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7.1 Introduction

Traditional numerical techniques to solve time-dependgiemtial differential equations (PDES) inte-
grate on a uniform spatial grid that is kept fixed on the eniimee interval. If the solutions have
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regions of high spatial activity, a standard fixed-grid t@ghe is computationally inefficient, since to
afford an accurate numerical approximation, it should aiontin general, a very large number of grid
points. The grid on which the PDE is discretized then needsettocally refined. Moreover, if the
regions of high spatial activity are moving in time, like fieep moving fronts in reaction-diffusion or
hyperbolic equations, then techniques are needed thaadigm (move) the grid in time.

In the realm of adaptive techniques for time-dependent Rid=san, roughly spoken, distinguish
between two classes of methods.

The first class, denoted by the tefrefinement, consists of so-called static-regridding roesh
For these methods, the grid is adapted only at discrete gwedd. The main advantage of this type
of techniques is their conceptual simplicity and robusin@s the sense that they permit the tracking
of a varying number of wave fronts. A drawback, however, &t timterpolation must be used to
transfer numerical quantities from the old grid to new griddso, numerical dispersion, appearing,
for instance, when hyperbolic PDEs are numerically appnexéd, is not fully annihilated witth-
refinement. Another disadvantage of static-regriddindpésfact that it does not produce ‘smoothing’
in the time direction, with the consequence that the tinegqing accuracy therefore will demand small
time steps. An example of such a method can be found in [4] [83h

The second class of methods, denoted by the tersfinement {e-distribute or-e-locate), have
the special feature to move the spatial grid continuousty automatically in the space-time domain
while the discretization of the PDE and the moving-grid gahere are intrinsically coupled. Moving-
grid techniques use a fixed number of grid points, withoutrefanterpolation and let the grid points
dynamically move with the underlying feature of the PDE (ejapulse, front, ...). Examples of
refinement based methods can be found in [2,9,10,17-1928237] and later on in this manuscript.
Since the number of grid points is held fixed throughout there® of computation, problems could
arise if several steep fronts would act in different regiohthe spatial domain. For example, the grid
is following one wave front, while a second front arises semere else. No ‘new’ grid is created
for the new wave front, but rather the ‘old’ one has to adjtstlf abruptly to cope with the newly-
developed front. Another difficulty is of a topological netu usually referred to as ‘grid-distortion’
or ‘mesh-tangling’. Especially for higher dimensions thsy cause problems, since the accuracy
of the numerical approximation of the derivatives depenidélir on the grid. Therefore, moving-
grid techniques often need additional regularization tetmprevent this from happening or to at
least slow down the grid degeneration process. In this papemill address different solutions to
this regularization problem. Let us first concentrate on &RRample in one space dimension to
show the effectiveness of adaptive moving grids. After,tiagt will develop gradually some theory
starting with the stationary case, extending it to timea®ent models and give an extensive set
of applications from different areas, such as reactiofusiibn systems, medical applications, brine
transport and magneto-hydrodynamics.

Consider the partial differential equation (PDE):

ou ou
which has the exact solution (using the correct boundaryiratidl condition)

u(z,t) = e (&),
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| N [le]lo: (unif)t =5 [ (adapt.)t = 5 | (unif.) ¢ = 10 | (adapt.)t = 10 |

100 0.669504 0.050343 0.993392 0.144466
200 0.506568 0.018615 0.988101 0.040614
400 0.322038 0.008071 0.978686 0.017416
800 0.161977 0.003626 0.962241 0.008049
1600 0.060010 0.001640 0.934068 0.003819

Table 7.1: Uniform and adaptive grid results for PDE model (7.1.1) at two points of time for an increasing number
of spatial grid points NV; ||e||- denotes the maximum error.

Figure 7.1: The exact solution of equation (7.1.1) for increasing time.

The solution (see also Figure 7.1) can be derived by examihia characteristics of the PDE:

T = -,

{ i = 0.
This concept can be interpreted as follows: the maximumestiution stays equal to the value 1 for
all timet¢ (u = 0), but the steepness of the wave increases, because of hiesion’ caused by the
fact that the characteristic trajectories satigfy- —x. In Table 7.1 a comparison is made between the
numerical solution on a uniform grid and an adaptive movirig ¢details found in Section [41]) for
two different points of time using an implicit Euler methaat the time integration (within the code
DASSL [28] with a time-tolerance dfo—8 and central finite differences for the spatial derivativés)
it obvious from the numerical results in Table 7.1 to coneldidat adaptive moving grids are useful
for models in which steep moving transitions play an impari@le. Figure 7.2 shows the adaptive
grid as a function time and also the differences between iadypniform and moving non-uniform
experiment.
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Figure 7.3: The exact solution of BV-model (7.2.1) for decreasing values of «.



7.2. ADAPTIVE MOVING GRIDS IN ONE DIMENSION 255

Numerical approximation (idea 1)

Qi1 — 2ui + Ui Ui — U

-1 .
= =1:N—-1. 7.2.2
Ax? 2Ax 0, @ ( )

This approximation is obtained by applying central finitfestences to the first and second derivatives
in (7.2.1). The exact numerical solution (i.e. the exaattsoh of the discretized system (7.2.2)) reads:

(A Pe 9
()N -1

with mesh-Peclet numbd?, := %_g; and cell-sizeAzr = % From this expression we can make the
following statements:

*for N < 2—15 ~ P, > 1: the numerical solutiowscillates(see also Figure 7.4, left panel).

*for N > 2—15 ~ 0 < P, < 1: monotonenumerical values are obtained.

* for 0 < ¢ « 1 we needN >> 1 to satisfy this monotonicity condition, which leads to ahiig
inefficient numerical process.

* The numerical error behaves likéX(Az?) = O(+ ).

Figure 7.4: Numerical (=) vs. exact solutions of BV-model (7.2.1); method | (left panel) and method Il (right panel).

Numerical approximation (idea 2)

Uipl — 2U; + Ui Uy — U1 .
— =0,72=1:N—1. 7.2.3
(Ax)? Az ! (7.23)

This approximation represents an upwind discretizatiotheffirst derivative in model (7.2.1). The
exact solution of system (7.2.3) reads:

) (1+Pe)i_1
R AL

Similar to the previous approximation (7.2.2), we can wanka@few results for this approximation:
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*1+ P, > 1= u;y11 > u; Vi: we always get anonotonenumerical solution.

* Unfortunately, the error behaves now &(Az) = O(+), which is worse than for the previous
case.

* Moreover, additional numerical damping ("diffusion”) istioduced in the numerical system:

Ui — Uim1 Uil — Uim1 AT U1 — 2u + Ui

N 2Ax 2 Ax?

(see also Figure 7.4, right panel)

Numerical approximation (idea 3)
Definev(§) := u(z(£)) and a transformatiom — ¢ € [0,1]. Then BV-problem (7.2.1) is trans-
formed to

€ [U&%’g - W’gg] _Y% _g

¢ a3 T

Suppose that we map the steep soluti¢n) in the z-coordinates to the mild (linear) functiarf¢) = ¢
in the&-coordinates and assumeg > 0 (‘the transformation is regular’), then

exge + a7 =0, x(0) =0, z(1) =1

which has the exact solutiofn(§) = ¢ In(g(e% —1)+1). Itis easy to derive that the following identity
holds for this particular mapping
Tey = 1, (7.2.4)

sinceu, = ;—5 andve = 1. Note thatz, is related to the inverse of the grid point concentratiorhef t
non-uniform grid. From these expressions can also be dakthat: if v, is large thenz, is smalland
vice versa, i.e., grid points are concentrated in the bayridser of model (7.2.1) (see Figures 7.5 and
7.6). Equation (7.2.4) is identical to

Tew=1 (7.2.5)

wherew := u, > 0 is a so-called ‘monitor’ function. The question is: can we tis principle, or a
similar one, for more general situations as well?

7.2.2 The equidistribution principle

We have seen that principle (7.2.5) can be useful to let thiepgrints be concentrated in regions with
high first order spatial derivatives. In general, we can @edinch a principle in terms of a more general
monitor or weight functionw to obtain the so-called equidistribution principle, oniglly worked out
by [7] in the context of spline approximations. The idea bdtthis method is that we want to "equally
distribute” the positive definite monitor functiamon a non-uniform grid. Ideallyy represents some
kind of measure of the error of the underlying numerical aohe To get some better idea of this
method we first define a non-uniform grid

=20 <21 <22< ... <IN-1 <IN =ZTR
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solution of ODE or PDE

ud

'steep’ solution 'mild’ solution

o uniform grid g

uniform grid N>>1 sl 51

Figure 7.5: The non-uniform adaptive grid seen as a coordinate transformation between physical  and computa-
tional coordinates &.

non-uniform (adaptive) grid

uniform grid 0 1 X

Figure 7.6: Numerical approximation of BV-model (7.2.1) using method Il (left panel: the non-uniform grid in
terms of the coordinate transformation; right panel: exact vs. numerical solution).

and try to find the actual grid point distribution such that ttontribution to the ‘error’ from each
subinterval(x;_1, x;) is the same. The basic principle then reads (the connectitin(#2.5) will
soon become clear):

A.%‘Z‘ w; = C, 1= 0, ceey N —1. (7.2.6)
with xg =z, oy = zr, Az; := z;41 — x;, Which is a discrete version of (after having applied the
midpoint rule to the integral):

Ti41

/ wdr=c¢, 1=0,...,N —1.

T

The constant is determined from:

TR T T2 TN
/ wdx:/ wdac—i—/ wdm—i—...—i—/ wdr =c+c+ ...+ c (N times),
x x T €T

L 0 1 N-—-1
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giving ¢ =  [."" wdx. We then obtain:

Ti41 1 TR
/ wdm:—/ wdz, 1 =0,....N —1,
. N J.,

7

from which we read that the monitor functien is indeed equally distributed over all subintervals,
thereby clarifying the name of the principle. From (7.2 main idea behind this principle becomes
clear as well: grid celld\x; are small wherey; is large, and vice versajncetheir product is constant.
In fact this is the discrete version of the continuous fortioh (7.2.5). Equation (7.2.6) can also be
interpreted as an approximation to the problem

rew=c¢, 0<{<1

or, taking the¢-derivative, to the boundary-value problem

(wze)e =0, 2(0) =xr, x(1) =xR. (7.2.7)
Note that sincef = 5¢, we find
dx
d§
% =cw, 7 <T < IR, S(xL) = Oa g(xR) =1

From this follows the relation

1:1—025(563)—5(3%):/xR%dx:c/wadx,

2, dT .

so that the constartcan be written as = ———— and therefore> = — . If we now integrate
facL wdz dx fo wdz

the expresssion
d€ w

o T TTrR, -
dx fo wdz
we arrive at an explicit formula for theversecoordinate transformation:
x _
z w fo wdT

f(a) = d =

- f;LR wdx ffi wdz’

We already mentioned th&t = xl represents the ‘grid point density’ of the transformatidiihat
about the regularity of the transfogrmation? Can the grich{zotross each other and destroy the ‘topol-
ogy’, i.e. the natural ordering, of the grid point distrilan? The answer to this question is, fortunately,
negative and can be easily checked by working out the foligvidentity, which is a direct result of
the previous calculations:

d_.%'w o TR — X[,
dg Jy wdé

Forw > 0 we havec > 0, and thus‘jl—g > 0 (by definition: xz — z;, > 0). The Jacobian of the trans-

formation is given b%% > 0 from which we may conclude that the transformation is nowgiar. In
terms of the grid points this readsz;w; = ¢ > 0 = Az; > 0: the grid points do not cross!
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It is interesting to note that the equidistribution prideipas just described, can be derived from a
variational formulation. To see this, we consider the ‘gritergy’

1
E= / wx?df
0
and minimizing this energy functional, in a straightfordbananner, via the Euler-Lagrange equation:

d (0F oF , _ _ 2 ine
pa (6_%) — 55 =0 with F = F(z,2¢) = w(§)xg gives:

%(wag) -0=0< diﬁ {wj—z] =0
which is equal to the differential formulation (7.2.7)! Thggid-energy’ can be taken to represent the
energy of a system of springs with spring constantpanning each interval and connecting points of
mass (grid points). The non-uniform grid point distribatiesulting from the equidistribution princi-
ple thus represents the equilibrium state of the springegyst.e., the state of minimum energy (see
also Figure 7.7).

‘springs’
‘forces’ AN / .
R ; ‘points of mass’

x(i—1) x@ }((i+1) X(i+2)
grid points

Figure 7.7: The non-uniform adaptive grid seen as a system of ‘springs’ connecting ‘points of mass’.

We still can not apply principle (7.2.7), since we do not knget how to choose the monitor function
w. A first choice, see (7.2.4), may he = u,. Thisyieldszcw = zeu, = xé—i =ve =c In
words: the grid points; adjust in such a way that the same change in the solutioocurs over
each grid intervalz;_1,z;). The main disadvantage is the fact thatyjf | 0, thenAz; — oo (the
transformation becomes singular), see Figure 7.8 (lefepan

An alternative choice fow is to take/1 + u2 (Figure 7.8; right panel). In this case an increment
of arclengthds on the solution curve:(z) is given byds? = dz? + du? = (1 + u2)dz? from which
we obtainw = s, and thusres, = (L‘gi—z = s¢ = c. The grid point distribution is now such that
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ug ug

>
X
Figure 7.8: Grid point distribution using w = u,, (left) and arclength monitor (right).

the same increment in arclength in the solution occurs oaein subinterval in the non-uniform grid
distribution. Note that hera, | 0 = Ax; — % i.e. for low values of the gradient,, the grid
points are distributed uniformly (in the limit). Many othgossible choices far have been used in the
literature. In [38] a few other choices and references arergiln practical applications the scaling of
the solutionu and the dimension of the spatial domaimay influence the grid distribution induced
byw = /1 + u2. Therefore, often a extra constants added to the monitor functio: = \/« + u2
orw = /1 + au? to take into account these scaling effects. This, of coursey result in a user-
unfriendly method, since the depends on the particular PDE model. A more sophisticateuitoro
function taken from [15] will be given in Section 7.2.4 in whia ‘solution-adaptive’ parameter in

is used to cope with this scaling problem . Additional infation can also be found in the description
of the higher-dimensional case later on. Furthermore, xtenegion of the equidistribution principe to
time-dependent differential equations is straightfodvahe grid distributiomAz; will depend on time
t:, i.e. Ax;(t), just as the constauwtin, for instance, (7.2.6).

7.2.3 Smoothing of the grid in space and time

Besides the issue how to choose the monitor function in {Y,.2ve might conclude that the just-
mentioned equidistribution principle in the current formrayrbe used efficiently for general PDE mod-
els. But the question to be answered is:

Does ‘pure’ equidistribution suffice?

In order to get an answer to this question it may be illusteatd consider two diiferent PDE models.
The first one is the well-known viscous Burgers’ equationclihieads
ou ou 30%u

oy Tumm =510 weo1] (7.2.8)
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As initial condition and boundary conditions we taker,0) = sin(mx), u(0,t) = u(1,t) = 0. The
solution starts smoothly, but will develop a sharp traositiayer near: = 1. What happens with the
equidistribution grid withv = /1 4+ u2 we can see in Figure 7.9. On the left the solution and the
grid are shown. Both the grid trajectories and the solutiselfiappear to be irregular (‘'unsmooth’). In
the same figure, now in the right panel, the same method ig lsied, but with additional smoothing.
This will be explained later on.

0.8

0.7 0.7

| | \
06l | ! ‘

0.6

S

)]

S

:
s

0.5 051

041 04f

0.3F

0.2

0.1F

Figure 7.9: Adaptive moving grid solutions of (7.2.8) on a non-smooth grid (left) and on a smoother grid (right)
with the same number of grid points.

A second example is given by the hyperbolic PDE

ou ou
E + 4C05(47Tt)a—x =

An exact solution of this hyperbolic PDE is

ute.t) = st (o~ Leintan)))

which describes aextremely sharpulse thatmoves periodicallyin the time direction, from left to
right and backwards again through the spatial domain. Sinbd the Burgers’ model we show the
solution (on a uniform grid, an unsmooth equidistributeid gnd a smoothed equidistribution grid) in
Figures 7.10 and 7.11, respectively. Obviously we nee@esxtroothing on top of the equidistribution
principle (7.2.5). First we need to identify and quantifedgle unsmooth effects. We will see that this
can be done in terms of

0. (7.2.9)

e |ocal truncation errorson non-uniform grids and

e unsmoothness and instability of a time-dependent lggised orpure equidistribution.

For this purpose, we define the ‘grid size ratio’ (‘local stheng factor’):

ri—xi—1 _ Awmiy g

7=

Tit1 — T Ax;



262 CHAPTER 7. THEORY AND APPLICATION OF ADAPTIVE MOVING GRID MBEHODS

N=100, p=1000, tol=10=%, 7=10®
1.2 T T T T T T

EXACT SOLUTION

1 T =2 (ADAPTIVE + SMOOTHING) b

c=0
0.8f / (ADAPTIVE, NO SMOOTHING) B
\
0.6 q
UNIFORM GRID
+
S|
3 0.4+ B
3
i &Q |
0 == = =
-0.2 q
_04 L L L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

X (zoomed in)

Figure 7.10: Comparison of uniform grid and adaptive moving grid solutions (smooth vs unsmooth) for model
(7.2.9).

Using a Taylor expansion, it follows that the truncatioroeff for the central finite difference approx-
imation (on a non-uniform gridy,, ; ~ “*+"*=L is given by

p+q
s P+ ¢
= m Ugp,i — mumx,i + ...
= —%um,i(l —r)Az; — %uxm,i(l —r4+rHAz? 4 ...
— AGSQ (Bxeg iUpe,i + xéuzm D)+ O(ALh
PN Tt < S oY

2 Te i ’ 6

We immediately see that for = 1 (a uniform grid) the numerical approximation is sfcond-

order:
2

A
T = _Tfum +0O(AgY).
However, for the non-uniform grid case,# 1, and the approximation is afecond orderonly if

r =1+ O(Ax;). Since

_ 2giAg % 529% FHOT. =1 - A, =8 L 10T,
xe ;AL + §Af Tee i Le i

we can conclude thaﬁ%—’ O(1) & r = 14+ O(Az;). If the ratio =5+ is too big, then- # O(1) and
this influences the order of the truncation error. Grids with 1 +O(Aml) are called ‘quasi-uniform’.
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0=2, a=1, N=100

Figure 7.11: Unsmooth vs smoothed adaptive moving grids for PDE model (7.2.9).

Such grids (in terms of the transformatio@%—’f = O(1)) are ‘smooth’ enough and will not change

13%3
greatly between adjacent intervals. How to adjust the éspuiloution principle to guarantee this, we
will see in Section 7.2.3.

A second potential problem with the basic equidistributwimciple can be explained as follows:
if we differentiate the equidistribution relation

ml(t) 7/ TR 7/
/m wdr = N /xL wdzx = Nw(t), i=1,..,N

L
with respect to time we obtain
w(:cl-, t)SCZ +
TL

Introducing small perturbation®:; on the grid points:; and using Taylor expansions fofx; +z;, t)
and 707 2w 4 we get

zr ot
. Oow . . Ti Qw Oow 7.
w(x;, t)a; + %&cm + w(m;, t)ox; + 5 Edm + Eéxz +H.OT. = Nw(t).
After linearization follows 5 5
. W . w
w(x;, t)od; + %5%:6@- + 55%’ =0.

This is equivalent Withj—t [w(z;(t),t)dz;] = 0 and integrating once gives

w(zi(t),t)ox;(t) = CONSTANT = w(x;(0),0)dz;(0)
and thereforeiz; (t) = “;((f;i(((g’?)) §;(0). From this expression we see that: ;i((%’?)) becomes> 1,
the adaptive grid in equidistribution may becomestable This may be prevented by adding a small
‘delay’-term to the equidistribution principle. More disaon this kind of instability can be found
in [14]. In the next section an alternative to the basic eigtrithution formula will be derived.
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How to deal with unsmoothness of the grid?

From the previous section we have learned that an impontegfuiality for the non-uniform grid is
given by
1

Rewrite the time-dependent equidistribution princigle;w; = c(t) in terms of ‘point concentrations’
1 .

n; = ¢(t)w;, Vi (7.2.10)

Next define

N
o .
(:Ji: E wj(g——[—l)hiﬂ’ O'>O, w>0
7=0

andreplacethe (7.2.10) by
n; = c(t)w;, Vi. (7.2.11)

This is in fact a spatially smoothed equidistribution pijihe. The following Lemma then holds (for
the proofs of this and succeeding series of Lemma’s we refi@4):

Lemma 7.2.1. Fromn; = &(t)w;, Vi, it follows = -2 < i < oHL v,

An interesting observation is the fact that the magnitude dbes not play a role at all in Lemma
7.2.1. Notethat, it = O(1) thenr = - = O(1) where the local stretching factor is written in terms
of the point density instead of the cell-size. Define further= n; — o(o + 1)(nj4+1 — 2n; +ni—1) =
¢(t)w;, Vi with ‘Neumann’ boundary conditionsy = nq, ny—1 = ny. Then the solution of this

system of equations is given by

i i N-1 li—j]
- oc+1 5 o 5 o
eee() oo () w2 ()

1

for some constant§’; andC'_ that depend on the boundary values.
Lemma 7.2.2. This solutionn; has also the property

o < n; <0+1

, Vi

c+1 7 n;i_1 o

Instead ofn; = ¢(t)w; which can be shown to be equivalent with= ¢(t)w; we set (a smoothed
equidistribution principle both in spa@ndtime direction):

m@+@%m@:am%v¢ (7.2.12)

with boundary conditionsy = n1, ny_1 = ny, Vt. Note that the solution of thi©DE-system can
be obtained in terms of the integral equation:

n;(t) = exp(—t/75)[1:(0) —|—/0 7o L exp(s/1s)c(s)w;(s)ds], t > 0, Vi.
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If we apply, for example, implicit Euler to (7.2.12 we can redke following observations with respect
to the parameter:
o forr, —0: A"t & )y, vi in case of no smoothing in the time direction

~(n+1)

o if g >>At: n, E ") i too much temporal smoothing- no grid adaptation

o if 7. = O(AL) : A" & La 4 Lemn ) v (yse old values of grid as well for
adaptation).
It is easily seen that:
Lemma 7.2.3.For 0 = 7, = 0, i.e., no smoothing at alln; = ¢(t)w;) andw > 0 = n; > 0, Vi.
For the case, = 0, o # 0, we have observed tha = ¢w; < n; = cw; Vi (©; > 0). From
Lemma 7.2.3 it follows directly that; > 0, Vi (simply replacev; by &;).

Lemma 7.2.4. If n; is the solution given by

o+1

N—
ni =& Cp (=) + 2O a+1 Z i

then, because; > 0 = n; > 0 Vi.
Forthe case, # 0, 0 = 0: n; + 75 4n; = &(t)w;, we have
Lemma 7.2.5.n,(0) > 0, Vi = n;(t) >0V ¥Vt > 0.

Combining all the previous results gives for the most gdrearse (cf. (7.2.12):

Lemma 7.2.6. The solutiormn; (in terms ofn;) is a linear combination ofi;-values with only positive
coefficients (i.en; > 0 = n; > 0).

And finally:

Theorem 7.1.1) Az;(0) > 0 Vi = Az;(t) > 0Vi, V¢ > 0 and II) 723 < Sl < 24l vi, vy >
0.

From these results follows that the smoothed equidistahuprinciple (7.2.12) deals with, and
solves, both identified potential problems as discusseckuti@h 7.2.3. As already mentioned, for
more information on these theoretical results the readefésred to [34]. We are now ready to apply
the enhanced and improved method to a series of PDE modeidiferent application areas.

Application to time-dependent PDEs

Consider the time-dependent diffusion-convection-ieadPDE:

ou 9%u ou
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Application of the coordinate transformation
x=ux(,0), t=1t(&,0) =10, J = xe.

to (7.2.13) yieldsUy — +agUs = £[+Uecle — %Ug + s(x, U, 0). Semi-discretization in the spatial
direction first (with a uniform distribution in the computaial coordinate) gives:

U U Uit1-U;  Ui—U;—3
Uy — —H T (g — ) = e LTI T (7.2.14)
Tit1 — Ti—1 §($i+1 - 96'@‘—1)

In addition to the discrete formulation (7.2.12) it is pasito write the adaptive non-uniform grid in
terms of this transformation. Let therefaré, 0) be the solution of the time-dependent grid PDE:

[(S(ze) + Tsweo)w] =0, (7.2.15)

wherer, > 0 is the temporal smoothing parameter as used in Section)7.2.3- /1 + a(U,)?
the monitor function and the so-called ‘adaptivity parameter’. The spatial smowloperatorS in
(7.2.15) is defined by:

82
2—

g2’
with o the spatial smoothing parameter from Section 7.2.3. Sirtol¢ghe results for the discrete case,
some properties of the grid can be derived.

S=7— oo +1)(Af)

o J =ux¢>0 V0 € [0,T] which reads in discretized form (note&¢ is constant)Axz;(6) >
0 V0 € [0,T] (no ‘node-crossing’ possible)

ﬁ 1 . - . . .
e | < 7@ with discretized version:
o sz‘—f—l(e) c+1
< < V6 el0,T].
ot1- Amd) - o €lo.1]
(‘local quasi-uniformity”)
e 7,=0=0 = x¢w=constantv 0 € [0, 7]
. ffL w dz
~ V)= FEp 4o
£(1) 7R wdz

L

(in discretized formAx; - w; = constanty 6 € [0, T] (equidistribution of the arclength monitor)

For the three parameters, o anda we can give a rule of thumb how to choose them in a particular
application:
0 < 7, < 1072 x timescale in PDE model

o =0(1) (o =2 suffices in general)

Note, however, that the third parameter depends on thediffscales in the PDE solution, which may
not be known on forehand:

a = 0O(1) depends on-andU-scale
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Semi-discretization of the adaptive grid PDE (7.2.15)dsel

dAz; 41
do

] Wit1 — |:A-Ti + Ts%] w; = 0,

Ai S
Tit1+ T a0

whereAzr; = Ax; — o(oc+1)(Az41 — 2Az; + Az;—1). Note that we have used here the alternative
formulation in terms ofAz; rather than the one with;. The semi-discretized system can be written
as an adaptive-grid ODE system:

s B(X,U,0,0)X = H(X,U,0,0).

When coupled on the semi-discretized PDE system (7.2.14)pbtain a large, stiff, banded, non-
linear ODE system, which can solved in the time-directiothva stiff ODE solver such as DASSL

[6,28]. The full 1D code, which can solve a general class oERBodels accompanied with dif-

ferent kinds of boundary conditions is freely available arath be downloaded from the webpage
http://www.math.uu.nl/people/zegeling/publist.html

7.2.4 Applications

In this section a set of applications is treated to show tledulisess and effectiveness of the adaptive
moving grid method as described in Section 7.2.3.

The Gray-Scott reaction-diffusion system

A reaction-diffusion model in which several interestingegpbmena from pattern formation can occur,
is defined by the Gray-Scott PDE system [16]:

2
% = %—qu—l—A(l—u),
o v 2 (7.2.16)
E = 001@ + UU2 — BU.

In particular it describes reactions between ferrocygnabtate and sulphite. Typical numerical results
can be found in Figure 7.12. Starting with a one pulse satuminitial condition, the solution exhibits
a ‘splitting’ behaviour, so that after a relatively long gnntegration (here € [0,20000]) we end up
with more tharR0 very steep pulses.

Travelling waves on the Golden-Gate Bridge

The higher-order PDE model

u, u > 0,

Ugt + Upgee +ut —1=0 Withqu:{ 0. u<0
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AT FE R AR R R R NN N

0.8[;

0.4r

0.2r

0.2 0.4 0.6 08 1
X

Figure 7.12: Adaptive moving grid results of model (7.2.16) with 601 grid points; solution and grid history.

has been recognized as a good model for the descriptionv&lirey wave behaviour in the Golden
Gate Bridge in San Francisco. Here, the solutigm, ¢) represents the displacement of a beam from
the unloaded state [11]. It can be re-written as a systenreétfirst-order PDEs in the following way:

|y = Aty + Bi+ F, (7.2.17)

wheret := (u,v,w)?, v =us, W = Uy, F = (0,u™ —1,0)" and

00 O 010
A= 0 0 -1 |, B=|( 0 0 0 ].
01 0 0 00

Numerical results are shown in Figure 7.13. We see intaigsilution behaviour when playing with

different initial data that were derived from an theordtimaservation in combination with a numerical
method for the stationary case. Both stable and unstablesyéut even crossing waves (in different
directions) are part of the PDE model.

A tumour angiogenesis model

An application from medical sciences in which steep gradief the solution play an important role
is given by a tumour angiogenesis model for blood vesselldeaeent [12]. The PDEs read

by + <[§cx} b) =10"3b,, — 4b + 1026(1 —b)max0,c — 0.2),
1 i (7.2.18)

¢t = 0Cyy — C — 101—_:6, x € [0,1].
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(a) (b)

’{
|
(a) Solution to (1) with the piecewise-linear term (2) using the fixed grid method showing
(a) Solution and (b) the moving mesh method for the 4(2, 2, 2) wave using the same initial the interaction of two primary waves with initial wave speeds ¢ — 1.1 and —1.1. (b) The equivalent

data as in Figure 4. The data presented is for a run with 1501 grid points, a more accurate run with run for the exponential nonlinearity (4). () The same run as (b) using the moving grid method with
2001 produced qualitatively the same a non-trivial task. 2001 grid points; and (d) motion of the grid (from a qualitatively identical run with 1001 grid points)

Figure 7.13: Results for a few different scenario’s in the Golden-Gate model (7.2.17).

Here,b andc stand for the density of endothelial cells (blood) and thealted tumour angiogenesis
factor (TAF), respectively. For the initial and boundanndiions we have chosen:

1 0,if0<z<1
c(x,0) = cos (571'30) , b(z,0) —{ Lifa=1

b(0,¢) =0, b(L,t) =1, ¢(0,t) = 1, ¢(1,¢) = 0.

Figure 7.14 depicts adaptive moving grid results for twaseal of the diffusion parametér § = 1
(left panel) ands = 10~2 (right panel). Decreasing the value of the diffusion cofit makes the
moving front steeper. Adaptive moving grids are therefaspeeially suited for this type of models
from medical sciences.
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Figure 7.14: Results for two different values of the diffusion coefficient § in model (7.2.18).
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Brine transport in a porous medium

In reference [36] an application to a brine transport moded iporous medium is described (please
check the details there). The model consists of two PDEs:

k
(np)e + (pq)z =0, q= _;(px + pg), (7.2.19)
(npw)t + (pwq + pJ)z =0, J = —=A|q|ws,

wherew is the salt concentration in the porous medium and the fluiditiep satisfies also the equation
of state
p= poeﬁ(p—po)+w_

The initial and boundary conditions for the numerical expents in Figure 7.15 read:

w(z,0) =0, w(0,t) =wy >0, w,(1,t) =0, z € [0, L],

T

X
p((L‘,O) = Po [(1 - E) Dieft + me'ght )

p(0,t) = popieft, P(1,t) = PoPright-

Different choices op. s andp,.4,; may result in quite different phenomena as can be seen ind=igu
7.15.

EVOLUTION of ADAPTIVE GRID
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Figure 7.15: Three different cases for the brine transport model (7.2.19).

Heat flow of harmonic maps from surfaces

From theoretical mathematics a higher-dimensional PDEbeadterived that deals with harmonic heat
flow between the 2-dis® and the 2-sphers:

ur = Au+ [Vul*u, u(x,0) = ¢(x), ulap = ¢lap. (7.2.20)

When requiring spherical symmetry in the modgk) = [ﬁ sin(¢(|x|)), cos(¢(]x]))], it can be
shown that the solution must satisfy

u(x,t) = [% sin(h([x[)), cos (h([x|))]-
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When we substitute this expression into PDE model (7.2.20ansive at the much simpler PDE in one
space dimension (using spherical coordinates for the 2reifh):

sin(2h)
2r2
h(r,0) =(r), h(0,t) =0, h(1,t) =(1).

More details on the theoretical background of the model @areld in reference [5]. Typical ‘jump’-
behaviour of the solution and high spatial activity around 0 is clearly seen in Figure 7.16.

1
hi = hpp + —hy —
r

MODEL HANS/FIEKE; GEEN EXTRA FACTOR VOOR SIN-TERM; U(X,O):% 8.5 W2; EPS=1E-6
1

MODEL HANS/FIEKE; GEEN EXTRA FACTOR VOOR SIN-TERM; U(X,0)=X 8.5 n/2; EPS=1E-6
14 T T T T T T T T T

NPTS=201

-

N

:

i

Figure 7.16: Adaptive moving grid solutions for the heat flow model (7.2.20).

The extended Fisher-Kolmogorov equation

In reference [27] a fourth-order nonlinear PDE is analyzddctv may describe the propagation of
domain walls in liquid crystals:

wp + 10 M Upppe = 10 gy +u —u? |, = €[0,1]. (7.2.21)

The parametety plays an essential role, because it can be theoreticallyedkethat fory = —3 <
7« = —v/8 we expect multi-bump solutions. Using the conditions

u(z,0) = cos(prx),

u(0,t) =1, u(l,t) = —1, uy(0,t) = uy(1,t) = 0.

interesting ‘batman-ear’-type solutions can be obtainedva see in Figure 7.17. Since the fourth
derivative is not included in the general 1D-code in [6], a+umiform grid approximation ofi,..
has to be worked out and fed to the time-integrator DASSL.[28]
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Solution at T=0, 1, 2, 3, EFK, N=81

Grid at T=3, EFK, N=81

n~
o

n

T
o

o
o

0
0

X

Figure 7.17: ‘Batman-ear’ type solutions of model (7.2.21) with 81 adaptive moving grid points.

A fifth-order Korteweg-deVries model

As a simple example, let us first consider the solution of & lkequation
Ut = QUgy
with coefficienta. € R and
u(z,0) = sin(rz), u(0,t) =u(l,t) =0, z € [0,1].

It readsu(z,t) = €™ tsin(rz). It is easily checked that for < 0 we haveunstablesolutions,
whereas forw > 0 all solutions arestable In general, for more complicated nonlinear PDE models
(with physical parameters), it is often unknown whethergbkitions remain stable. For this purpose
numerical experiments can reveal some of the stability iebaof the PDE solution. As a concrete
example, we consider a fifth-order model for nonlinear waigves in the presence of surface tension
(cf. [31] for more details):

2

We sety, = 1 and simulate numerically the temporal behaviour of diffiérgcenario’s, in which the
parameteb can be varied. Note that far= 2(2b + 1)(b — 2), b > —1/2 explicit solutions exist:

u(z,t) =3 (b—l— %) secht < 3(%—'—1)(30 + at)> .

in which —a is the velocity of the wave. Other combinations, for whichrthare no explicit expres-
sions, may appear as well. Figure 7.18 shows a few of thesiexgnts. Additionally, it must be noted
that these results have been obtained by working with atbfigiodified version of the equidistribution
principle (details in [31]), where the number of grid poiigvariable.
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Figure 7.19: Solutions for the 1.75d mhd-shocktube model (7.2.23); left: the density at ¢ = 0.08, right: grid history
showing nicely the tracking of the seven different ‘waves’.

An MHD shocktube model

Finally, we demonstrate the capability of the equidistiitiu principle when applied to a complicated
system of highly nonlinear hyperbolic PDEs [15]. For thiplagation, an alternative monitor has been
used (details follow later on in a section that treats the-divoensional case): the scaling and choice
of the parametet: is done automatically. No additional smoothing as in Sectimooth is needed as
well. The PDE model from magneto-hydrodynamics (MHD) cetssof seven PDEs:

% + % — 0 B; = constantu = % B = (B, By, B3)"

I 2 (BB - DR o) =0

% + %(mlv — B1By) =0 % + %(mlw — B1B3) =0 (7.2.23)
% + %(Bgu — Bv) =0 % + %(B:w - Biw) =0

%—i—% [u(’ye—(’y—l)?—j—i—@—’y)%) —B1B-u] =0
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where the energy equats—= pl +p% ° 4+ %2 and

v=2, By=1, Q=1[0,1000], ¢ € [0,80].

The initial conditions are imposed as follows (with homogems Neumann conditions at both ends for
all components):

0.5 forz € [0,350]
pli=o = ; milg=o =0

0.1 elsewhere

(ma2,m _J (0.5,0.05) forz € [0,350]
iz = (0,0) elsewhere
2.5 forz € [0,350]
B B
2o { 2 elsewhere , Bsli=o=0
lemo = 1 forz e [0,350]
Pi=0=19 0.1 elsewhere

The numerical results in Figure 7.19 show the dengiat ¢ = 80 and the adaptive moving grid that
tracks the seven waves accurately.

7.3 The higher-dimensional case

7.3.1 Atensor-grid approach in 2D

Within this section we will adopt the alternative notatigyu for the partial derivativeg—g.

Consider now the two-dimensional time-dependent PDE model
Ou = eAu — B(u, x,y,t) - Vu + s(u, x,y, t), (7.3.1)

where(z,y) € [z, 2] X [y, ya), t € [0,T],0 < eis the diffusion coefficientj the velocity vector
ands a nonlinear sourceterm.

A straightforward extension from 1D to 2D

As for the one-dimensional case, it is common and usefulrircgiredr-refinement methods to first
apply a coordinate transformation to the physical PDE méd@&.1). Then the adaptive grid can be
seen as a uniform discretization of this mapping in the nevalkes. For the tensor-grid case we make
use of a transformation of variables ( [38, 39]) in a dimenalty-split approach

§= €(x7t)’ n= 77(%75), 0=t, (732)
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in which (z,y) and(§,n) € [0, 1] x [0, 1] denote the physical and computational coordinates, respec
tively. Applying this transformation to equation (7.3.1yep

J Ogu — Ogu Opy g — Oyu O Doy = € [55 (M> + 0y <a§x 377“)]
65.%' any

_ﬂlany 8§u - ﬂ?afx anu + S(U, x(&a 9)’ y(na 9)’ 9)5 (733)

whereJ := O¢:x Oy is the Jacobian of the transformation (7.3.2). Note that = [8595]—1 and
d,n = [0,y]~ measure the grid densities in each separate direction.

The adaptive grid in terms of the mapping can be determineal sution of two fourth-order
PDEs in¢ andn with an additional time-dependent component. We set

9 [(S1(T1) + 7 OpJ1)M1] = 0,

(7.3.4)
O [(S2(T2) + 7 g T)W] = 0, (7 > 0),

with suitable boundary conditions far(similar conditions hold fog):
z(0,n) =z, x(1,n) =2, 0nx(0,n) = Opz(1,n) = 0.
The operatorss; andS, are direction-specific versions of the operafodefined as:
S=TI-o(c+1)(A*F (0>0), (7.3.5)

whereJ; := J¢x and Jp := 0,y are the ‘one-dimensional’ Jacobians, respectively. Astimeed
before, several choices for the weight functions in (7.8af) be made. Here, we simply take

Wi = /1 +amaxGel2,  Wa=/1+amax(d,u? (o>0). (7.3.6)

The parametery is an adaptivity parameterex = 0 yields W; = W, = 1 and thus a uniform
grid distribution (this can easily be derived from (7.3.4047.3.5)); for increasing values of the
derivativesd:u andd,u are stressed more and more with the effect of higher spatthbgaptation. It
can be shown that the transformation (7.3.2) as a soluti@gwations (7.3.4), (7.3.5), (7.3.6) satisfies
the ‘grid-consistency’ condition

J >0, V>0, and (&n) €[0,1] x [0,1],
and also the ‘local quasi-uniformity’ property

2
Iy
Ony

2
6551'
851‘

<1/y/o(o+1)A¢E, <1/\o(o+1)An. (7.3.7)

The first property is equivalent teon-singularityof the mapping, which is, of course, a minimum
demand. The second property concernssim@othnessf the mapping (see below for more details).
Note that forc = 7 = 0 (i.e. without smoothing operators) the grid equations.4j.B82duce to

O [TIW1] =0, 8, [TaWy] =0, (7.3.8)
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which can be easily solved, just as in the one-dimensiorsd,da obtain an explicit expression for the
(inverse) coordinate transformation

x Tr Yy Yu
ity = [ wids/ [wids, a = [Twady/ [Twadp 739)
x Ty Y1

Y

From (7.3.8), i.e. without any kind of smoothing, followsectly that, asiV; » > 1: 712 > 0, and
therefore7 = J1.J> > 0. Using the fact that\¢ and An are constant, the continuous propefty> 0
both for equations (7.3.8) and for equations (7.3.4) camdrestated in semi-discrete terms as

A$i7j(9) > 0, AyZJ(Q) >0, VOe [O,T], Vi, j. (7.3.10)

In other words, these relations state that the grid pointsneser cross one another. Property (7.3.7)
can be read in semi-discrete terms as
1 < A:Ci+17j(9)
1+ 1/0’ - A‘TZ,J(H)

<1+41/o, VO€[0,T], Vi,j (7.3.11)

and similar relations for thg-direction. Relation (7.3.11) means that the variationuocgssive grid
cells in both directions can be controlled by the parametatr every point of time.

Figure 7.20: Two different types of adaptive moving grids in 2D: fully adaptive (left) vs. tensor-grid (right).

Application 1: A rotating cone

To show the effects of the adaptivity parameteand the weight functioiV it is of interest to examine
the linear parabolic equation described by

atu:Au—i_f(xvyvt)v (xvy) € [_172] X [_172] (7312)
The source ternf is chosen so that the exact solution is

)

u(z,y,t) = e 80[(z—r(1)))?+(y—s(1))?]
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Gridsize| a=0 |a=1,0=02|a=1,0=1|a=1,0=0|a=10,0=0
19 x 19 | 0.43590 0.71109 0.11618 0.43998 0.18423
29 x 29 | 0.25521 0.48283 0.16219 0.26116 0.03766
39x 39 | 0.14363 0.21347 0.10206 0.15026 0.02522
49 x 49 | 0.08629 0.20423 0.08304 0.09600 0.01725
59 x 59 | 0.05636 0.09953 0.06081 0.06624 0.01147

Table 7.2: The maximum error ||e||o at ¢t = 2.0 for the rotating cone model.

where ) )
r(t) = 1(2 +sin(7t)), s(t) = 1(2 + cos(mt)).

This solution is a rotating cone with initial conditiom ®((@=0-5*+(—0.75%) that moves around in
circles with a constant speed. During the movement, theesbhffhe cone does not change. Another
option for the weight functions, especially for this examplould be of the form

W1=W2 =V 1+ au?

to stress the solution values at the peak itself insteadeofithdients. In Table 7.2 and Figure 7.21, nu-
merical results are displayed for different choices of tleéght function and the adaptivity parameters
«a anda. A few observations can be made from these simulationst, ks see that decreasing the
smoothness, i.e., taking the rather small vatue: 0.2, negatively influences the maximum error for
the case of an arc-length weight function. Second, theraitie choiceﬂ/m where the solution value
is emphasized, and not the gradient of the solution, giveshrbetter numerical results, although the
adaptive grids themselves, perhaps surprisingly, lookemdifferent. Note that, if the value @f is
increased, the error in the numerical solution is reducguifstantly. The solutions fotv = 1 exhibit

a strange decrease in amplitude both at the top of the putbatahe foot of the pulse, although for
o = 1 this behaviour is less pronounced than for the unsmooth itmav= 0.2. For the alternative
weight function witha = 10, this effect is almost annihilated. More details can be tbim[38].

Application 2: A whirlpool model

ou=——2"Yout+ Lo, (7.3.13)
'Ut,mam r UVt max T
where L
t
r=/72 + 42, v = LQ(T) Ut maw = 0.385, (7.3.14)
cosh“(r)” ~
with initial and boundary conditionsu|,—g = —tanh(%), d,ulsqo = 0, on the domain(z,y) €

[—4,4] x [-4,4], t € [0,4]. This model describes the formation of cold and warm fronta two-
dimensional setting. Beginning with a narrow region of higfadients (a front), a fixed (in time)
rotational velicity field will act to twist the front in a maensimilar to that observed on daily-weather
maps (positive solution values correspond to a warm frodt reggative values to a cold front). A
complicated structure with high spatial activity, simitara whirlpool, develops in the center of the
domain. Figure 7.22 shows the grids and numerical solutiona49 x 49 grid at¢ = 0.0, 1.6, 2.8
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Figure 7.21: Tensor-grid solutions for the rotating cone model (7.3.12): solutions and grids after one rotation for,
respectively, (o, ) = (1,0.2), (a,0) = (1,1) and (a, o) = (10, 0).

Gridsize| a=0 |a=1,0=0|a=1,0=1|a=10,0=1
19x 19 | 0.99983 0.57177 0.62015 0.50516
29 x 29 | 0.74773 0.27647 0.25053 0.24930
39 x 39 | 0.52421 0.15113 0.15087 0.13512
49 x 49 | 0.29419 0.10606 0.09828 0.09244
59 x 59 | 0.19357 0.08476 0.08387 0.07491

Table 7.3: The maximum error ||e||o att = 4.0 for the whirlpool model.

and4.0. Also contourplots are given for comparison with the unifagrid and the adaptive grid case
for ¢ = 4.0 at which point of time the whirlpool has developed. The aifapsolution compares
favorably to the uniform solution in which the inner-laydrusture of the whirlpool is not resolved
very well at all. Note that we haven taken here the re-scaddgevy = 10 instead ofa = 1, since
the domain and the solution have larger scales. In Tablehe 3naximum error is displayed at the
final time for different values ofr ando. We see that forr = o = 1, which would be a ‘standard’
choice for a unit-square domain and solution value®¢f), the method performs not as good as for
the re-scaledv = 10 case. The difference between the smoeth« 2) and the non-smooths(= 0)
case is not so profound for this model, because the steep qfathie solution remain concentrated in
the centre of the domain for all time.
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Figure 7.22: Tensor-grid solutions for the whirlpool model (7.22) at ¢ = 0.0, 1.6, 2.8 and 4.0.

7.3.2 Smooth adaptive grids based on Winslow’s approach

Background theory

In 2D a fully-adaptive moving grid (see Figure 7.23) can kensas an approximation of a more general
(than for the tensor-grid case) coordinate transformdtetmveen computational coordinates

(fﬂ?)T € Qc = [07 1] X [Oa 1]
(with a uniform grid partitioning) and physical coordingite
(z,y)" € Q, C R?

(with a non-uniform adaptive grid).

‘steep’ solution 'mild’ solution

non—-uniform grid
Figure 7.23: The 2D non-uniform grid seen as a 2D coordinate transformation between physical (z,y) and com-
putational coordinates (&, 7).

In a variational setting, a ‘grid-energy’ functional (AWinslow [35]) can be defined as

1
5:5// (V2w Vr+ Viyw Vy) dédn,
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whereV = (&, 5-)" andw > 0 is a monitor function.
Minimization of the energy yields the Euler-Lagrange equations:
V- (wVz) =0
’ 7.3.15
V- (wVy) =0. ( )

onQ. = [0,1] x [0, 1] with boundary conditions

Tle=0 = L, Yln=0 = YL, T|e=1 = TR, Ylp=1 = YU,
Oz ox oy oy

I, le=0 = 5 le=1 = 5o ln—0 = 5 ly=1 = 0.

Non-singularity of the transformation, which correspomdth non-degeneration of the grid is guaran-
teed by the following

Theorem 7.2. (by Clement, Hagmeijer & Sweers, '96 [13])

Letw > ¢ > 0,w € C%1(Q,) andw, w,, € C7(€), for somey € (0,1).

= Junique solution(z, y) € C?(€.), which is a bijection fronf).. into itself. Moreover, the Jacobian
satisfies:

J = xeyy — xnye > 0.

Three main ingredients of their proof are the Carleman+Han-Winter Theorem, the Jordan
Curve Theorem and the maximum principle for elliptic PDEs.1D system (7.3.15) reduces to the
equidistribution principle from Section 7.2.2 (withoutditibnal smoothing):

T¢ w = Cst|
~—~
J

In that sense (7.3.15) can be seen as 2D extension to thggdeinFurther, the 2D system is simplified
when we add an extra restriction to the transformation irfahewing way:

Vi(ze) - Vyy) — V(ay) - V(ye) =0=J w = cst

It must also be noted that the transformation behind Win'slomethod [35] isnot a harmonic map-
ping, but it isrelatedto it. This means that we can not use the theoretical redudtsare known
for those classes of transformations. In fact, a countenpla can be given for the 3D (harmonic)
case, for which the transformation looses its regularitye@k [26] and references therein). Further-
more, several components in the proof of Theorem 7.2rmre applied in 3D either. This leaves
the three-dimensional case as a remaining challenge irotitexd of adaptive moving grids, even on
simple domains such as unit cubes. Howevenwileuse this concept (although the theory is not fully
available) in Section 7.3.3 to show that it can be appliedr@tiical situations.

We have seen in one space dimension that the choice of thegtmay in the monitor function
w can be a problem, since it depends on the spatial scale obthios and the length of the domain.
Furthermore, it is stationary, i.e. not time-dependent] tinis could cause additional problems for
models where the solution is behaving quite drasticallyhimtime-direction. First let us define the
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2D-version of the arclength monitor from Section (7.2.2):

w=vV1l+aVu-Vu| (7.3.16)

As said,« is a (problem-dependentadaptivity’-parameter which controls the amount of atilaty.
Alternatively Beckett & Mackenzie [3] have defined a ‘new’ nitor function with a time-dependent
and solution-dependent

1 1
w = a(t) + |ValliF, with a(t) = // IVl dedn) (7.3.17)
Qe

Values ofm = 1 yield better scaling and more adaptivity than for the cheice- 2. It is interesting

to note that this idea was also briefly mentioned in [6] betwtibe lines as a possible extension, but no
implementation was given in that reference. With the ‘newimtor, application of a filter or smoother
to the grid or monitor values is not necessary. Normally, stfmer transitions in a general non-uniform
grid can be obtained (and are needed!) by working with theosheal value

1
SWirgjry) = Wirbort HgWintid T ot g i)
1
Tt e R s O

In the numerical experiments we denote this Viilter on or filter off (working merely withw
values i.eS(w) = w).

i3,

Application 3: resistive magneto-hydrodynamics

As a first application of the adaptive moving grid from thevines section, we will discuss a 2D
system of MHD equations. They express the basic physicaerwation laws to which a plasma must
obey. Because plasma dynamics is influenced by magnetis flaldugh the Lorentz-force, the needed
additions in going from hydrodynamic to magnetohydrodyitabehaviour is a vector equation for the
magnetic field evolution and extra terms in the Euler systhat guantify the magnetic force and
energy density.

Using the conservative variables dengitymomentum densityn = pv (with velocity v), mag-
netic fieldB, and total energy density the ideal MHD equations can be written as follows (cfr. )39]

Conservation of mass: 5
a_f LV (pv) = 0. (7.3.18)

Conservation of momentum:

d(pv)

o TV (pvv — BBT) 4+ Vpyor = 0. (7.3.19)
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Conservation of energy:

% + V- (ev +Vpror = BB -v) =0 [+ £, (V x B)?]. (7.3.20)

Magnetic field induction equation:

B
86—t + V- (vBT —=Bvl) =0 [+¢,AB]. (7.3.21)
In (7.3.19) and (7.3.20) the total pressug; consists of both a thermal and a magnetic contribution

as given by
B2 2 B2
Prot =P+ = wherep = (v — 1) (e - —) (7.3.22)

is the thermal pressure (notation* = v'v andB? = BT B).

The terms between brackets in equations (7.3.20) and {j.8X2end the ideal MHD model with
the effects of Ohmic heating due to the presence of curr&vith. the resistivitye,,, # 0, we then solve
the resistive MHD equations.

The core problem is represented by the induction equatié2T), alternatively written as

B
%—t =V x (vxB)+e¢,AB (7.3.23)
with ¢,,, > 0 the resistivity or magnetic diffusion coefficient. As may dmticipated, the parameter
em IS related to the inverse of thmagnetic Reynolds numbglso named.undquist number In two

space dimensions, we $Bt= (B, Bs,0), to obtain the following system of PDEs,

631 632 831 6’[)1 6’[)2

IOL L ABy 40 22,2 g o0 g O 7.3.24
g cmebitug s g s By = by (7.3.24)
8B2 832 831 81)1 81)2

9P ABy— 0,222 4, 200 g o0 g 002 7.3.2
ot Fmab2 m U Oz T2 Oz 2oz + 5 oz’ (7.3.25)

together with the property - B = 0.

One way to ensure a divergence-free magnetic field at alktisi® make use of a vector potential

formulation whereB % v x A. From this follows automatically thaf - B =V - (V x A) =0. In

two dimensional applications, the system (7.3.24)-(BBi2 then equivalent to the single PDE for the

scalarAs component

% =—v-VA3+¢e,,AAs, (7326)

with 38—? = By, —%1 = B,, while A = (0,0, A3)”. Note that magnetic field lines are isolines of
this A3 potential.

We point out that the partial problem posed by the system44)37.3.25), or equivalently the
PDE (7.3.26), can be relevant as a physical solution to tbeiabcase where we consider incompress-
ible flow V - v = 0, the momentum equation (7.3.19) under the condition trenthgnetic energy
B?/2 is much smaller than the kinetic energy?/2, and the induction equation itself. In those cir-
cumstances, the momentum balance decouples from the rnafjelet evolution. In fact, our model
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then merely consists of equation (7.3.21) re-written ingbtential formulation (7.3.26). In the model
problems studied, we therefore prescribe an incompresfit field v(x,y) as well. Starting from
a uniform magnetic field, its distortion by cellular comventpatterns was simulated numerically for
various values of the resistivity,, .

One possible situation of 2D kinematic flux expulsion [41¢sisin imposed four-cell convection
pattern with its incompressible velocity field given by

v = (—sin(2mz) cos(2my), cos(2mx) sin(27y)) 7 . (7.3.27)

We then want to solve for the scalar vector potentigifrom (7.3.26) on the domaifr, y) € [0, 1] x
[0,1] and for timest € [0,5]. In terms of A3, the initial uniform vertical field is obtained through
Asli—o = 1 — z, while the boundary conditions ar|,—o = 1, Asl,—1 =0, %[, = 2|, =

0, which corresponds with a constant initial magnetic field.

One approach, which is efficient in 1D, would be to couple tilserdtized systems for the adaptive
grid PDEs and the physical PDE. However, there are a numlzbsadvantages to this approach. First,
the size of the resulting system in higher space dimensiangdabe large and even for moderate grid
densities may be prohibitive. Second, this approach doesasdy admit different convergence criteria
for the grid and physical solution. Further, it is not neeeggo compute the grid with the same level
of accuracy as the physical solution. Finally, a user maywascontrol over the discretization of the
physical problem and such flexibility is severely restuicty coupling the unknowns together into one
large nonlinear system of equations. We have thereforeuget the numerical solution procedure
for the physical and adaptive grid PDEs, and integrate ie timan iterative manner, solving for the
grid and the physical solution alternately.

For the convection-diffusion equation (7.3.26) it is agprate to make use of amplicit-explicit
time-integration method. The main advantage is that sghaimonlinear system, with for instance
Newton’s method, can be avoided, while still having reabtmatability properties, at least for mildly
stiff equations. We will use within this class of integratahe first-order method 1-SBDF. Applied to
(7.3.26), the discretization then reads:

(I = emAt A)AV™ = (1 — At v . 7) AP, (7.3.28)

whereA A" andV A" are the semi-discretized approximations of the seconeraterivative and
the first-order derivative terms, respectively, in equat{@.3.26). The non-symmetric linear system
AM ALY — () pehind (7.3.28) is again solved with the iterative metho@BISTAB with implicit
diagonal preconditioning.

The MHD testcase is equation (7.3.26) with velocity fielB(27). The resistivity is choses), =
5 x 10~%. In Figure 7.24 (top) the velocity field and the evolution loé fparameter. from equation
(7.3.16) as a function of time are displayed. Three phasedeaecognized from the right plot: for
small times the initially uniform magnetic field is distadtdy the four convective cells to amplify
the field. The magnetic field is dragged round by the motiontaedield energy consequently rises.
As the field grows, its scale of variation decreases untikties effects become important. The flux
is concentrated outside the eddies and so-called recooneddt the field lines takes place (second
phase). In the final phase, the central field decays and ayst¢ate is reached. In Figure 7.25 we see
at two different points of time, the solution, the adaptiviel @nd the magnetic field lines, respectively.
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The grid is nicely concentrated in areas of high spatialvegtiviz., the boundary and internal layers.
Reconnection has taken place: the magnetic fieldlines leaenected in regions of strong currents.

Weiss-model, Four—cell convection; velocity field (u(x,y),v(x,y))T 30
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Figure 7.24: The velocity field and the (scaled) magnetic energy for model (7.3.26).

Application 4: the 2D Euler equations

The two-dimensional Euler equations of gas dynamics deiagrithe behavior of an ideal compressible
gas are written in conservative form:

p U pv 0
0 | pu 9 | pu®+p 0 pUY 0
— — — = 7.3.29
ot | pv Ox puv oy | pv?>+p 0]’ ( )
E uw(E + p) v(E + p) 0

wherep is the density(pu, pv)” is the momentum vectoF the total energy angthe pressure. Since
we are working with an ideal gas, the equation of state, whithws how the energy is related to the
pressure is provided as follows:= (y — 1)(E — p“QQL”Q), with ~ the ratio of specific heats. Denote

= (z.9)".
Given a non-uniform partltlonlngAZJr J+1}” of the physical domair2,, WhereAZJr i+l is

a quadrangle with four vertices . j1;, 0 < k [ < 1, as shown in Figure 7.26. Subd|V|de the
computational domaif2, = {(£,7)] 0 < ¢ <1, 0 <n < 1} into the uniform grid:

(&,mj)| & =iA& n; =jAn; 0<i<Ic+1,0<j<I,+1,

whereA¢ = 1/(I¢ + 1), Anp = 1/(I, + 1), andl¢ and I, are the number of grid points in the-

and y—direction. We characterize the numerical approximatians & r(¢,n) by r; ; = r(&,n;).

The elliptic system of grid PDEs is then discretized by seeorder central finite differences in a
straightforward manner. A Gaul3-Seidel iteration methodsied for the numerical solution of the
resulting system of algebraic equations. The grid pointshenboundary of the rectangular domain
are redistributed each time step by letting them move wittstime speed as the tangential component
of the grid speed of the internal points adjacent to thosettary points (see [29] for more details on
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Figure 7.25: Four-cell convection results at two different points of time; left: numerical solution, middle: 2D
adaptive grid, right: magnetic field lines.

this).

Having computed the new grid as described in the previousosedhe solution values have to
be updated on this grid by an interpolation method. In [29pbaservative interpolation method is
derived to preserve conservation of mass at each grid rédison step. Obviously, with simple
linear interpolation this can not be achieved. Using a peation technique (see [29]) and assuming
small grid speeds, it can be derived that the solution-upgladcheme satisfies the following mass-

conservation

D Ml Gy =D 1A 5l Qi

Y] ,J
where|A| is the area of celd, andQ and Q represent old and new numerical solution values in the
physical PDE system.

Consider the two-dimensional hyperbolic conservatiorslaw

0Q n 0F1(Q) n 0F2(Q)

— <T 7.3.
5 5 5 0, 0<t<T, (7.3.30)

subject to the initial dat®(z,y,0) = Qo(z,y) , whereT is the final time, and2 denotes the vector
of conservative variablest; andF; are the flux vectors in- andy-direction.

Assume that a grid partitioning ; of the physical domaif,, has been calculated. Then integrating
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(7.3.30) over the finite control volumé, 1 gives (see [30] or [32])

z+ Jt3s

0
Y
1+g,.7+

wheres; (I = 1,...4) are the four boundary segments of the cBll;(Q) = Finl + Fnl, and
n! = (nt,n)T (I = 1,...,4) the normal outward vectors in the finite volume (see Figugs)r.

x) "y
AssumingF ;; = F::l + F_,, ageneral 2d finite volume scheme approximating (7.3.3@iven by
At
n+1 n
% ey =%t " A, ] j+1|{ Qs ) T Q)
+ Fpa( ?+%,j+3/2)+‘7:4 i1 Z z+§,j+%)}'

In the numerical experiment, we have used a local Lax-Fdedmumerical flux, and the initial data
reconstruction to improve accuracy of the scheme. Moreildaia the numerical scheme and other
applications can be found in [42].

The steps in the full solution procedure can be summarizéallas/s:

Step 1 Partition the computational domasp. uniformly and give an initial partition of the physical
domaing2,; compute initial grid values by a cell average of the conxlmﬂhmeAlJr g+l based
on the initial data@(x, y,0). In a loop over the time steps, update grid and solutlon aatliate
the PDE.

Step 2a Move gridr; ; tor; ; by solving the discretized grid PDEs using one Gaul3-Sefielltion.

Step 2b Compute the solutio, , 1 j+1 0N the new physical grid based on the conservative interpo-
27 2
lation.
Repeastep 2aandstep 2bfor a fixed number of iterations.

Step 3 Evaluate the Euler equations by the finite volume method egtiur; ; to obtain the solutions

ontl | attime-levelt1,
z+2,+2

Step 4 Repeasteps 2a, 2fand3 until the final point of timel” has been reached.

The double integral in (7.3.17) to compute the time-depehg@rameter(t) is approximated by
applying the trapezoid rule at each time step. The test eleamhich is a two-dimensional Riemann
problem of the Euler equations, i.e. configuration 4 in [2@]s the following initial data:

1.1,0.0,0.0,1.1) if 2> 0.5, y > 0.5,
0.5065,0.8939, 0.0,0.35) if 2 < 0.5, y > 0.5,
1.1,0.8939,0.8939,1.1)  if z < 0.5, y < 0.5,
0.5065,0.0,0.8939,0.35) if 2 > 0.5, y < 0.5.

(
(P,Uﬂf,p)t:o = E (7331)
(

They correspond to a left forward shock, right backward Ehapper backward shock and finally a
lower forward shock. The spatial domainjis1] x [0, 1] and the end point of time is= 0.25. Figure
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7.27 shows results for the AL-monitor (7.3.16) with the iogkzed’ value of the parameter = 2 and
also for the ‘full-proof’ monitor (7.3.17).

Figure 7.26: A typical non-uniform finite volume cell AH%’H%.

Application 5: ideal 2D magneto-hydrodynamics

For the ideal MHD case we simply sgt, = 0 (no magnetic diffusion term) in (7.3.20) and (7.3.21). An
interesting test example suitable for adaptive movingggsdhe so-called Kelvin-Helmholtz instability
(see [21]). This phenomenon occurs at the interface of adlusaconfiguration in 2D compressible
MHD. The density at = 4 andt = 6 using the adaptive moving grid method is displayed in Figure
7.28. Clearly, the grid is nicely concentrated near thepspegts of the rotating magnetic structures.

7.3.3 Three-dimensional adaptive moving grids

In this final section an extension of the 2D method to threeesplimension is discussed.

Extension of Winslow’s approach to the unit cube

Although theoretically no results are available that magrgatee the non-singularity of the mapping,
we still would like to extend Winslow's method from the preus sections to 3D, and in particular
to the unit cube. Straightforward calculations for the mmiziation of the 3D ‘grid-energy’ functional
yields the steady-state of the PDE-system:

ox

0

22 = V- (@Vy)
or

0z

-V T 3
or \ (wvz)v (x,y,z) 6[071] :
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Figure 7.27: Numerical results (grid and solutions represented by contour lines) for the 2D Euler equations
(7.3.29).

Here ther denotes an artificial time variable. Asin 2D, itis possildeléfine the monitor function with
the adaptively computed constanas follows:w = a(t) + || Vull2, a(t) = [ [ [ [[Vull2 d€dndC.

Application to a blow-up problem

The basic blow-up PDE model is in fact the reaction-diffasRDE

15}
a—?:Au—i—up.

We first transform it vigx, y, z,t) — (£,7n,(,0); with t = 0 to:
1
ut+ = ug(—xo(Ynzc — Yezn) — Yo(Tczy — Tpze) — 20(Tnyc — TcYn)) + un(—xo(Ycze — yezc)

—yo(Teze — wcze) — 20(Tcye — Teyc)) + uc(—wo(Yezn — Ynze) — Yo wnze — Tezn) — 20(Teyn — TnYe))
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Figure 7.28: Numerical results (grid and solutions) for the 2D ideal MHD equations (7.28).

1 (Ynze = Yezn)® + (xezy — Ty2e)? + (Tnye — 2cyy)?
-7 7 e
¢
n ((ynZC — Yezn) (Yeze — Yere) + (Xezy — Tnzo)(@eze — weze) + (Tnye — Teyn)(@eye — Teye) >
n
J ¢
n ((ynZC —y¢e2n)Yezn — Ynze) + (vezn — Tpze) (Thze — me2y) + (Tnyc — eyn) (Teyy — ﬂfnyf)u4>
J ¢
n ((yczs — Yezd) (Yn2¢ — Yezn) + (zez¢ — weze) Xz — Tnz) + (Teye — Teyo) (@nye — Teyn) >
J ),
T,

with Jacobian? = z¢(xeyy — Tyye) — 2p(xeyec — xeye) + ze(xnye — x¢yy). Note that we have not
written out all terms, but merely have indicated how theattrre of the different terms appears. Appli-
cations of this kind of PDE models can be found in combustiadats, chemical reaction dynamics,
population dynamics (motion of colonies of micro-orgaré3rand plasma physics (wave motion in
fluids and electromagnetic fields). Let us first examine th&eQile. the PDE model without diffusion
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term:
u=uP, p>1
{ 2(0) = (7.3.32)
This ODE the exact solutioni(t) = W, T = m and, clearly, blows up @t=T
(see also Figure 7.29. ’
u(t) A :
I
I
I
I
I
I
I
I
Ug :
L >
t=0 t=T t

solution blows up at time T

Figure 7.29: The exact solution of blow-up model (7.3.32).

It was shown by Kaplan 1963 [20] that for the PDE

ot (7.3.33)

Ou =Au+u?, p>1
ulo = 0,u(z,0) = up(x)

the following result holds: ifug smooth and large enough, then the solutiors regular for every
0<t<T,but

li S )lge = .

Lim [fu(,t)]|ge = +o00

In other words, also blow up of the solution may occur, depanadn the initial condition and on the
value ofp, despite of the fact that the Laplacian diffuses the satutidhis may be illustrated by the
slightly modified PDE example
2
% = % —u+uP, x e (0,7), t >0,
u(z,0) = up(z) >0, x € (0,7),
u(0,t) = u(m,t) =0, t > 0.

It can easily be shown by straightforward calculations:that

if f= foﬁ u(x,t)sin(x) dz, thenf = foﬂ(% - uP)sin(z) dz — f. Using Holder’s inequality we
obtain f > —2f + Zﬁl. Now, if f(0) > 271, then f(¢) — oo in finite time and applying the
inequality of Cauchy-Schwartzf < HUHL_Z2(O,7T) HSiH(UC)Hc2(0,_7r)- .T_his means that — oo implies

|lul| z2(0.ry — o0. Thus the exact solution leaves£?(0, ) in finite time (‘blow-up’). When we
naively would apply an explicit Euler time-integration sahe with fixed time stepat, for example,
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u = uP . .
to the modek we arrive at the recursion
u

(0) =1
" ="+ At (u)P.

However, the numerical solution will exigbr all time pointst™ = nAt (no blow-up!), whereas the
exact solution exists only for finite time (see Figure 7.30on-uniform time steps are, therefore,
crucial to capture numerically the blow-up behaviour. listtespect, Abia et al [1], has obtained
theoretical results in one space dimension concerningsbi®. Their result reads:

u(t) A

1

1

1

' num.

: solution
exact I ,//
solution/ &~
—— -7

Ug ———————" :
I >
=0 =T t

Figure 7.30: Exact vs non-adaptive numerical solution of (7.3.32).

using explicit Euler with central finite differences on afonin spatial grid

1
u;,”r —uy _ ul g — 2uf +uj (u")?
Atn (Ax)? J
with At" = Huf'ﬁ,,l and constani\@. Note that this can be interpreted as a Sundiirae transfor-
mationt(6) = Iu\% Then it follows that for sufficiently smal\z (with an additional time-step

restriction onA¢™ due to possible numerical instabilities), the numericéltson blows up afl’a, and
limag—oTag =T

Alternatively, the solution behaviour near blow-up carodie described in terms of scaling in-
variance and self-similarity. In that case, consider theEGD= u?2, i.e. p = 2, then using a fictive
computational time variablé gives rise to a new ODE system with

du _
a0 "
a1
do  u’

This ODE system isnvariant under the scaling — M, u — A~'u and the numerical solution™
uniformly approximates the truself-similar solutionu(t) = —% of the original ODE forAf — 0.
This result is due to Budd, Piggott & Leimkuhler [8]. We wolikle to exploit these results in the
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adaptive moving grid procedure, which consists of the foilhg ingredients:

e decouple the blow-up and grid PDEs

¢ for the grid PDEs: use the system of heat equations withastifime

e apply central finite differences on a non-uniform grid foe thaplacian operatoi

¢ ‘freeze’ the non-linear terms in the PDESs at each time step

¢ use implicit Euler for the diffusion part in the P& and explicit Euler for the reaction term
e apply BiCGstab with ILU-preconditioning for the underlgitinear systems

e use a variablé\t using the mentioned Sundman-transformation

As a testexample, we consider the initial condition
u(z,y,z,0) = 10sin(7x) sin(my) sin(7z),

with p = 3 in the reaction term and use, respectively,13, 213, & 413 spatial grid. We compare a
Sundman non-uniform time step scheme with a uniform time stheme. Figure 7.31 shows different
runs and depicts the maximum valuewfs a function of. The numerical blow-up time with the
adaptive moving grid with non-uniform Sundman time stepsegponds with results obtained in [25].
It is obvious that still much work has to be done in three sghgeensions, especially the theoretical
part deserves much attention.
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blowup2, 41°3, nonitor 1

blowup2, 41°3, nonitor 1

1e+66 1e+86

dt=6.885, sundnan —— dt=6.605, sundnan ——

dt=8.8008075, geen sundnan —<— dt=0,8880875, geen sundnan —+—

dt=0.,675, sundnan, 21°3 —¥— dt=0.875, sundnan, 21°3 —¥—

dt=0.675, sundnan, 11°3 —=— dt=p.875, sundnan, 11°3 —5—
160000 100008
10080 10008
10008 1608
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Figure 7.31: 3D adaptive moving grid results for model (7.3.33). The maximum value of « as a function of time t;
blow-up time in our experiments ~ T from Liang & Lin, 2005 [25]: = 0.007249.
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