Numerical Methods for Time-Dependent PDEs

Spring 2025

Exercises for Lecture 7

Exercise 7.1

Consider the logistic ODE model:

0 =u—u>

with initial condition u(0) = u°. First, check that the exact solution satisfies:
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Show that we obtain, from this expression, the following ezact finite-difference
scheme:
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Exercise 7.2
Verify that the scheme:
Wty

bt =u", n=0,1,2,..;At >0,

u™ &= u(t") = u(nAt),

is an ezact finite difference (FD) scheme for the ODE:
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Exercise 7.3

(a) Check that the Leapfrog method
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is an ezact finite difference (FD) scheme for: u(t) = /u(t) with u(0) = 1.

(b) Give two important ingredients of a nonstandard FD scheme, when com-
pared to a standard FD scheme.



Exercise 7.4

Consider the nonlinear ODE model:

u=u?—u’

with initial condition u(t’) = u". Derive the nonstandard finite-difference

scheme:
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by making the non local approximations: u? — 2 (u")” — u"*1y" and u® —

u™*t (u™)? Which function ¢(At) would be a good choice?

Exercise 7.5
Consider Fisher’s PDE
Up = Ugy + u(l — u).
Derive the non-standard finite-difference scheme with the nonlocal approxima-
tion?
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for the reaction term. Use the standard FT and CS approximations for u; and
Uz, Tespectively. You may assume (AATt)z =1

5.
The solution u(z,t) satisfies “the boundedness condition”:
0<u(z,0) <1=0<u(zt) <1, Vi>0.

Prove a similar statement for the difference scheme:

0§u?§1:>0§u?§1, Vn > 1, V relevant .
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