Numerical Methods for Time-Dependent PDEs

Spring 2025

Exercises for Lecture 4

Consider the heat equation:

Up = Ugy. (1)

Exercise 4.1

Derive the Crank-Nicolson method for the heat equation (1) at the gridpoint
(Z‘i, tn+% ):
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Exercise 4.2

Derive the DuFort-Frankel scheme and its error term for the heat equation (1).

Exercise 4.3

Sketch the computational stencil for the Crank-Nicolson method, the Leapfrog
method and the DuFort-Frankel scheme, when applied to (1).

Exercise 4.4

2
Show that, for the particular choice of the stepsizes At = (\A/% , the DuFort-
Frankel scheme is second-order in time and fourth-order accurate in space (hint:

expand the terms more carefully and use a relation between uy and tgqpq.).

Exercise 4.5

Show that the local truncation error 7 for the Crank-Nicolson method is second-
order in space and time, i.e. 7= O((At)?) + O((Az)?) and compute the domi-
nant term in 7.



Exercise 4.6

Suppose that an explicit (in time) finite difference method is used to approxi-
mate the heat equation. It can be written in the form:

u™t! = Bu® + b®,

with an (M — 1) x (M — 1)-matrix B and righthand-side vector b™ of length
M — 1. If we apply the finite difference equations to the exact solution u, we
can write:

u't = Bu’ +b" + At T,
where 7™ denotes the vector of local truncation errors in each grid point z; at
time level t". Define the global error at time ¢ = ¢" by E™ = ul! — u™.
Show that, if B™ (now as a power in n) is bounded for all At and indices n with
nAt < Tenq (‘stability’), and if the method is consistent (7" — 0, for At | 0),
then the finite difference method is convergent: lim, .., E" = 0.

Exercise 4.7

Show, using the Von Neumann-stability analysis, that the Crank-Nicolson method
applied to the heat equation (1) is unconditionally stable.

Exercise 4.8

The same question as in exercise 4.7, but now for the DuFort-Frankel scheme
applied to the heat equation (1).



