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7.1 Introduction

Traditional numerical techniques to solve time-dependentpartial differential equations (PDEs) inte-
grate on a uniform spatial grid that is kept fixed on the entiretime interval. If the solutions have
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regions of high spatial activity, a standard fixed-grid technique is computationally inefficient, since to
afford an accurate numerical approximation, it should contain, in general, a very large number of grid
points. The grid on which the PDE is discretized then needs tobe locally refined. Moreover, if the
regions of high spatial activity are moving in time, like forsteep moving fronts in reaction-diffusion or
hyperbolic equations, then techniques are needed that alsoadapt (move) the grid in time.

In the realm of adaptive techniques for time-dependent PDEswe can, roughly spoken, distinguish
between two classes of methods.

The first class, denoted by the termh-refinement, consists of so-called static-regridding methods.
For these methods, the grid is adapted only at discrete time levels. The main advantage of this type
of techniques is their conceptual simplicity and robustness, in the sense that they permit the tracking
of a varying number of wave fronts. A drawback, however, is that interpolation must be used to
transfer numerical quantities from the old grid to new grids. Also, numerical dispersion, appearing,
for instance, when hyperbolic PDEs are numerically approximated, is not fully annihilated withh-
refinement. Another disadvantage of static-regridding is the fact that it does not produce ‘smoothing’
in the time direction, with the consequence that the time-stepping accuracy therefore will demand small
time steps. An example of such a method can be found in [4] or in[33].

The second class of methods, denoted by the termr-refinement (re-distribute orre-locate), have
the special feature to move the spatial grid continuously and automatically in the space-time domain
while the discretization of the PDE and the moving-grid procedure are intrinsically coupled. Moving-
grid techniques use a fixed number of grid points, without need of interpolation and let the grid points
dynamically move with the underlying feature of the PDE (wave, pulse, front, ...). Examples ofr-
refinement based methods can be found in [2,9,10,17–19,24,26,29,37] and later on in this manuscript.
Since the number of grid points is held fixed throughout the course of computation, problems could
arise if several steep fronts would act in different regionsof the spatial domain. For example, the grid
is following one wave front, while a second front arises somewhere else. No ‘new’ grid is created
for the new wave front, but rather the ‘old’ one has to adjust itself abruptly to cope with the newly-
developed front. Another difficulty is of a topological nature: usually referred to as ‘grid-distortion’
or ‘mesh-tangling’. Especially for higher dimensions thismay cause problems, since the accuracy
of the numerical approximation of the derivatives depends highly on the grid. Therefore, moving-
grid techniques often need additional regularization terms to prevent this from happening or to at
least slow down the grid degeneration process. In this paper, we will address different solutions to
this regularization problem. Let us first concentrate on a PDE example in one space dimension to
show the effectiveness of adaptive moving grids. After that, we will develop gradually some theory
starting with the stationary case, extending it to time-dependent models and give an extensive set
of applications from different areas, such as reaction-diffusion systems, medical applications, brine
transport and magneto-hydrodynamics.

Consider the partial differential equation (PDE):

∂u

∂t
− x∂u

∂x
= 0, x ∈ [−3, 3] (7.1.1)

which has the exact solution (using the correct boundary andinitial condition)

u(x, t) = e−(etx)2 .
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N ||e||∞: (unif.) t = 5 (adapt.)t = 5 (unif.) t = 10 (adapt.)t = 10

100 0.669504 0.050343 0.993392 0.144466
200 0.506568 0.018615 0.988101 0.040614
400 0.322038 0.008071 0.978686 0.017416
800 0.161977 0.003626 0.962241 0.008049
1600 0.060010 0.001640 0.934068 0.003819

Table 7.1: Uniform and adaptive grid results for PDE model (7.1.1) at two points of time for an increasing number

of spatial grid points N ; ||e||∞ denotes the maximum error.
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Figure 7.1: The exact solution of equation (7.1.1) for increasing time.

The solution (see also Figure 7.1) can be derived by examining the characteristics of the PDE:

{
ẋ = −x,
u̇ = 0.

This concept can be interpreted as follows: the maximum of the solution stays equal to the value 1 for
all time t (u̇ = 0), but the steepness of the wave increases, because of the ‘implosion’ caused by the
fact that the characteristic trajectories satisfyẋ = −x. In Table 7.1 a comparison is made between the
numerical solution on a uniform grid and an adaptive moving grid (details found in Section [41]) for
two different points of time using an implicit Euler method for the time integration (within the code
DASSL [28] with a time-tolerance of10−8 and central finite differences for the spatial derivatives). It
it obvious from the numerical results in Table 7.1 to conclude that adaptive moving grids are useful
for models in which steep moving transitions play an important role. Figure 7.2 shows the adaptive
grid as a function time and also the differences between a typical uniform and moving non-uniform
experiment.
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Figure 7.2: Adaptive moving grid solution of (7.1.1); left panel: time-dependent grid history, right panel: numerical

solutions for 201 grid points (zoomed in around the ‘singularity’ x = 0).

7.2 Adaptive moving grids in one dimension

7.2.1 A simple boundary-value problem

Consider the following time-independent boundary-value model (BV-model):

εuxx − ux = 0, u(0) = 0, u(1) = 1 (7.2.1)

which has the exact solution:u(x) = e
x
ε −1

e
1
ε −1

(see Figure 7.3; left panel). The solution is monotonically

increasing, with a boundary layer being formed nearx = 1 of sizeO(ε) for values0 < ε ≪ 1. We
will apply three basic numerical approaches to approximatesolutions of equation (7.2.1).
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Figure 7.3: The exact solution of BV-model (7.2.1) for decreasing values of ε.
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Numerical approximation (idea 1):

ε
ui+1 − 2ui + ui−1

∆x2
− ui+1 − ui−1

2∆x
= 0, i = 1 : N − 1. (7.2.2)

This approximation is obtained by applying central finite differences to the first and second derivatives
in (7.2.1). The exact numerical solution (i.e. the exact solution of the discretized system (7.2.2)) reads:

ui =
(1+Pe
1−Pe

)i − 1

(1+Pe
1−Pe

)N − 1
,

with mesh-Peclet numberPe := ∆x
2ε and cell-size∆x = 1

N . From this expression we can make the
following statements:
⋆ for N < 1

2ε  Pe > 1: the numerical solutionoscillates(see also Figure 7.4, left panel).
⋆ for N > 1

2ε  0 < Pe < 1: monotonenumerical values are obtained.
⋆ for 0 < ε ≪ 1 we needN ≫ 1 to satisfy this monotonicity condition, which leads to a highly
inefficient numerical process.
⋆ The numerical error behaves like:O(∆x2) = O( 1

N2 ).
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Figure 7.4: Numerical (–) vs. exact solutions of BV-model (7.2.1); method I (left panel) and method II (right panel).

Numerical approximation (idea 2):

ε
ui+1 − 2ui + ui−1

(∆x)2
− ui − ui−1

∆x
= 0, i = 1 : N − 1. (7.2.3)

This approximation represents an upwind discretization ofthe first derivative in model (7.2.1). The
exact solution of system (7.2.3) reads:

ui =
(1 + Pe)

i − 1

(1 + Pe)N − 1
.

Similar to the previous approximation (7.2.2), we can work out a few results for this approximation:
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⋆ 1 + Pe > 1 =⇒ ui+1 > ui ∀i: we always get amonotonenumerical solution.
⋆ Unfortunately, the error behaves now as:O(∆x) = O( 1

N ), which is worse than for the previous
case.
⋆ Moreover, additional numerical damping (”diffusion”) is introduced in the numerical system:

ui − ui−1

∆x
=
ui+1 − ui−1

2∆x
− ∆x

2

ui+1 − 2ui + ui−1

∆x2
.

(see also Figure 7.4, right panel)

Numerical approximation (idea 3):
Definev(ξ) := u(x(ξ)) and a transformationx 7−→ ξ ∈ [0, 1]. Then BV-problem (7.2.1) is trans-
formed to

ε

xξ

[
vξξxξ − vξxξξ

x2
ξ

]
− vξ
xξ

= 0.

Suppose that we map the steep solutionu(x) in thex-coordinates to the mild (linear) functionv(ξ) = ξ

in theξ-coordinates and assumexξ > 0 (‘the transformation is regular’), then

εxξξ + x2
ξ = 0, x(0) = 0, x(1) = 1

which has the exact solutionx(ξ) = ε ln(ξ(e
1
ε − 1)+ 1). It is easy to derive that the following identity

holds for this particular mapping
xξux = 1, (7.2.4)

sinceux =
vξ

xξ
andvξ = 1. Note thatxξ is related to the inverse of the grid point concentration of the

non-uniform grid. From these expressions can also be derived that: ifux is large thenxξ is smalland
vice versa, i.e., grid points are concentrated in the boundary layer of model (7.2.1) (see Figures 7.5 and
7.6). Equation (7.2.4) is identical to

xξ ω = 1 (7.2.5)

whereω := ux > 0 is a so-called ‘monitor’ function. The question is: can we use this principle, or a
similar one, for more general situations as well?

7.2.2 The equidistribution principle

We have seen that principle (7.2.5) can be useful to let the grid points be concentrated in regions with
high first order spatial derivatives. In general, we can define such a principle in terms of a more general
monitor or weight functionω to obtain the so-called equidistribution principle, originally worked out
by [7] in the context of spline approximations. The idea behind this method is that we want to ”equally
distribute” the positive definite monitor functionω on a non-uniform grid. Ideally,ω represents some
kind of measure of the error of the underlying numerical scheme. To get some better idea of this
method we first define a non-uniform grid

xL = x0 < x1 < x2 < ... < xN−1 < xN = xR
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Figure 7.5: The non-uniform adaptive grid seen as a coordinate transformation between physical x and computa-

tional coordinates ξ.
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Figure 7.6: Numerical approximation of BV-model (7.2.1) using method III (left panel: the non-uniform grid in

terms of the coordinate transformation; right panel: exact vs. numerical solution).

and try to find the actual grid point distribution such that the contribution to the ‘error’ from each
subinterval(xi−1, xi) is the same. The basic principle then reads (the connection with (7.2.5) will
soon become clear):

∆xi ωi = c, i = 0, ..., N − 1. (7.2.6)

with x0 = xL, xN = xR, ∆xi := xi+1 − xi, which is a discrete version of (after having applied the
midpoint rule to the integral):

∫ xi+1

xi

ωdx = c, i = 0, ..., N − 1.

The constantc is determined from:
∫ xR

xL

ωdx =

∫ x1

x0

ωdx+

∫ x2

x1

ωdx+ ...+

∫ xN

xN−1

ωdx = c+ c+ ...+ c (N times),
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giving c = 1
N

∫ xR

xL
ωdx. We then obtain:

∫ xi+1

xi

ωdx =
1

N

∫ xR

xL

ωdx, i = 0, ..., N − 1,

from which we read that the monitor functionω is indeed equally distributed over all subintervals,
thereby clarifying the name of the principle. From (7.2.6) the main idea behind this principle becomes
clear as well: grid cells∆xi are small whereωi is large, and vice versa,sincetheir product is constant.
In fact this is the discrete version of the continuous formulation (7.2.5). Equation (7.2.6) can also be
interpreted as an approximation to the problem

xξω = c, 0 < ξ < 1

or, taking theξ-derivative, to the boundary-value problem

(ωxξ)ξ = 0, x(0) = xL, x(1) = xR. (7.2.7)

Note that sincedxdξ = 1
dξ
dx

, we find

dξ

dx
= c ω, xL < x < xR, ξ(xL) = 0, ξ(xR) = 1.

From this follows the relation

1 = 1− 0 = ξ(xR)− ξ(xL) =

∫ xR

xL

dξ

dx
dx = c

∫ xR

xL

ωdx,

so that the constantc can be written asc = 1R xR
xL

ωdx
and thereforedξdx = ωR xR

xL
ωdx

. If we now integrate

the expresssion
dξ

dx
=

ω∫ xR

xL
ωdx̄

we arrive at an explicit formula for theinversecoordinate transformation:

ξ(x) =

∫ x

xL

ω∫ xR

xL
ωdx̄

dx̄ =

∫ x
xL
ωdx̄

∫ xR

xL
ωdx̄

.

We already mentioned thatξx = 1
xξ

represents the ‘grid point density’ of the transformation.What
about the regularity of the transformation? Can the grid points cross each other and destroy the ‘topol-
ogy’, i.e. the natural ordering, of the grid point distribution? The answer to this question is, fortunately,
negative and can be easily checked by working out the following identity, which is a direct result of
the previous calculations:

dx

dξ
ω = c =

xR − xL∫ 1
0 ωdξ̄

.

Forω > 0 we havec > 0, and thusdxdξ > 0 (by definition:xR − xL > 0). The Jacobian of the trans-

formation is given bydxdξ > 0 from which we may conclude that the transformation is non-singular. In
terms of the grid points this reads∆xiωi = c > 0⇒ ∆xi > 0: the grid points do not cross!
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It is interesting to note that the equidistribution principle, as just described, can be derived from a
variational formulation. To see this, we consider the ‘grid-energy’

E =

∫ 1

0
ωx2

ξdξ

and minimizing this energy functional, in a straightforward manner, via the Euler-Lagrange equation:

d

dξ

(
∂F
∂xξ

)
− ∂F
∂x

= 0 with F = F(x, xξ) = ω(ξ)x2
ξ gives:

d

dξ
(2ωxξ)− 0 = 0⇔ d

dξ

[
ω
dx

dξ

]
= 0

which is equal to the differential formulation (7.2.7)! The‘grid-energy’ can be taken to represent the
energy of a system of springs with spring constantsω spanning each interval and connecting points of
mass (grid points). The non-uniform grid point distribution resulting from the equidistribution princi-
ple thus represents the equilibrium state of the spring system, i.e., the state of minimum energy (see
also Figure 7.7).

F

F F

x
x(i+1) x(i+2)x(i)x(i−1)

i−1

i

i+1

‘points of mass’
‘forces’

‘springs’

grid points

Figure 7.7: The non-uniform adaptive grid seen as a system of ‘springs’ connecting ‘points of mass’.

We still can not apply principle (7.2.7), since we do not knowyet how to choose the monitor function
ω. A first choice, see (7.2.4), may beω = ux. This yieldsxξω = xξux = xξ

vξ

xξ
= vξ = c. In

words: the grid pointsxi adjust in such a way that the same change in the solutionu occurs over
each grid interval(xi−1, xi). The main disadvantage is the fact that, ifux ↓ 0, then∆xi → ∞ (the
transformation becomes singular), see Figure 7.8 (left panel).

An alternative choice forω is to take
√

1 + u2
x (Figure 7.8; right panel). In this case an increment

of arclengthds on the solution curveu(x) is given byds2 = dx2 + du2 = (1 + u2
x)dx

2 from which
we obtainω = sx and thusxξsx = xξ

sξ

xξ
= sξ = c. The grid point distribution is now such that
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x

Figure 7.8: Grid point distribution using ω = ux (left) and arclength monitor (right).

the same increment in arclength in the solution occurs over each subinterval in the non-uniform grid
distribution. Note that hereux ↓ 0 ⇒ ∆xi → 1

N , i.e. for low values of the gradientux, the grid
points are distributed uniformly (in the limit). Many otherpossible choices forω have been used in the
literature. In [38] a few other choices and references are given. In practical applications the scaling of
the solutionu and the dimension of the spatial domainx may influence the grid distribution induced
byω =

√
1 + u2

x. Therefore, often a extra constantα is added to the monitor function:ω =
√
α+ u2

x

or ω =
√

1 + αu2
x to take into account these scaling effects. This, of course,may result in a user-

unfriendly method, since theα depends on the particular PDE model. A more sophisticated monitor
function taken from [15] will be given in Section 7.2.4 in which a ‘solution-adaptive’ parameter inω
is used to cope with this scaling problem . Additional information can also be found in the description
of the higher-dimensional case later on. Furthermore, the extension of the equidistribution principe to
time-dependent differential equations is straightforward: the grid distribution∆xi will depend on time
t:, i.e. ∆xi(t), just as the constantc in, for instance, (7.2.6).

7.2.3 Smoothing of the grid in space and time

Besides the issue how to choose the monitor function in (7.2.7), we might conclude that the just-
mentioned equidistribution principle in the current form may be used efficiently for general PDE mod-
els. But the question to be answered is:

Does ‘pure’ equidistribution suffice?

In order to get an answer to this question it may be illustrative to consider two diiferent PDE models.
The first one is the well-known viscous Burgers’ equation which reads

∂u

∂t
+ u

∂u

∂x
= 5 10−3 ∂

2u

∂x2
, x ∈ [0, 1]. (7.2.8)
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As initial condition and boundary conditions we takeu(x, 0) = sin(πx), u(0, t) = u(1, t) = 0. The
solution starts smoothly, but will develop a sharp transition layer nearx = 1. What happens with the
equidistribution grid withω =

√
1 + u2

x we can see in Figure 7.9. On the left the solution and the
grid are shown. Both the grid trajectories and the solution itself appear to be irregular (‘unsmooth’). In
the same figure, now in the right panel, the same method is being used, but with additional smoothing.
This will be explained later on.

Figure 7.9: Adaptive moving grid solutions of (7.2.8) on a non-smooth grid (left) and on a smoother grid (right)

with the same number of grid points.

A second example is given by the hyperbolic PDE

∂u

∂t
+ 4cos(4πt)

∂u

∂x
= 0. (7.2.9)

An exact solution of this hyperbolic PDE is

u(x, t) = sin1000

(
π

(
x− 1

π
sin(4πt)

))

which describes anextremely sharppulse thatmoves periodicallyin the time direction, from left to
right and backwards again through the spatial domain. Similar to the Burgers’ model we show the
solution (on a uniform grid, an unsmooth equidistributed grid and a smoothed equidistribution grid) in
Figures 7.10 and 7.11, respectively. Obviously we need extra smoothing on top of the equidistribution
principle (7.2.5). First we need to identify and quantify these unsmooth effects. We will see that this
can be done in terms of

• local truncation errorson non-uniform grids and

• unsmoothness and instability of a time-dependent gridbased onpureequidistribution.

For this purpose, we define the ‘grid size ratio’ (‘local stretching factor’):

r :=
xi − xi−1

xi+1 − xi
:=

∆xi−1

∆xi
:=

q

p
.
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Figure 7.10: Comparison of uniform grid and adaptive moving grid solutions (smooth vs unsmooth) for model

(7.2.9).

Using a Taylor expansion, it follows that the truncation error T for the central finite difference approx-
imation (on a non-uniform grid)ux,i ≈ ui+1−ui−1

p+q is given by

= − p2 − q2
2(p+ q)

uxx,i −
p3 + q3

6(p + q)
uxxx,i + ...

= −1

2
uxx,i(1− r)∆xi −

1

2
uxxx,i(1− r + r2)∆x2

i + ...

=
∆ξ2

6
(3xξξ,iuxx,i + x2

ξuxxx,i) +O(∆ξ4)

= ∆x2
i (

1

2

xξξ,i
xξ,i

uxx,i +
1

6
uxxx,i) +H.O.T .

We immediately see that forr = 1 (a uniform grid) the numerical approximation is ofsecond-
order:

T = −∆ξ2

6
uxxx,i +O(∆ξ4).

However, for the non-uniform grid case,r 6= 1, and the approximation is ofsecond order, only if
r = 1 +O(∆xi). Since

r =
xξ,i∆ξ − 1

2∆ξ2xξξ,i

xξ,i∆ξ + 1
2∆ξ2xξξ,i

+H.O.T . = 1−∆xi
xξξ,i
x2
ξ,i

+H.O.T .

we can conclude thatxξξ,i

x2
ξ,i

= O(1)⇔ r = 1+O(∆xi). If the ratio xξξ,i

x2
ξ,i

is too big, thenr 6= O(1) and

this influences the order of the truncation error. Grids withr = 1+O(∆xi) are called ‘quasi-uniform’.
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Figure 7.11: Unsmooth vs smoothed adaptive moving grids for PDE model (7.2.9).

Such grids (in terms of the transformation:xξξ,i

x2
ξ,i

= O(1)) are ‘smooth’ enough and will not change

greatly between adjacent intervals. How to adjust the equidistribution principle to guarantee this, we
will see in Section 7.2.3.

A second potential problem with the basic equidistributionprinciple can be explained as follows:
if we differentiate the equidistribution relation

∫ xi(t)

xL

ωdx =
i

N

∫ xR

xL

ωdx :=
i

N
ω(t), i = 1, ..., N

with respect to timet we obtain

ω(xi, t)ẋi +

∫ xi

xL

∂ω

∂t
(x, t)dx =

i

N
ω̇(t), i = 1, ..., N.

Introducing small perturbationsδxi on the grid pointsxi and using Taylor expansions forω(xi+δxi, t)

and
∫ xi+δxi

xL

∂ω
∂t dx we get

ω(xi, t)ẋi +
∂ω

∂x
δxiẋi + ω(xi, t)δẋi +

∫ xi

xL

∂ω

∂t
dx+

∂ω

∂t
δxi +H.O.T . =

i

N
ω̇(t).

After linearization follows

ω(xi, t)δẋi +
∂ω

∂x
δxiẋi +

∂ω

∂t
δxi = 0.

This is equivalent withddt [ω(xi(t), t)δxi] = 0 and integrating once gives

ω(xi(t), t)δxi(t) = CONSTANT= ω(xi(0), 0)δxi(0)

and thereforeδxi(t) = ω(xi(0),0)
ω(xi(t),t)

δxi(0). From this expression we see that, ifω(xi(0),0)
ω(xi(t),t)

becomes> 1,
the adaptive grid in equidistribution may becomeunstable. This may be prevented by adding a small
‘delay’-term to the equidistribution principle. More details on this kind of instability can be found
in [14]. In the next section an alternative to the basic equidistribution formula will be derived.
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How to deal with unsmoothness of the grid?

From the previous section we have learned that an important inequality for the non-uniform grid is
given by

1

K
≤ r ≤ K, K = O(1).

Rewrite the time-dependent equidistribution principle∆xiωi = c(t) in terms of ‘point concentrations’
ni := 1

∆xi
:

ni = c̄(t)ωi, ∀i. (7.2.10)

Next define

ω̆i =

N∑

j=0

ωj(
σ

σ + 1
)|i−j|, σ > 0, ω > 0

andreplacethe (7.2.10) by
ni = c̄(t)ω̆i, ∀i. (7.2.11)

This is in fact a spatially smoothed equidistribution principle. The following Lemma then holds (for
the proofs of this and succeeding series of Lemma’s we refer to [34]):

Lemma 7.2.1. Fromni = c̄(t)ω̆i, ∀i, it follows⇒ σ
σ+1 ≤ ni

ni−1
≤ σ+1

σ , ∀i.

An interesting observation is the fact that the magnitude ofω does not play a role at all in Lemma
7.2.1. Note that, ifσ = O(1) thenr = ni

ni−1
= O(1) where the local stretching factor is written in terms

of the point density instead of the cell-size. Define furtherñi := ni− σ(σ+ 1)(ni+1− 2ni +ni−1) =

c̃(t)ωi, ∀i with ‘Neumann’ boundary conditionsn0 = n1, nN−1 = nN . Then the solution of this
system of equations is given by

ni = c̃ C+

(
σ + 1

σ

)i
+ c̃ C−

(
σ

σ + 1

)i
+ c̃

N−1∑

j=1

(
σ

σ + 1

)|i−j|

for some constantsC+ andC− that depend on the boundary values.

Lemma 7.2.2. This solutionni has also the property

σ

σ + 1
≤ ni
ni−1

≤ σ + 1

σ
, ∀i.

Instead ofni = c̄(t)ω̆i which can be shown to be equivalent withñi = c̃(t)ωi we set (a smoothed
equidistribution principle both in spaceand time direction):

ñi(t) + τs
d

dt
ñi(t) = c̃(t)ωi, ∀i (7.2.12)

with boundary conditionsn0 = n1, nN−1 = nN , ∀t. Note that the solution of thisODE-system can
be obtained in terms of the integral equation:

ñi(t) = exp(−t/τs)[ñi(0) +

∫ t

0
τ−1
s exp(s/τs)c(s)ωi(s)ds], t ≥ 0, ∀i.
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If we apply, for example, implicit Euler to (7.2.12 we can make the following observations with respect
to the parameterτs:

• for τs → 0 : ñ
(n+1)
i ≈ c(n+1)ω

(n+1)
i ∀i in case of no smoothing in the time direction

• if τs ≫ ∆t : ñ
(n+1)
i ≈ ñ(n)

i ∀i too much temporal smoothing⇒ no grid adaptation

• if τs = O(∆t) : ñ
(n+1)
i ≈ 1

2 ñ
(n)
i + 1

2c
(n+1)ω

(n+1)
i ∀i (use old values of grid as well for

adaptation).

It is easily seen that:

Lemma 7.2.3. For σ = τs = 0, i.e., no smoothing at all:ni = c̄(t)ωi) andω > 0⇒ ni > 0, ∀i.

For the caseτs = 0, σ 6= 0, we have observed that̃ni = c̃ωi ⇔ ni = c̄ω̆i ∀i (ω̆i > 0). From
Lemma 7.2.3 it follows directly thatni > 0, ∀i (simply replaceωi by ω̆i).

Lemma 7.2.4. If ni is the solution given by

ni = c̃ C+(
σ + 1

σ
)i + c̃ C−(

σ

σ + 1
)i + c̃

N−1∑

j=1

(
σ

σ + 1
)|i−j|

then, becauseni > 0⇒ ñi > 0 ∀i.

For the caseτs 6= 0, σ = 0 : ni + τs
d
dtni = ĉ(t)ωi, we have

Lemma 7.2.5.ni(0) > 0, ∀i⇒ ni(t) > 0 ∀i ∀t ≥ 0.

Combining all the previous results gives for the most general case (cf. (7.2.12):

Lemma 7.2.6. The solutionni (in terms ofñi) is a linear combination of̃ni-values with only positive
coefficients (i.e.̃ni > 0⇒ ni > 0).

And finally:

Theorem 7.1. I) ∆xi(0) > 0 ∀i⇒ ∆xi(t) > 0 ∀i, ∀t ≥ 0 and II) σ
σ+1 ≤

∆xi+1(t)
∆xi(t)

≤ σ+1
σ , ∀i, ∀t ≥

0.

From these results follows that the smoothed equidistribution principle (7.2.12) deals with, and
solves, both identified potential problems as discussed in Section 7.2.3. As already mentioned, for
more information on these theoretical results the reader isreferred to [34]. We are now ready to apply
the enhanced and improved method to a series of PDE models from different application areas.

Application to time-dependent PDEs

Consider the time-dependent diffusion-convection-reaction PDE:

∂u

∂t
= ε

∂2u

∂x2
− β∂u

∂x
+ s(u, x, t). (7.2.13)
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Application of the coordinate transformation

x = x(ξ, θ), t = t(ξ, θ) = θ, J := xξ.

to (7.2.13) yieldsUθ − 1
J xθUξ = ε

J [ 1
J Uξ]ξ −

β
J Uξ + s(x,U, θ). Semi-discretization in the spatial

direction first (with a uniform distribution in the computational coordinateξ) gives:

U̇i −
Ui+1 − Ui−1

xi+1 − xi−1
(ẋi − β) = ε

Ui+1−Ui

xi+1−xi
− Ui−Ui−1

xi−xi−1

1
2(xi+1 − xi−1)

+ si. (7.2.14)

In addition to the discrete formulation (7.2.12) it is possible to write the adaptive non-uniform grid in
terms of this transformation. Let thereforex(ξ, θ) be the solution of the time-dependent grid PDE:

[(S(xξ) + τsxξθ)ω]ξ = 0, (7.2.15)

whereτs > 0 is the temporal smoothing parameter as used in Section 7.2.3), ω =
√

1 + α(Ux)2

the monitor function andα the so-called ‘adaptivity parameter’. The spatial smoothing operatorS in
(7.2.15) is defined by:

S = I − σ(σ + 1)(∆ξ)2
∂2

∂ξ2
,

with σ the spatial smoothing parameter from Section 7.2.3. Similar to the results for the discrete case,
some properties of the grid can be derived.

• J = xξ > 0 ∀ θ ∈ [0, T ] which reads in discretized form (note:∆ξ is constant)∆xi(θ) >
0 ∀ θ ∈ [0, T ] (no ‘node-crossing’ possible)

•
∣∣∣xξξ

xξ

∣∣∣ ≤ 1√
σ(σ+1)∆ξ

with discretized version:

σ

σ + 1
≤ ∆xi+1(θ)

∆xi(θ)
≤ σ + 1

σ
∀ θ ∈ [0, T ].

(‘local quasi-uniformity’)
• τs = σ = 0 ⇒ xξ ω = constant∀ θ ∈ [0, T ]

⇔ ξ(x, t) =

∫ x
xL
ω dx̄

∫ xR

xL
ω dx̄

.

(in discretized form:∆xi ·ωi = constant∀ θ ∈ [0, T ] (equidistribution of the arclength monitor)

For the three parametersτs, σ andα we can give a rule of thumb how to choose them in a particular
application:

0 < τs ≤ 10−3 × timescale in PDE model,

σ = O(1) (σ = 2 suffices in general).

Note, however, that the third parameter depends on the different scales in the PDE solution, which may
not be known on forehand:

α = O(1) depends onx- andU -scale.
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Semi-discretization of the adaptive grid PDE (7.2.15) yields:

[
∆̃xi+1 + τs

d∆xi+1

dθ

]
ωi+1 −

[
∆̃xi + τs

d∆xi
dθ

]
ωi = 0,

where∆̃xi = ∆xi − σ(σ + 1)(∆xi+1 − 2∆xi + ∆xi−1). Note that we have used here the alternative
formulation in terms of∆xi rather than the one withni. The semi-discretized system can be written
as an adaptive-grid ODE system:

τs B( ~X, ~U, σ, α) ~̇X = ~H( ~X, ~U, σ, α).

When coupled on the semi-discretized PDE system (7.2.14), we obtain a large, stiff, banded, non-
linear ODE system, which can solved in the time-direction with a stiff ODE solver such as DASSL
[6, 28]. The full 1D code, which can solve a general class of PDE models accompanied with dif-
ferent kinds of boundary conditions is freely available andcan be downloaded from the webpage
http://www.math.uu.nl/people/zegeling/publist.html.

7.2.4 Applications

In this section a set of applications is treated to show the usefulness and effectiveness of the adaptive
moving grid method as described in Section 7.2.3.

The Gray-Scott reaction-diffusion system

A reaction-diffusion model in which several interesting phenomena from pattern formation can occur,
is defined by the Gray-Scott PDE system [16]:

∂u

∂t
=
∂2u

∂x2
− uv2 +A(1− u),

∂v

∂t
= 0.01

∂2v

∂x2
+ uv2 −Bv.

(7.2.16)

In particular it describes reactions between ferrocyanide, iodate and sulphite. Typical numerical results
can be found in Figure 7.12. Starting with a one pulse solution as initial condition, the solution exhibits
a ‘splitting’ behaviour, so that after a relatively long time integration (heret ∈ [0, 20000]) we end up
with more than20 very steep pulses.

Travelling waves on the Golden-Gate Bridge

The higher-order PDE model

utt + uxxxx + u+ − 1 = 0 with u+ =

{
u, u > 0,

0, u < 0
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Figure 7.12: Adaptive moving grid results of model (7.2.16) with 601 grid points; solution and grid history.

has been recognized as a good model for the description of travelling wave behaviour in the Golden
Gate Bridge in San Francisco. Here, the solutionu(x, t) represents the displacement of a beam from
the unloaded state [11]. It can be re-written as a system of three first-order PDEs in the following way:

ũt = Aũxx + Bũ+ F , (7.2.17)

whereũ := (u, v,w)T , v = ut, w = uxx,F = (0, u+ − 1, 0)T and

A =




0 0 0

0 0 −1

0 1 0


 , B =




0 1 0

0 0 0

0 0 0


 .

Numerical results are shown in Figure 7.13. We see interesting solution behaviour when playing with
different initial data that were derived from an theoretical observation in combination with a numerical
method for the stationary case. Both stable and unstable waves, but even crossing waves (in different
directions) are part of the PDE model.

A tumour angiogenesis model

An application from medical sciences in which steep gradients of the solution play an important role
is given by a tumour angiogenesis model for blood vessel development [12]. The PDEs read

bt +

([
3

4
cx

]
b

)

x

= 10−3bxx − 4b+ 102b(1− b)max(0, c − 0.2),

ct = δcxx − c− 10
bc

1 + c
, x ∈ [0, 1].

(7.2.18)
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Figure 7.13: Results for a few different scenario’s in the Golden-Gate model (7.2.17).

Here,b andc stand for the density of endothelial cells (blood) and the so-called tumour angiogenesis
factor (TAF), respectively. For the initial and boundary conditions we have chosen:

c(x, 0) = cos

(
1

2
πx

)
, b(x, 0) =

{
0, if 0 ≤ x < 1

1, if x = 1

b(0, t) = 0, b(1, t) = 1, c(0, t) = 1, c(1, t) = 0.

Figure 7.14 depicts adaptive moving grid results for two values of the diffusion parameterδ: δ = 1

(left panel) andδ = 10−3 (right panel). Decreasing the value of the diffusion coefficient makes the
moving front steeper. Adaptive moving grids are therefore especially suited for this type of models
from medical sciences.

Figure 7.14: Results for two different values of the diffusion coefficient δ in model (7.2.18).
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Brine transport in a porous medium

In reference [36] an application to a brine transport model in a porous medium is described (please
check the details there). The model consists of two PDEs:

(nρ)t + (ρq)x = 0, q = −k
µ

(px + ρg),

(nρω)t + (ρωq + ρJ)x = 0, J = −λ|q|ωx,
(7.2.19)

whereω is the salt concentration in the porous medium and the fluid densityρ satisfies also the equation
of state

ρ = ρ0eβ(p−p0)+γω.

The initial and boundary conditions for the numerical experiments in Figure 7.15 read:

ω(x, 0) = 0, ω(0, t) = ω0 > 0, ωx(1, t) = 0, x ∈ [0, L],

p(x, 0) = p0

[(
1− x

L

)
pleft +

x

L
pright

]
,

p(0, t) = p0pleft, p(1, t) = p0pright.

Different choices ofpleft andpright may result in quite different phenomena as can be seen in Figure
7.15.

Figure 7.15: Three different cases for the brine transport model (7.2.19).

Heat flow of harmonic maps from surfaces

From theoretical mathematics a higher-dimensional PDE canbe derived that deals with harmonic heat
flow between the 2-discD and the 2-sphereS:

ut = ∆u+ |∇u|2u, u(x, 0) = φ(x), u|∂D = φ|∂D. (7.2.20)

When requiring spherical symmetry in the modelφ(x) = [ x|x| sin(ψ(|x|)), cos(ψ(|x|))], it can be
shown that the solution must satisfy

u(x, t) = [
x

|x| sin(h(|x|)), cos(h(|x|))].
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When we substitute this expression into PDE model (7.2.20) we arrive at the much simpler PDE in one
space dimension (using spherical coordinates for the 2-sphereS):

ht = hrr +
1

r
hr − n2 sin(2h)

2r2

h(r, 0) = ψ(r), h(0, t) = 0, h(1, t) = ψ(1).

More details on the theoretical background of the model can be read in reference [5]. Typical ‘jump’-
behaviour of the solution and high spatial activity aroundr = 0 is clearly seen in Figure 7.16.

Figure 7.16: Adaptive moving grid solutions for the heat flow model (7.2.20).

The extended Fisher-Kolmogorov equation

In reference [27] a fourth-order nonlinear PDE is analyzed which may describe the propagation of
domain walls in liquid crystals:

ut + 10−8uxxxx = 10−4γuxx + u− u3 , x ∈ [0, 1]. (7.2.21)

The parameterγ plays an essential role, because it can be theoretically derived that forγ = −3 <

γ∗ = −
√

8 we expect multi-bump solutions. Using the conditions

u(x, 0) = cos(pπx),

u(0, t) = 1, u(1, t) = −1, ux(0, t) = ux(1, t) = 0.

interesting ‘batman-ear’-type solutions can be obtained as we see in Figure 7.17. Since the fourth
derivative is not included in the general 1D-code in [6], a non-uniform grid approximation ofuxxxx
has to be worked out and fed to the time-integrator DASSL [28].
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Figure 7.17: ‘Batman-ear’ type solutions of model (7.2.21) with 81 adaptive moving grid points.

A fifth-order Korteweg-deVries model

As a simple example, let us first consider the solution of the heat equation

ut = αuxx

with coefficientα ∈ R and

u(x, 0) = sin(πx), u(0, t) = u(1, t) = 0, x ∈ [0, 1].

It readsu(x, t) = eαπ
2t sin(πx). It is easily checked that forα < 0 we haveunstablesolutions,

whereas forα ≥ 0 all solutions arestable. In general, for more complicated nonlinear PDE models
(with physical parameters), it is often unknown whether thesolutions remain stable. For this purpose
numerical experiments can reveal some of the stability behaviour of the PDE solution. As a concrete
example, we consider a fifth-order model for nonlinear waterwaves in the presence of surface tension
(cf. [31] for more details):

ut +
2

15
uxxxxx + (µu− b)uxxx + (3u+ 2µuxx)ux = 0 . (7.2.22)

We setµ = 1 and simulate numerically the temporal behaviour of different scenario’s, in which the
parameterb can be varied. Note that fora = 3

5(2b+ 1)(b − 2), b ≥ −1/2 explicit solutions exist:

u(x, t) = 3

(
b+

1

2

)
sech2

(√
3(2b + 1)

4
(x+ at)

)
.

in which−a is the velocity of the wave. Other combinations, for which there are no explicit expres-
sions, may appear as well. Figure 7.18 shows a few of these experiments. Additionally, it must be noted
that these results have been obtained by working with a slightly modified version of the equidistribution
principle (details in [31]), where the number of grid pointsis variable.



7.2. ADAPTIVE MOVING GRIDS IN ONE DIMENSION 273

Figure 7.18: Numerical solutions of the extended KdV5 model (7.2.22) for three different scenario’s.

Figure 7.19: Solutions for the 1.75d mhd-shocktube model (7.2.23); left: the density at t = 0.08, right: grid history

showing nicely the tracking of the seven different ‘waves’.

An MHD shocktube model

Finally, we demonstrate the capability of the equidistribution principle when applied to a complicated
system of highly nonlinear hyperbolic PDEs [15]. For this application, an alternative monitor has been
used (details follow later on in a section that treats the two-dimensional case): the scaling and choice
of the parameterα is done automatically. No additional smoothing as in Section smooth is needed as
well. The PDE model from magneto-hydrodynamics (MHD) consists of seven PDEs:

∂ρ

∂t
+
∂m1

∂x
= 0 B̄1 = constantu =

m

ρ
B = (B̄1, B2, B3)

T

∂m1

∂t
+

∂

∂x

(
m2

1

ρ
− B̄2

1 + (γ − 1)
m

2

2ρ
+ (2− γ)B

2

2

)
= 0

∂m2

∂t
+

∂

∂x
(m1v − B̄1B2) = 0

∂m3

∂t
+

∂

∂x
(m1w −B1B3) = 0

∂B2

∂t
+

∂

∂x
(B2u− B̄1v) = 0

∂B3

∂t
+

∂

∂x
(B3u− B̄1w) = 0

∂e

∂t
+

∂

∂x

[
u

(
γe− (γ − 1)

m
2

2ρ
+ (2− γ)B

2

2

)
− B̄1B · u

]
= 0

(7.2.23)
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where the energy equalse = p
γ−1 + ρu2

2 + B2

2 and

γ =
5

3
, B̄1 ≡ 1, Ω = [0, 1000], t ∈ [0, 80].

The initial conditions are imposed as follows (with homogeneous Neumann conditions at both ends for
all components):

ρ|t=0 =

{
0.5 for x ∈ [0, 350]

0.1 elsewhere
, m1|t=0 = 0

(m2,m3)|t=0 =

{
(0.5, 0.05) for x ∈ [0, 350]

(0, 0) elsewhere

B2|t=0 =

{
2.5 for x ∈ [0, 350]

2 elsewhere
, B3|t=0 = 0

p|t=0 =

{
1 for x ∈ [0, 350]

0.1 elsewhere
.

The numerical results in Figure 7.19 show the densityρ at t = 80 and the adaptive moving grid that
tracks the seven waves accurately.

7.3 The higher-dimensional case

7.3.1 A tensor-grid approach in 2D

Within this section we will adopt the alternative notation∂ba for the partial derivative∂a∂b .

Consider now the two-dimensional time-dependent PDE model

∂tu = ε∆u− β(u, x, y, t) · ∇u+ s(u, x, y, t), (7.3.1)

where(x, y) ∈ [xl, xr]× [yl, yu], t ∈ [0, T ], 0 ≤ ε is the diffusion coefficient,β the velocity vector
ands a nonlinear sourceterm.

A straightforward extension from 1D to 2D

As for the one-dimensional case, it is common and useful in structuredr-refinement methods to first
apply a coordinate transformation to the physical PDE model(7.3.1). Then the adaptive grid can be
seen as a uniform discretization of this mapping in the new variables. For the tensor-grid case we make
use of a transformation of variables ( [38,39]) in a dimensionally-split approach

ξ = ξ(x, t), η = η(y, t), θ = t, (7.3.2)
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in which (x, y) and(ξ, η) ∈ [0, 1] × [0, 1] denote the physical and computational coordinates, respec-
tively. Applying this transformation to equation (7.3.1) gives

J ∂θu− ∂ξu ∂ηy ∂θx− ∂ηu ∂ξx ∂θy = ε

[
∂ξ

(
∂ηy ∂ξu

∂ξx

)
+ ∂η

(
∂ξx ∂ηu

∂ηy

)]

−β1∂ηy ∂ξu− β2∂ξx ∂ηu+ s(u, x(ξ, θ), y(η, θ), θ), (7.3.3)

whereJ := ∂ξx ∂ηy is the Jacobian of the transformation (7.3.2). Note that∂xξ = [∂ξx]
−1 and

∂yη = [∂ηy]
−1 measure the grid densities in each separate direction.

The adaptive grid in terms of the mapping can be determined asa solution of two fourth-order
PDEs inξ andη with an additional time-dependent component. We set

∂ξ [(S1(J1) + τ ∂θJ1)W1] = 0,

∂η [(S2(J2) + τ ∂θJ2)W2] = 0, (τ ≥ 0),
(7.3.4)

with suitable boundary conditions forx (similar conditions hold fory):

x(0, η) = xl, x(1, η) = xr, ∂nx(0, η) = ∂nx(1, η) = 0.

The operatorsS1 andS2 are direction-specific versions of the operatorS defined as:

S = I − σ(σ + 1)(∆ξ)2∂2
ξξ (σ ≥ 0), (7.3.5)

whereJ1 := ∂ξx andJ2 := ∂ηy are the ‘one-dimensional’ Jacobians, respectively. As mentioned
before, several choices for the weight functions in (7.3.4)can be made. Here, we simply take

W1 =
√

1 + α maxη[∂ξu]2, W2 =
√

1 + α maxξ[∂ηu]2 (α ≥ 0). (7.3.6)

The parameterα is an adaptivity parameter:α = 0 yieldsW1 = W2 = 1 and thus a uniform
grid distribution (this can easily be derived from (7.3.4) and (7.3.5)); for increasing values ofα the
derivatives∂ξu and∂ηu are stressed more and more with the effect of higher spatial grid adaptation. It
can be shown that the transformation (7.3.2) as a solution ofequations (7.3.4), (7.3.5), (7.3.6) satisfies
the ‘grid-consistency’ condition

J > 0, ∀ θ ≥ 0, and (ξ, η) ∈ [0, 1] × [0, 1],

and also the ‘local quasi-uniformity’ property
∣∣∣∣∣
∂2
ξξx

∂ξx

∣∣∣∣∣ ≤ 1/
√
σ(σ + 1)∆ξ,

∣∣∣∣∣
∂2
ηηy

∂ηy

∣∣∣∣∣ ≤ 1/
√
σ(σ + 1)∆η. (7.3.7)

The first property is equivalent tonon-singularityof the mapping, which is, of course, a minimum
demand. The second property concerns thesmoothnessof the mapping (see below for more details).
Note that forσ = τ = 0 (i.e. without smoothing operators) the grid equations (7.3.4) reduce to

∂ξ [J1W1] = 0, ∂η [J2W2] = 0, (7.3.8)
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which can be easily solved, just as in the one-dimensional case, to obtain an explicit expression for the
(inverse) coordinate transformation

ξ(x, t) =

∫ x

xl

W1 dx̄/
∫ xr

xl

W1 dx̄, η(y, t) =

∫ y

yl

W2 dȳ/
∫ yu

yl

W2 dȳ. (7.3.9)

From (7.3.8), i.e. without any kind of smoothing, followsdirectly that, asW1,2 > 1: J1,2 > 0, and
thereforeJ = J1J2 > 0. Using the fact that∆ξ and∆η are constant, the continuous propertyJ > 0

both for equations (7.3.8) and for equations (7.3.4) can be translated in semi-discrete terms as

∆xi,j(θ) > 0, ∆yi,j(θ) > 0, ∀θ ∈ [0, T ], ∀i, j. (7.3.10)

In other words, these relations state that the grid points can never cross one another. Property (7.3.7)
can be read in semi-discrete terms as

1

1 + 1/σ
≤ ∆xi+1,j(θ)

∆xi,j(θ)
≤ 1 + 1/σ, ∀θ ∈ [0, T ], ∀i, j, (7.3.11)

and similar relations for they-direction. Relation (7.3.11) means that the variation in successive grid
cells in both directions can be controlled by the parameterσ at every point of time.

Figure 7.20: Two different types of adaptive moving grids in 2D: fully adaptive (left) vs. tensor-grid (right).

Application 1: A rotating cone

To show the effects of the adaptivity parameterα and the weight functionW it is of interest to examine
the linear parabolic equation described by

∂tu = ∆u+ f(x, y, t), (x, y) ∈ [−1, 2]× [−1, 2]. (7.3.12)

The source termf is chosen so that the exact solution is

u∗(x, y, t) = e−80[(x−r(t)))2+(y−s(t))2],
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Grid size α = 0 α = 1, σ = 0.2 α = 1, σ = 1 α̃ = 1, σ = 0 α̃ = 10, σ = 0

19× 19 0.43590 0.71109 0.11618 0.43998 0.18423
29× 29 0.25521 0.48283 0.16219 0.26116 0.03766
39× 39 0.14363 0.21347 0.10206 0.15026 0.02522
49× 49 0.08629 0.20423 0.08304 0.09600 0.01725
59× 59 0.05636 0.09953 0.06081 0.06624 0.01147

Table 7.2: The maximum error ||e||∞ at t = 2.0 for the rotating cone model.

where

r(t) =
1

4
(2 + sin(πt)), s(t) =

1

4
(2 + cos(πt)).

This solution is a rotating cone with initial condition e−80((x−0.5)2+(y−0.75)2) that moves around in
circles with a constant speed. During the movement, the shape of the cone does not change. Another
option for the weight functions, especially for this example, could be of the form

W̃1 = W̃2 :=
√

1 + α̃ u2

to stress the solution values at the peak itself instead of the gradients. In Table 7.2 and Figure 7.21, nu-
merical results are displayed for different choices of the weight function and the adaptivity parameters
α and α̃. A few observations can be made from these simulations. First, we see that decreasing the
smoothness, i.e., taking the rather small valueσ = 0.2, negatively influences the maximum error for
the case of an arc-length weight function. Second, the alternative choiceW̃1,2 where the solution value
is emphasized, and not the gradient of the solution, gives much better numerical results, although the
adaptive grids themselves, perhaps surprisingly, look nottoo different. Note that, if the value of̃α is
increased, the error in the numerical solution is reduced significantly. The solutions forα = 1 exhibit
a strange decrease in amplitude both at the top of the pulse and at the foot of the pulse, although for
σ = 1 this behaviour is less pronounced than for the unsmooth run with σ = 0.2. For the alternative
weight function withα̃ = 10, this effect is almost annihilated. More details can be found in [38].

Application 2: A whirlpool model

∂tu = − vt
vt,max

y

r
∂xu+

vt
vt,max

x

r
∂yu, (7.3.13)

where

r =
√
x2 + y2, vt =

tanh(r)

cosh2(r)
, vt,max = 0.385, (7.3.14)

with initial and boundary conditions:u|t=0 = − tanh(y2 ), ∂nu|∂Ω = 0, on the domain(x, y) ∈
[−4, 4] × [−4, 4], t ∈ [0, 4]. This model describes the formation of cold and warm fronts in a two-
dimensional setting. Beginning with a narrow region of highgradients (a front), a fixed (in time)
rotational velicity field will act to twist the front in a manner similar to that observed on daily-weather
maps (positive solution values correspond to a warm front and negative values to a cold front). A
complicated structure with high spatial activity, similarto a whirlpool, develops in the center of the
domain. Figure 7.22 shows the grids and numerical solutionson a49 × 49 grid at t = 0.0, 1.6, 2.8
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Figure 7.21: Tensor-grid solutions for the rotating cone model (7.3.12): solutions and grids after one rotation for,

respectively, (α, σ) = (1, 0.2), (α, σ) = (1, 1) and (α, σ) = (10, 0).

Grid size α = 0 α = 1, σ = 0 α = 1, σ = 1 α = 10, σ = 1

19× 19 0.99983 0.57177 0.62015 0.50516
29× 29 0.74773 0.27647 0.25053 0.24930
39× 39 0.52421 0.15113 0.15087 0.13512
49× 49 0.29419 0.10606 0.09828 0.09244
59× 59 0.19357 0.08476 0.08387 0.07491

Table 7.3: The maximum error ||e||∞ at t = 4.0 for the whirlpool model.

and4.0. Also contourplots are given for comparison with the uniform grid and the adaptive grid case
for t = 4.0 at which point of time the whirlpool has developed. The adaptive solution compares
favorably to the uniform solution in which the inner-layer structure of the whirlpool is not resolved
very well at all. Note that we haven taken here the re-scaled valueα = 10 instead ofα = 1, since
the domain and the solution have larger scales. In Table 7.3 the maximum error is displayed at the
final time for different values ofα andσ. We see that forα = σ = 1, which would be a ‘standard’
choice for a unit-square domain and solution values ofO(1), the method performs not as good as for
the re-scaledα = 10 case. The difference between the smooth (σ = 2) and the non-smooth (σ = 0)
case is not so profound for this model, because the steep parts of the solution remain concentrated in
the centre of the domain for all time.
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Figure 7.22: Tensor-grid solutions for the whirlpool model (7.22) at t = 0.0, 1.6, 2.8 and 4.0.

7.3.2 Smooth adaptive grids based on Winslow’s approach

Background theory

In 2D a fully-adaptive moving grid (see Figure 7.23) can be seen as an approximation of a more general
(than for the tensor-grid case) coordinate transformationbetween computational coordinates

(ξ, η)T ∈ Ωc := [0, 1] × [0, 1]

(with a uniform grid partitioning) and physical coordinates

(x, y)T ∈ Ωp ⊂ R2

(with a non-uniform adaptive grid).

Y

X ξ

η

VU

Φ

’steep’ solution ’mild’ solution

non−uniform grid
uniform grid

Figure 7.23: The 2D non-uniform grid seen as a 2D coordinate transformation between physical (x, y) and com-

putational coordinates (ξ, η).

In a variational setting, a ‘grid-energy’ functional (à laWinslow [35]) can be defined as

E =
1

2

∫∫

Ωc

(
∇Tx ω ∇x+∇T y ω ∇y

)
dξdη,
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where∇ = ( ∂∂ξ ,
∂
∂η )

T andω > 0 is a monitor function.
Minimization of the energyE yields the Euler-Lagrange equations:

∇ · (ω∇x) = 0,

∇ · (ω∇y) = 0.
(7.3.15)

onΩc = [0, 1] × [0, 1] with boundary conditions

x|ξ=0 = xL, y|η=0 = yL, x|ξ=1 = xR, y|η=1 = yU ,

∂x

∂n
|ξ=0 =

∂x

∂n
|ξ=1 =

∂y

∂n
|η=0 =

∂y

∂n
|η=1 = 0.

Non-singularity of the transformation, which correspondswith non-degeneration of the grid is guaran-
teed by the following

Theorem 7.2. (by Clément, Hagmeijer & Sweers, ’96 [13]):
Letω ≥ c̃ > 0, ω ∈ C0,1(Ωc) andωξ, ωη ∈ Cγ(Ω̄c), for someγ ∈ (0, 1).
⇒ ∃ unique solution(x, y) ∈ C2(Ω̄c), which is a bijection from̄Ωc into itself. Moreover, the Jacobian
satisfies:

J = xξyη − xηyξ > 0.

Three main ingredients of their proof are the Carleman-Hartman-Winter Theorem, the Jordan
Curve Theorem and the maximum principle for elliptic PDEs. In 1D system (7.3.15) reduces to the
equidistribution principle from Section 7.2.2 (without additional smoothing):

xξ︸︷︷︸
J

ω = cst .

In that sense (7.3.15) can be seen as 2D extension to this principle. Further, the 2D system is simplified
when we add an extra restriction to the transformation in thefollowing way:

∇(xξ) · ∇(yη)−∇(xη) · ∇(yξ) = 0⇒ J ω = cst

It must also be noted that the transformation behind Winslow’s method [35] isnot a harmonic map-
ping, but it is related to it. This means that we can not use the theoretical results that are known
for those classes of transformations. In fact, a counterexample can be given for the 3D (harmonic)
case, for which the transformation looses its regularity (check [26] and references therein). Further-
more, several components in the proof of Theorem 7.2 cannot be applied in 3D either. This leaves
the three-dimensional case as a remaining challenge in the context of adaptive moving grids, even on
simple domains such as unit cubes. However, wewill use this concept (although the theory is not fully
available) in Section 7.3.3 to show that it can be applied in practical situations.

We have seen in one space dimension that the choice of the parameterα in the monitor function
ω can be a problem, since it depends on the spatial scale of the solution and the length of the domain.
Furthermore, it is stationary, i.e. not time-dependent, and this could cause additional problems for
models where the solution is behaving quite drastically in the time-direction. First let us define the
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2D-version of the arclength monitor from Section (7.2.2):

ω =
√

1 + α ∇u · ∇u . (7.3.16)

As said,α is a (problem-dependent) ‘adaptivity’-parameter which controls the amount of adaptivity.
Alternatively Beckett & Mackenzie [3] have defined a ‘new’ monitor function with a time-dependent
and solution-dependentα:

ω = α(t) + ||∇u||
1
m
2 , with α(t) =

∫∫

Ωc

||∇u||
1
m
2 dξdη . (7.3.17)

Values ofm = 1 yield better scaling and more adaptivity than for the choicem = 2. It is interesting
to note that this idea was also briefly mentioned in [6] between the lines as a possible extension, but no
implementation was given in that reference. With the ‘new’ monitor, application of a filter or smoother
to the grid or monitor values is not necessary. Normally, smoother transitions in a general non-uniform
grid can be obtained (and are needed!) by working with the smoothed value

S(ωi+ 1
2
,j+ 1

2
) =

1

4
ωi+ 1

2
,j+ 1

2
+

1

8
(ωi+ 3

2
,j+ 1

2
+ ωi− 1

2
,j+ 1

2
+ ωi+ 1

2
,j+ 3

2
+ ωi+ 1

2
,j− 1

2
)

+
1

16
(ωi− 1

2
,j− 1

2
+ ωi− 1

2
,j+ 3

2
+ ωi+ 3

2
,j− 1

2
+ ωi+ 3

2
,j+ 3

2
)

In the numerical experiments we denote this withfilter on or filter off (working merely withωi+ 1
2
,j+ 1

2

values i.e.S(ω) = ω).

Application 3: resistive magneto-hydrodynamics

As a first application of the adaptive moving grid from the previous section, we will discuss a 2D
system of MHD equations. They express the basic physical conservation laws to which a plasma must
obey. Because plasma dynamics is influenced by magnetic fields through the Lorentz-force, the needed
additions in going from hydrodynamic to magnetohydrodynamic behaviour is a vector equation for the
magnetic field evolution and extra terms in the Euler system that quantify the magnetic force and
energy density.

Using the conservative variables densityρ, momentum densitym ≡ ρv (with velocity v), mag-
netic fieldB, and total energy densitye, the ideal MHD equations can be written as follows (cfr. [39]):

Conservation of mass:
∂ρ

∂t
+∇ · (ρv) = 0. (7.3.18)

Conservation of momentum:

∂(ρv)

∂t
+∇ · (ρvv −BB

T ) +∇ptot = 0. (7.3.19)
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Conservation of energy:

∂e

∂t
+∇ · (ev + vptot −BB

T · v) = 0
[
+ εm(∇×B)2

]
. (7.3.20)

Magnetic field induction equation:

∂B

∂t
+∇ · (vB

T −Bv
T ) = 0 [+ εm∆B]. (7.3.21)

In (7.3.19) and (7.3.20) the total pressureptot consists of both a thermal and a magnetic contribution
as given by

ptot = p+
B

2

2
, where p = (γ − 1)

(
e− ρv

2

2
− B

2

2

)
(7.3.22)

is the thermal pressure (notation:v
2 = v

T
v andB

2 = B
T
B).

The terms between brackets in equations (7.3.20) and (7.3.21) extend the ideal MHD model with
the effects of Ohmic heating due to the presence of currents.With the resistivityεm 6= 0, we then solve
the resistive MHD equations.

The core problem is represented by the induction equation (7.3.21), alternatively written as

∂B

∂t
= ∇× (v ×B) + εm∆B (7.3.23)

with εm > 0 the resistivity or magnetic diffusion coefficient. As may beanticipated, the parameter
εm is related to the inverse of themagnetic Reynolds number(also namedLundquist number). In two
space dimensions, we setB = (B1, B2, 0), to obtain the following system of PDEs,

∂B1

∂t
= εm∆B1 + v1

∂B2

∂y
− v2

∂B1

∂y
+B2

∂v1
∂y
−B1

∂v2
∂y

, (7.3.24)

∂B2

∂t
= εm∆B2 − v1

∂B2

∂x
+ v2

∂B1

∂x
−B2

∂v1
∂x

+B1
∂v2
∂x

, (7.3.25)

together with the property∇ ·B = 0.

One way to ensure a divergence-free magnetic field at all times is to make use of a vector potential

formulation whereB
def
= ∇×A. From this follows automatically that∇ ·B = ∇ · (∇×A) = 0. In

two dimensional applications, the system (7.3.24)-(7.3.25) is then equivalent to the single PDE for the
scalarA3 component

∂A3

∂t
= −v · ∇A3 + εm∆A3, (7.3.26)

with ∂A3
∂y = B1, −∂A3

∂x = B2, while A = (0, 0, A3)
T . Note that magnetic field lines are isolines of

thisA3 potential.

We point out that the partial problem posed by the system (7.3.24)-(7.3.25), or equivalently the
PDE (7.3.26), can be relevant as a physical solution to the special case where we consider incompress-
ible flow ∇ · v = 0, the momentum equation (7.3.19) under the condition that the magnetic energy
B

2/2 is much smaller than the kinetic energyρv2/2, and the induction equation itself. In those cir-
cumstances, the momentum balance decouples from the magnetic field evolution. In fact, our model
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then merely consists of equation (7.3.21) re-written in thepotential formulation (7.3.26). In the model
problems studied, we therefore prescribe an incompressible flow fieldv(x, y) as well. Starting from
a uniform magnetic field, its distortion by cellular convection patterns was simulated numerically for
various values of the resistivityεm.

One possible situation of 2D kinematic flux expulsion [41] uses an imposed four-cell convection
pattern with its incompressible velocity field given by

v = (− sin(2πx) cos(2πy), cos(2πx) sin(2πy))T . (7.3.27)

We then want to solve for the scalar vector potentialA3 from (7.3.26) on the domain(x, y) ∈ [0, 1] ×
[0, 1] and for timest ∈ [0, 5]. In terms ofA3, the initial uniform vertical field is obtained through
A3|t=0 = 1− x, while the boundary conditions areA3|x=0 = 1, A3|x=1 = 0, ∂A3

∂n |y=0 = ∂A3
∂n |y=1 =

0, which corresponds with a constant initial magnetic field.

One approach, which is efficient in 1D, would be to couple the discretized systems for the adaptive
grid PDEs and the physical PDE. However, there are a number ofdisadvantages to this approach. First,
the size of the resulting system in higher space dimensions would be large and even for moderate grid
densities may be prohibitive. Second, this approach does not easily admit different convergence criteria
for the grid and physical solution. Further, it is not necessary to compute the grid with the same level
of accuracy as the physical solution. Finally, a user may wish to control over the discretization of the
physical problem and such flexibility is severely restricted by coupling the unknowns together into one
large nonlinear system of equations. We have therefore decoupled the numerical solution procedure
for the physical and adaptive grid PDEs, and integrate in time in an iterative manner, solving for the
grid and the physical solution alternately.

For the convection-diffusion equation (7.3.26) it is appropriate to make use of animplicit-explicit
time-integration method. The main advantage is that solving a nonlinear system, with for instance
Newton’s method, can be avoided, while still having reasonable stability properties, at least for mildly
stiff equations. We will use within this class of integrators the first-order method 1-SBDF. Applied to
(7.3.26), the discretization then reads:

(I − εm∆t ∆̄)A
(n+1)
3 = (I −∆t v(n) · ∇̄)A

(n)
3 , (7.3.28)

where∆̄A
(n+1)
3 and∇̄A(n)

3 are the semi-discretized approximations of the second-order derivative and
the first-order derivative terms, respectively, in equation (7.3.26). The non-symmetric linear system
A(n)A

(n+1)
3 = b(n) behind (7.3.28) is again solved with the iterative method Bi-CGSTAB with implicit

diagonal preconditioning.

The MHD testcase is equation (7.3.26) with velocity field (7.3.27). The resistivity is chosenǫm =

5 × 10−4. In Figure 7.24 (top) the velocity field and the evolution of the parameterα from equation
(7.3.16) as a function of time are displayed. Three phases can be recognized from the right plot: for
small times the initially uniform magnetic field is distorted by the four convective cells to amplify
the field. The magnetic field is dragged round by the motion andthe field energy consequently rises.
As the field grows, its scale of variation decreases until resistive effects become important. The flux
is concentrated outside the eddies and so-called reconnection of the field lines takes place (second
phase). In the final phase, the central field decays and a steady-state is reached. In Figure 7.25 we see
at two different points of time, the solution, the adaptive grid and the magnetic field lines, respectively.
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The grid is nicely concentrated in areas of high spatial activity, viz., the boundary and internal layers.
Reconnection has taken place: the magnetic fieldlines have reconnected in regions of strong currents.

Figure 7.24: The velocity field and the (scaled) magnetic energy for model (7.3.26).

Application 4: the 2D Euler equations

The two-dimensional Euler equations of gas dynamics describing the behavior of an ideal compressible
gas are written in conservative form:

∂

∂t




ρ

ρu

ρv

E


+

∂

∂x




ρu

ρu2 + p

ρuv

u(E + p)


+

∂

∂y




ρv

ρuv

ρv2 + p

v(E + p)


 =




0

0

0

0


 , (7.3.29)

whereρ is the density,(ρu, ρv)T is the momentum vector,E the total energy andp the pressure. Since
we are working with an ideal gas, the equation of state, whichshows how the energy is related to the
pressure is provided as follows:p = (γ − 1)(E − ρu2+v2

2 ), with γ the ratio of specific heats. Denote
r := (x, y)T .

Given a non-uniform partitioning{Ai+ 1
2
,j+ 1

2
}i,j of the physical domainΩp, whereAi+ 1

2
,j+ 1

2
is

a quadrangle with four verticesri+k,j+l, 0 ≤ k, l ≤ 1, as shown in Figure 7.26. Subdivide the
computational domainΩc = {(ξ, η)| 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1} into the uniform grid:

(ξi, ηj)| ξi = i∆ξ, ηj = j∆η; 0 ≤ i ≤ Iξ + 1, 0 ≤ j ≤ Iη + 1,

where∆ξ = 1/(Iξ + 1), ∆η = 1/(Iη + 1), andIξ andIη are the number of grid points in thex−
andy−direction. We characterize the numerical approximations to r = r(ξ, η) by ri,j = r(ξi, ηj).
The elliptic system of grid PDEs is then discretized by second-order central finite differences in a
straightforward manner. A Gauß-Seidel iteration method isused for the numerical solution of the
resulting system of algebraic equations. The grid points onthe boundary of the rectangular domain
are redistributed each time step by letting them move with the same speed as the tangential component
of the grid speed of the internal points adjacent to those boundary points (see [29] for more details on
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Figure 7.25: Four-cell convection results at two different points of time; left: numerical solution, middle: 2D

adaptive grid, right: magnetic field lines.

this).

Having computed the new grid as described in the previous section, the solution values have to
be updated on this grid by an interpolation method. In [29] a conservative interpolation method is
derived to preserve conservation of mass at each grid redistribution step. Obviously, with simple
linear interpolation this can not be achieved. Using a perturbation technique (see [29]) and assuming
small grid speeds, it can be derived that the solution-updating scheme satisfies the following mass-
conservation ∑

i,j

|Ãi+ 1
2
,j+ 1

2
| Q̃i+ 1

2
,j+ 1

2
=
∑

i,j

|Ai+ 1
2
,j+ 1

2
| Qi+ 1

2
,j+ 1

2
,

where|A| is the area of cellA, andQ andQ̃ represent old and new numerical solution values in the
physical PDE system.

Consider the two-dimensional hyperbolic conservation laws

∂Q
∂t

+
∂F1(Q)

∂x
+
∂F2(Q)

∂y
= 0, 0 < t ≤ T, (7.3.30)

subject to the initial dataQ(x, y, 0) = Q0(x, y) , whereT is the final time, andQ denotes the vector
of conservative variables.F1 andF2 are the flux vectors inx- andy-direction.

Assume that a grid partitioningri,j of the physical domainΩp has been calculated. Then integrating
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(7.3.30) over the finite control volumeAi+ 1
2
,j+ 1

2
gives (see [30] or [32])

∂

∂t

∫∫

A
i+ 1

2 ,j+ 1
2

Q dx dy +

4∑

l=1

∫

sl

Fnl(Q)|(x,y)∈sl
ds = 0,

wheresl (l = 1, ...4) are the four boundary segments of the cell,Fnl(Q) = F1n
l
x + F2n

l
y and

n
l = (nlx, n

l
y)
T (l = 1, ..., 4) the normal outward vectors in the finite volume (see Figure 7.26).

AssumingFnl = F
+
nl + F

−
nl , a general 2d finite volume scheme approximating (7.3.30) isgiven by

Qn+1
i+ 1

2
,j+ 1

2

=Qn
i+ 1

2
,j+ 1

2

− ∆t

|Ai+ 1
2
,j+ 1

2
|
{
F−

n1(Qni+ 1
2
,j− 1

2

) +F−
n2(Qni+3/2,j+ 1

2

)

+ F−
n3(Qni+ 1

2
,j+3/2

) + F−
n4(Qni− 1

2
,j+ 1

2

) +
4∑

l=1

F+
nl(Qni+ 1

2
,j+ 1

2

)
}
.

In the numerical experiment, we have used a local Lax-Friedrichs numerical flux, and the initial data
reconstruction to improve accuracy of the scheme. More details on the numerical scheme and other
applications can be found in [42].

The steps in the full solution procedure can be summarized asfollows:

Step 1 Partition the computational domainΩc uniformly and give an initial partition of the physical
domainΩp; compute initial grid values by a cell average of the controlvolumeAi+ 1

2
,j+ 1

2
based

on the initial dataQ(x, y, 0). In a loop over the time steps, update grid and solution and evaluate
the PDE.

Step 2a Move gridri,j to r̃i,j by solving the discretized grid PDEs using one Gauß-Seidel iteration.

Step 2b Compute the solutionQi+ 1
2
,j+ 1

2
on the new physical grid based on the conservative interpo-

lation.
Repeatstep 2aandstep 2bfor a fixed number of iterations.

Step 3 Evaluate the Euler equations by the finite volume method on the gridr̃i,j to obtain the solutions
Qn+1
i+ 1

2
,j+ 1

2

at time-leveltn+1.

Step 4 Repeatsteps 2a, 2band3 until the final point of timeT has been reached.

The double integral in (7.3.17) to compute the time-dependent parameterα(t) is approximated by
applying the trapezoid rule at each time step. The test example, which is a two-dimensional Riemann
problem of the Euler equations, i.e. configuration 4 in [23],has the following initial data:

(ρ, u, v, p)t=0 =





(1.1, 0.0, 0.0, 1.1) if x > 0.5, y > 0.5,

(0.5065, 0.8939, 0.0, 0.35) if x < 0.5, y > 0.5,

(1.1, 0.8939, 0.8939, 1.1) if x < 0.5, y < 0.5,

(0.5065, 0.0, 0.8939, 0.35) if x > 0.5, y < 0.5.

(7.3.31)

They correspond to a left forward shock, right backward shock, upper backward shock and finally a
lower forward shock. The spatial domain is[0, 1]× [0, 1] and the end point of time ist = 0.25. Figure



7.3. THE HIGHER-DIMENSIONAL CASE 287

7.27 shows results for the AL-monitor (7.3.16) with the ‘optimized’ value of the parameterα = 2 and
also for the ‘full-proof’ monitor (7.3.17).

Figure 7.26: A typical non-uniform finite volume cell Ai+ 1

2
,j+ 1

2

.

Application 5: ideal 2D magneto-hydrodynamics

For the ideal MHD case we simply setηm = 0 (no magnetic diffusion term) in (7.3.20) and (7.3.21). An
interesting test example suitable for adaptive moving grids is the so-called Kelvin-Helmholtz instability
(see [21]). This phenomenon occurs at the interface of a shear-flow configuration in 2D compressible
MHD. The density att = 4 andt = 6 using the adaptive moving grid method is displayed in Figure
7.28. Clearly, the grid is nicely concentrated near the steep parts of the rotating magnetic structures.

7.3.3 Three-dimensional adaptive moving grids

In this final section an extension of the 2D method to three space dimension is discussed.

Extension of Winslow’s approach to the unit cube

Although theoretically no results are available that may guarantee the non-singularity of the mapping,
we still would like to extend Winslow’s method from the previous sections to 3D, and in particular
to the unit cube. Straightforward calculations for the minimization of the 3D ‘grid-energy’ functional
yields the steady-state of the PDE-system:

∂x

∂τ
= ∇ · (ω∇x)

∂y

∂τ
= ∇ · (ω∇y)

∂z

∂τ
= ∇ · (ω∇z), (x, y, z)T ∈ [0, 1]3.
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Figure 7.27: Numerical results (grid and solutions represented by contour lines) for the 2D Euler equations

(7.3.29).

Here theτ denotes an artificial time variable. As in 2D, it is possible to define the monitor function with
the adaptively computed constantα as follows:ω = α(t) + ||∇u||2, α(t) =

∫ ∫ ∫
Ωc
||∇u||2 dξdηdζ.

Application to a blow-up problem

The basic blow-up PDE model is in fact the reaction-diffusion PDE

∂u

∂t
= ∆u+ up.

We first transform it via(x, y, z, t)→ (ξ, η, ζ, θ); with t = θ to:

uθ +
1

J

[
uξ(−xθ(yηzζ − yζzη)− yθ(xζzη − xηzζ)− zθ(xηyζ − xζyη)) + uη(−xθ(yζzξ − yξzζ)

−yθ(xξzζ − xζzξ)− zθ(xζyξ − xξyζ)) + uζ(−xθ(yξzη − yηzξ)− yθ(xηzξ − xξzη)− zθ(xξyη − xηyξ))

]
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Figure 7.28: Numerical results (grid and solutions) for the 2D ideal MHD equations (7.28).

=
1

J

[(
(yηzζ − yζzη)2 + (xζzη − xηzζ)

2 + (xηyζ − xζyη)2

J uξ

)

ξ

+

(
(yηzζ − yζzη)(yζzξ − yξzζ) + (xζzη − xηzζ)(xξzζ − xζzξ) + (xηyζ − xζyη)(xζyξ − xξyζ)

J uη

)

ξ

+

(
(yηzζ − yζzη)(yξzη − yηzξ) + (xζzη − xηzζ)(xηzξ − xξzη) + (xηyζ − xζyη)(xξyη − xηyξ)

J uζ

)

ξ

+

(
(yζzξ − yξzζ)(yηzζ − yζzη) + (xξzζ − xζzξ)(xζzη − xηzζ) + (xζyξ − xξyζ)(xηyζ − xζyη)

J uξ

)

η

+.......

with JacobianJ = zζ(xξyη − xηyξ) − zη(xξyζ − xζyξ) + zξ(xηyζ − xζyη). Note that we have not
written out all terms, but merely have indicated how the structure of the different terms appears. Appli-
cations of this kind of PDE models can be found in combustion models, chemical reaction dynamics,
population dynamics (motion of colonies of micro-organisms) and plasma physics (wave motion in
fluids and electromagnetic fields). Let us first examine the ODE, i.e. the PDE model without diffusion
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term: {
u̇ = up, p > 1

u(0) = u0.
(7.3.32)

This ODE the exact solution:u(t) = 1
[(p−1)(T−t)]p−1 , T = 1

up−1
0 (p−1)

and, clearly, blows up att = T

(see also Figure 7.29.

t=Tt=0
solution blows up at time T

0
u

u(t)

t

Figure 7.29: The exact solution of blow-up model (7.3.32).

It was shown by Kaplan 1963 [20] that for the PDE




∂u

∂t
= ∆u+ up, p > 1

u|∂Ω = 0, u(x, 0) = u0(x)
(7.3.33)

the following result holds: ifu0 smooth and large enough, then the solutionu is regular for every
0 ≤ t < T , but

lim
t→T
||u(·, t)||L∞ = +∞.

In other words, also blow up of the solution may occur, depending on the initial condition and on the
value ofp, despite of the fact that the Laplacian diffuses the solution. This may be illustrated by the
slightly modified PDE example





∂u

∂t
=
∂2u

∂x2
− u+ up, x ∈ (0, π), t > 0,

u(x, 0) = u0(x) ≥ 0, x ∈ (0, π),

u(0, t) = u(π, t) = 0, t > 0.

It can easily be shown by straightforward calculations that:
if f =

∫ π
0 u(x, t) sin(x) dx, thenḟ =

∫ π
0 (∂

2u
∂x2 − up) sin(x) dx − f . Using Hölder’s inequality we

obtain ḟ ≥ −2f + fp

2p−1 . Now, if f(0) > 2
p

p−1 , thenf(t) → ∞ in finite time and applying the
inequality of Cauchy-Schwartz:f ≤ ||u||L2(0,π) || sin(x)||L2(0,π). This means thatf → ∞ implies
||u||L2(0,π) → ∞. Thus the exact solutionu leavesL2(0, π) in finite time (‘blow-up’). When we
naively would apply an explicit Euler time-integration scheme with fixed time steps∆t, for example,
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to the model{ u̇ = up

u(0) = 1
we arrive at the recursion

un+1 = un + ∆t (un)p.

However, the numerical solution will existfor all time pointstn = n∆t (no blow-up!), whereas the
exact solution exists only for finite time (see Figure 7.30).Non-uniform time steps are, therefore,
crucial to capture numerically the blow-up behaviour. In this respect, Abia et al [1], has obtained
theoretical results in one space dimension concerning thisissue. Their result reads:

t=Tt=0

0
u

u(t)

t

exact
solution

num.
solution

Figure 7.30: Exact vs non-adaptive numerical solution of (7.3.32).

using explicit Euler with central finite differences on a uniform spatial grid

un+1
j − unj

∆tn
=
unj+1 − 2unj + unj−1

(∆x)2
+ (unj )

p

with ∆tn = ∆θ
||un||p−1

∞

and constant∆θ. Note that this can be interpreted as a Sundmantime transfor-

mation t(θ) = θ
||u||p−1

∞

. Then it follows that for sufficiently small∆x (with an additional time-step

restriction on∆tn due to possible numerical instabilities), the numerical solution blows up atT∆x and
lim∆x→0 T∆x = T .

Alternatively, the solution behaviour near blow-up can also be described in terms of scaling in-
variance and self-similarity. In that case, consider the ODE u̇ = u2, i.e. p = 2, then using a fictive
computational time variableθ gives rise to a new ODE system with





du

dθ
= u,

dt

dθ
=

1

u
.

This ODE system isinvariant under the scalingt → λt, u → λ−1u and the numerical solutionun

uniformly approximates the trueself-similarsolutionu(t) = −1
t of the original ODE for∆θ → 0.

This result is due to Budd, Piggott & Leimkuhler [8]. We wouldlike to exploit these results in the
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adaptive moving grid procedure, which consists of the following ingredients:

• decouple the blow-up and grid PDEs

• for the grid PDEs: use the system of heat equations with artificial time

• apply central finite differences on a non-uniform grid for the Laplacian operator∆

• ‘freeze’ the non-linear terms in the PDEs at each time step

• use implicit Euler for the diffusion part in the PDE∆ and explicit Euler for the reaction term

• apply BiCGstab with ILU-preconditioning for the underlying linear systems

• use a variable∆t using the mentioned Sundman-transformation

As a testexample, we consider the initial condition

u(x, y, z, 0) = 10 sin(πx) sin(πy) sin(πz),

with p = 3 in the reaction term and use, respectively, a113, 213, & 413 spatial grid. We compare a
Sundman non-uniform time step scheme with a uniform time step scheme. Figure 7.31 shows different
runs and depicts the maximum value ofu as a function oft. The numerical blow-up time with the
adaptive moving grid with non-uniform Sundman time steps corresponds with results obtained in [25].
It is obvious that still much work has to be done in three spacedimensions, especially the theoretical
part deserves much attention.
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Figure 7.31: 3D adaptive moving grid results for model (7.3.33). The maximum value of u as a function of time t;

blow-up time in our experiments ∼ T from Liang & Lin, 2005 [25]: ≈ 0.007249.
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[1] L.M. Abia, J.C. Lópeze-Marcos & J. Martinez, The Euler method in the numerical integration
of reaction-diffusion problems with blow-up,Appl. Num. Maths., 38 (2001), 287-313.

[2] M. J. Baines,Moving Finite Elements, Clarendon Press, Oxford, 1994.

[3] G. Beckett & J. A. Mackenzie, On a uniformly accurate finite difference approximation of a sin-
gularly perturbed reaction-diffusion problem using grid equidistribution,Comput. Appl. Math.,
131(2001), 381-405.

[4] M. J. Berger & J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations,
J. Comput. Phys.53 (1984), 484-512.

[5] J.B. van den Berg, J. Hulshof & J.R. King, Formal asymptotics of bubbling in the harmonic map
heat flow,SIAM J. of Appl. Maths.63 (2003), 1682-1717.

[6] J. G. Blom & P. A. Zegeling, Algorithm 731: A moving-grid interface for systems of one-
dimensional time-dependent partial differential equations, ACM Trans. in Math. Softw., 20
(1994), 194-214.

[7] C. de Boor, Good approximation by splines with variable knots, II, In Springer Lecture Notes
Series 363, Springer-Verlag, New York, 1973.

[8] C.J. Budd, B. Leimkuhler & M.D. Piggott, Scaling invariance and adaptivity,Appl. Num. Maths.,
Trans. on IMACS(1999).

[9] J. U. Brackbill & J. S. Saltzman, Adaptive zoning for singular problems in two dimensions,J.
Comput. Phys.46 (1982), 342-368.

[10] N. Carlson & K. Miller, Design and application of a gradient-weighted moving finite element
code I, in one dimension,SIAM J. Sci. Comput.19 (1998), 728-765.

[11] A.R. Champneys, P.J. McKenna & P.A. Zegeling, Solitarywaves in nonlinear beam equations;
stability, fission and fusion,Nonl. Dynamics, 21 (2000), 31-53.

[12] M.A.J. Chaplain & A.M. Stuart, A model mechanism for thechemotactic response of endothelial
cells to tumour angiogenesis factor,IMA J. of Maths. Appl. in Medicine & Biology10 (1993),
149-168.

294



BIBLIOGRAPHY 295

[13] P. Clément, R. Hagmeijer & G. Sweers, On the invertibility of mappings arising in 2D grid
generation problems,Numer. Math.73 (1996), 37-51.

[14] J. M. Coyle, J. E. Flaherty, R. Ludwig, On the stability of mesh equidistribution strategies for
time-dependent partial differential equations,J. Comput. Phys.62 (1986), 26-39.

[15] A. van Dam & P.A. Zegeling, A robust moving mesh finite volume method applied to 1d hyper-
bolic conservation laws from magnetohydrodynamics,J. of Comp. Phys., 216 (2006), 526-546.

[16] A. Doelman, T. J. Kaper & P. A. Zegeling, Travelling waves in the 1-d self-replicating equations,
Nonlinearity10 (1997), 523-563.

[17] D. F. Hawken, J. J. Gottlieb & J. S. Hansen, Review of someadaptive node-movement techniques
in finite-element and finite-difference solutions of partial differential equations,J. Comput. Phys.
95 (1991), 254-302.

[18] W. Z. Huang & W. Sun, Variational mesh adaptation II: error estimates and monitor functions,
J. Comput. Phys.184(2003), 619-648.

[19] W. Z. Huang & R. D. Russell, Moving mesh strategy based ona gradient flow equation for
two-dimensional problems,SIAM J. Sci. Comput.3 (1999), 998-1015.

[20] S. Kaplan, On the growth of solutions of quasilinear parabolic equations,Comm. Pure Appl.
Math.16 (1963), 305-330.

[21] R. Keppens, G. Toth, R.H.J. Westerman & J.P. Goedbloed,Growth and saturation of the Kelvin-
Helmholtz instability with parallel and antiparallel magnetic fields,J. Plasma Phys.61 (1999),
1-19.

[22] P. Knupp & S. Steinberg,Fundamentals of grid generation, CRC-Press, Inc., 1993.

[23] P. D. Lax & X. D. Liu, Solutions of two-dimensional Riemann problems of gas dynamics by
positive schemes,SIAM J. Sci. Comput.19 (1998), 319-340.

[24] R. Li, T. Tang & P.-W. Zhang, Moving mesh methods in multiple dimensions based on harmonic
maps,J. Comput. Phys.170(2001), 562-588.

[25] K. Liang & P. Lin, A splitting moving mesh method for 3-d quenching and blow-up problems,
Contemporary Maths.383(2005), 311-324.

[26] F. Liu, S. Ji & G. Liao, An adaptive grid method and its application to steady Euler flow calcu-
lations,SIAM J. Sci. Comput.20 (1998), 811-825.

[27] L.A. Peletier & W.C. Troy,Spatial patterns; higher order models in physics and mechanics,
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