
Computer exercise C2b

(5 % of Final Grade)

May 2024

Deadlines: see the webpage of the course.
(This is an individual assignment!)

Please choose between PART A and PART B!

PART A

Based on Lecture 13, May 8 by Felix Lucka (CWI) on Inverse PDE problems.

In PART A you are going to solve an inverse problem for the one-dimensional
heat-squation:

ut(x, t) = κ uxx(x, t), , κ > 0

with boundary conditions u(0, t) = u(1, t) = 0 and initial condition u(x, 0) =
u0(x). The goal is to estimate u0(x) given measurements d(x) = u(x, T ) for
some given T . For this purpose, first, discretize the heat equation using central
differences in space and forward in time. You may wish to change the parame-
ters (step sizes and final time) in the displayed Matlab-code in Figure 1.

(a) Discretize the heat equation using central differences in space and forward
in time. Give an expression for the resulting recursion for un.

(b) Formulate a least-squares data-fitting problem for finding the initial con-
dition u0 and give an expression for its gradient. Hint: formulate the objective
function as ϕ(u0) = ∥Qu0 − d∥22.

(c) Compute the solution using a steepest-descent iteration

uk+1
0 = uk

0 − α∇ϕ(uk
0),

for the data that is generated by the accompanying Matlab script; see the code
in Figure (you could create a Python version in a similar way):



Figure 1: A Matlab version of a typical code for PART A.
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PART B

Based on Lecture 14, May 15 by Chiheb ben Hammouda on stochastic DE/PDEs.

The geometric Brownian motion S solves

dS(t) =rS(t)dt+ σS(t)dW (t),

S(0) =S0,
(1)

The exact solution for (1) is: S(t) = exp
(
(r − σ2/2)t+ σW (t)

)
S0.

1. Compute a numerical approximation to the option value:

f(0, S0) ≡ e−rTE[g(S(T )) | S(0) = S0],

by the Monte Carlo method (you may start with the attached initial code:
price MC.m) for the following cases:

• Case 1: g(x) = max(x−K, 0)

• Case 2: g(x) =

{
1, if K

2
< x < K,

0 otherwise,

Here we use r = 0.04, σ = 0.4, T = 1
4 and S0 = K = 100. Use TOL = 0.1

when controlling the error. For verification purposes, you may compare
your error estimates with the true computational error. We have an exact
solution for the two cases

(Case 1: f(0, S0) = 8.4333, Case 2: f(0, S0) = 0.5145).

2. SolveQuestion 1 by instead approximating the corresponding Black-Scholes
PDE.

∂f

∂t
+ rS

∂f

∂S
+

σ2S2

2

∂2f

∂S2
− rf = 0,

f(T, S) = g(S). (2)

You may use and modify when necessary the attached Matlab Finite
Difference program fd1d.m.

a Determine the option values with a precise accuracy TOL = 10−k,
k = 1, 2, . . .. Explain how you estimate the numerical error, work
with uniform discretizations to control it. Keep records of the ∆t
and ∆s used, the amount of computational work and compare these
results with the corresponding Monte Carlo ones.

(i) Perform the task using Backward Euler for the time stepping.

(ii) (Bonus) Perform the task using Crank-Nicholson1 for the time
stepping.

1See Exercise 4.1.
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Matlab script: fd1d.m

% Finite difference schemes applied to european

% option pricing on a 1 asset BS model.

% Uses uniform meshes only.

% dS = r*S*dt + sigmap*S*dW

% Solves the parabolic Black -Scholes PDE

% D_t U + r*s D_s + 0.5*( sigmap*s)^2 * (D_s)^2 U - r* U= 0

% U(T,.) = payoff (.)

% at s = 0 we have a Dirichlet BC , U(t,0) = payoff (0)* exp(-r*(T-t))

% and at s = smax we have a non reflecting BC.

%--------------------------------------

% Input:

%Ns = 40; % Number of subintervals in s

%Nt = 40; % Number of subintervals in t

%smax = 10; % Maximum value of s in the discretization

%want_plot = 1% if we want plots during the run

%--------------------------------------

% Output:

% contr_p: approximate price for the given contract

% defined in data.m

% U : vector of approximate prices in the sint abscisae

%

% function [contr_p ,U,sint] = fd1dcn(Ns ,Nt ,smax ,want_plot );

function [contr_p ,U,sint] = fd1d(Ns,Nt,smax ,want_plot)

% define parameters from the model

%data;

T = 1; sigmap =0.15;r=0.05; payoff = inline(’max(x-10,0)’,’x’);S0 = 10;

%--------------------------------------

% space grid

sv = linspace(0,smax ,Ns+1)’;

Np = Ns+1; % Number of points in the s grid

ds = sv(2)-sv(1);

dt = T/Nt;

% Define Finite difference operator

% Build time operator

sint = sv(2:Np -1);

diagon = - (( sigmap*sint ).^2)/( ds^2) -r;

supdia = .5*(r*sint)/ds +.5*(( sigmap*sint ).^2)/( ds^2);

subdia = -.5*(r*sint)/ds +.5*(( sigmap*sint ).^2)/( ds^2);

At = spdiags ([ subdia diagon supdia ],[0:2],Np -2,Np);

%Set right BC (extrapolation)

At(Np -2,Np -2:Np -1) = At(Np -2,Np -2:Np -1) + At(Np -2,Np)*[-1 2];
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%Set left BC

aleft = At(1,1)* payoff (0); % info for left BC.

At = At(:,2:Np -1);

% time step operator

% Crank Nicholson

Bdt = (speye(Np -2,Np -2) - 0.5*dt* At);

% impose final payoff

U = payoff(sint);

if want_plot ,figure , plot(sint ,U); end

% Carry out the time stepping

for time_step = 1:Nt ,

tn = T- time_step*dt;

rhs = U;

rhs (1) = rhs (1) + dt *aleft *0.5*( exp(-r*(T-tn))+ exp(-r*(T-tn+dt)));

U = Bdt\(( speye(Np -2,Np -2) + 0.5*dt* At)*rhs);

if want_plot ,plot(sint ,U), hold on, pause (0.1), end

end

if want_plot ,plot(sint , payoff(sint),’r’),end

% Approximate price

contr_p = interp1(sint ,U,S0 ,’cubic’);

if want_plot ,plot(S0,contr_p ,’*g’),end

disp([’Nt = ’,num2str(Nt),’, Ns = ’,num2str(Ns),’, ’ ...

’price = ’,num2str(contr_p )])
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Matlab script: price MC.m

% Parameters setup

S0 = 100; % Initial stock price

K = 100; % Strike price

r = 0.04; % Risk -free rate

sigma = 0.4; % Volatility

T = 1/4; % Time to maturity

N = 100; % Number of Monte Carlo simulations

% Simulate stock price at final time using GBM model

Z = randn(N,1); % Standard normal random variables

% GBM formula for S(T)

ST = S0 * exp((r - 0.5 * sigma ^2) * T + sigma * sqrt(T) * Z);

% Case 1: Payoff for a call option

payoff1 = max(ST - K, 0);

% Calculate the discounted expected payoffs

optionValue1 = exp(-r * T) * mean(payoff1 );
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