derivatives may still be
unbounded. In principlc, the “'smoother™ the initial function u" is, the more
rapidly u? decays as j-» . Note that here a “'smooth’™ imtial function has to
satisfy in particular the boundary conditions (8.3b).

Aninitial phase for t small where certain derivatives of u are large . is called
an inttial transient. Thus the exuct solution of a parabolic problcm in general
will have an imtal transient where certain derivatives are large. but the
solution will become smaonther as t increases. | his fact 13 of importance when
solving a parabolic problem numcrically. since it is advantageous to vary the
mesh size (in time und space) according to the smoothness of the exact solution
u and thus use a fine mesh wherc u is non-smooth and increase the mesh size
as u becomes smootlier. Note that transicnts may also occur for 1>0 if for
example the right hand side f (or the boundary conditions) in (8.1)-(8.3) vary
abruptly in time.

The basic stability estimates ip our context for the problems (8.2) and (8.3)
arc in the casc f=();

(8.5) [lu(O)]l < JjuY|], tel,

86 lu@le=Ml, el



(b) (<€) and (d)

The semi-discrete analoguc of (8.2) will be based on a variational formulation
of (8.2) which we now describe. Letting V=H}(¢2). mubtiplying (8 2a) for a

giventby ve V, integrating over  and using in the usual way Green'sformula.
we get with the notation of Section 1 .4:

(u(t).v)+a(u(t).v)=(f(1).v).

Thus, we are led to the following variational formulation of (8.2): Find
u(eV, tel, such that

(R.74) (0(1).v) +au(t),v)=(f(t).v) VveV, tel.
(8.7b) u(0) =y,

Now. let V4, be a finite-dimensional subspace of V with basis {1,. . ..@m).
For dcfinitencss we shall assume that Q is a polygonal convex domain and
that Vi, consists of piecewise linear functions on a quasi-uniform triangulation
of  with mesh size h and satisfying the minimum angle condition (4.1)
Replacing V by the finite-dimcnsional subspace V), we get the following
semi-discrete analogue of (R 7): Find n(1)eVy, tel, such that

(R.8a) (Ba(t).v) +alup(0),v)=(f(1).v) VveV, tel.
(8.8b) (up(V),v)=(u".v) VveV,,.

Let us rewrite (8.8) using the representation

(8.9) up(t,X)= % St gi(x), tel,

with the ume-dependent coefficients E(t)eR. Using (8.9) and taking V=0,
)= ..M, in (R.R). we pet



M . M
zE,m(tr..tp,)+jf"é;(i)n(w..w,)=(f(t).¢,)‘ j=1. ..M, tel.

M
I 50 (.9 =(u’.y) =l .M.

or in matrix form

(X.10a)  BE()+AEM)=F(1). (el

(8.10b)  BE(0)=UY,

where B=(by). A=(ay). F=(F). E=(§). U'=(U)).
bi= (. w)) = ‘I, wijdx.

auiga(‘(‘s"{’))"‘.‘;vq't - Ve, dx.

F(0)=(1(1).4,). U=(u%y3)

Recall that both the mass matrix B and the stiffness mulrix A are symmctnc
and positive defimic. Further x(B)=0(1) and x(A)=0(h~2) uy h-»Q (sec
Problem 7.6). Introducing the Cholesky decomposition B=ETE and the new
variable n=EE, the problem (8.10) takes the slightly simpler form

A(t)+ An(t)=g(1). tel.
@.1) n(0) =",

where A=E TAE-! is a positive definitc symmetric matrix  with
x(A)=0(h ?).g=E TF, n®=E-TU'and E T=(E YT=(E!)"'. The solution
of (8.11) is given by the following formula (see any book on ordinary
differential equations):

= -
(8.12) n(t)=e A+ fe-Al-slg(s)ds, tel.
0

The problem (8.11) (and (8.10)) is an example of a stiff inittal value problem,
the stiffness being related to the fact that the eigenvalues of A arc positive
and vary considerably in size corresponding to x(A) being large.

Let us now return to our semi-discrete problem in the tormulation (8.8).
A basic stability imequality for this problem, with for simphcity f=0, is
obtained as follows: Taking v=up(t) in (8.82), we get

(GR(1). up())+alun(t). un(1))=0, tel.
or with as above |- =11 {lLqn).



% % HunCt)I1? +aun(t), un(t)) =0,

so that rccalling also (8.8b),
[}
||u,.(()||2+2£a(u|,(s). up(s))ds=||up(0)}|3=1|u")|2.

and thus in particular,
(813) Hun(O)!IsHun0)1=lu®, el

This estimatc s clearly analogous to the estimate (8.5) for the continuous
problem. Note that (8.5) may also be proved in the same way as (8.13).

For the sem-disceete problem (8.8) one can prove the following almost
oplimal error cstimate. Recall that we are sssuming, for simplicity, that Q
is a convex polygonal domain and that V), consists of precewise linear functions
on a quasi-uniform triangulation of Q with mesh size h.



Finite Elements and the Wave Equation
tne finite element procedures for the wave equation

Uy = U =0, 0sx=1l, O0st<o»,

(8-208)=

are similar in nature to those for the parabolic and elliptic equations. We could 5

approximate the solution of Eqn. (4-208) by undetermined coefficients

n
1. x) = IZ Ue,(1, x),
=1
or by undetermined functions,

(e, x) = JZi:'UI(l)wj(.\').

(4-209)

In the sequel we use Eqn. (4-209). Upon forming the residual R in the usual

way, the Galerkin method requires that

1"
—
(]
3

1
/ R(1. x)é,(x)dx =0, i
0

which becomes

l
/ (i, - nx:)d’:(x) dx =0, i
Q

1,2,....n.

(4-210)

Upon integration by parts in the sccond order space derivative, Eqn. (4-210)

becomes

1
/(ﬁ,,¢,+:7,¢,,)dx-ﬁ,¢,|(',=u. i=1,2,...,n,
0

(4-211)

Upon introducing the trial function, Eqn. (4-209), Eqn. (4-211) becomes

ds, dé,

i/'dzu’ 6, + U de - dfh =0
ale tar 0ot Uae av | fdlo = 0.

which is expressible in matrix form as

AU +BU+f=0, A=(a,), B=(b)

where
a; = /lcqus,. dx,
0
1de, d
b; = ) % -Z%-dx
Ji= -, b/
and v=U.....U]".

Various time approximations have been used. With the initial conditions
U, x) = F(x), U, x) = G(x) known we assume Al = k, i.e., equal
time intervals are used.

(4-212)

(4-213)
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