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Classification of Second-Order PDEs

Classification of PDEs is an important concept because the general theory and metheds
of solution usually apply only to a given class of equations. Let us first discuss the

classification of PDEs involving two independent variables.

1 Classification with two independent variables

Consider the following geueral second order linear PDE in two independent variables:

8% du u du du
F-f. m+€w+Da+Ea—y+Fu+G-0, (1)

where A, B, C, D, E, F and G are functions of the independent variables x and 3. The

A

equation (1) may be written in the forin
Auze + Bury + Cuyy + f{z, y,uz,uy,u) = 0, (2)

where )
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Assume that A, B and € are continuous functions of r and y possessing coutinuous partial

derivatives of ns high order as necessary.

The classification of PDE is motivated by the classification of second order algebraic

equations in two-varianbles
ar® + bry+ ey’ +dr+ey+ f=0. (3)

We know that the nature of the curves will be decided by the principal part az? +bzy+cy?
t.e., the term coutnining highest degree. Depending on the sigu of the discriminant b2 - dae,

we classify the curve as follows:

If 4% - dac > 0 then the curve traces hyperbola.

If ¥* - dac =0 then the curve traces parabola.

If b% — dac < 0 then the curve traces ellipse.

With suitable transfornation, we can transform (3) iuto the following normal form

P

TR 1 (hyperbola).
2=y (parabola).
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Linear PDE with constant coefficients. Let us first cousider the following general
linear second order PDE in two independent varinlles z and y with constant coefficients:

Auge + Busy + Cuyy + Duz + Euy+ Fu+ G = 0, {4)

where the coefficients A, B,C, D, E, F and G are constants. The nature of the equation

(4) is deterinined by the principal part containing highest partial derivatives i.e.,
Lu = Augz + Bugy + Cuyy,. (5)

For classification, we attach a sywbol to (5) as Plx,y) = Az* + Bzy + Cy* (ns if we have
replaced x by 7% aud y by s‘%) Now depending on the sign of the discriminaut (B2 - 44C),

the classification of (4} is doue as follows:

B? - 4AC > 0 = Eq. (4) is hyperbolic {6)
B? - 4AC =0 = Eq. (4) is parabolic (7)
B® - 4AC <0 => Eq. (4) is clliptic (8)

Linear PDE with varlable coefficients. The above classificntion of (4) is still valid if
the cocfficients A, B, C, D, E and F depend on x, y. Iu this case, the conditions (6), {7)
and {8) should be satisfied at each point (z, y) in the region where we want to describe its

nature e.g., for elliptic we need to verify
B*(r,y) - 4A(z,y)Clz,y) < 0

for ench (x, y) in the regiou of interest. Thus, we classify linear PDE with variable coefli-

cients ns follows:

B(x,y) ~ 4A(z, 1)C(z, y) > 0at (i, y) => Eq. (4) is hyperbolic at (z, y) (9)
Bz, y) — 4A(r,5)C(z.y) = 0 at (£,y) = Eq. (4) is parabolic at (=, y) (10)
B2(z,y) - 4A(x, y)C(z,y) < 0at (x,y) =+ Eq. (4) is elliptic at (x, y) (1)

Note: Eq. {d4) is hyperbolic, parabolic, or elliptic depends ouly ou the coeflicients of the
second derivatives, It has nothing to do with the first-derivative tenns, the term in u, or
the nonhomogencous tern.

ExampPLE 1.

1. tr; + ttyy = O (Laplace equation). Here, A = 1, B = 0, C = 1 and B? - 44C
-4 < 0. Therefore, it is an elliptic type.



2. uy = uzz (Hent equation). Here, A = ~1, B =0,C = 0. B? - 4AC = 0. Thus, it is
of parabulic type.

3. uy —uzr = 0 (Wave equation). Tt this case, 4 1,B=0.C =1aud B® - 4AC
4 > 0. Hence, it is of hyperbolic type.

4. urr + Uy, = 0, z # 0 (Tricomi equation). B? - 4AC = —dz. Given PDE is
hyperbolic for x < 0 and elliptic for z > 0. This exmunple shiows that equations with
variable coeflicients can change form in the different regions of the domnain.

2 Classification with more than two variables

Cousider the second-order PDE in general formn:

Zi u ib- Oy eutd=0 (12)

4 dr;0r; dr; L@, o -
=) g=i i=1

where the coeflicients a,;,b,, ¢ and d are functious of ¢ = (), 24, -- ) alose and v =

u(;clx:’c?i e |In)‘
Its principal part is

n £ 02

L= Qj——
IJ +
e dur, 0z,

(13)

It is enongh to asswne that A = |ay;) is synunetric if not, let b, = %(a._, +a,,) and rewrite

L= Z Z ) 9z,0, 9.:,3.::3 (14)

p=] =

) a2 N . . . i .
Note that mx— amf-‘- As in two-space dimension, let us attach n quadratic forin P
with (14) (i.e., replacing F* Ju - by @),

n n

P(I],.’.E'_!,"‘,IH)EZZ{],JJ',J;‘., (15}

=] j=1

Since A is a real valued synmetric {a,; = a,,} matrix, it is dingonalizable with real
eigenvalues Ay, Az, ..., Ay (counted with their multiplicities). In other words, there exists
a corresponding set of orthouorinal sct of n eigenvectors, say a;,02,--- ,0, with R



[@r o0, L o5] as coluinn vectors such that

RTAR ' D (16)

We now classify (12) dependiug on sign of eigenvalues of A:

(0) LA >0 Vi or A, <0 % then (12) is elliptic type.
() If one or more of the A, = 0 then (12} is parabolic type.

(¢} Ifone of the A, <0 or A, > 0, and al] the remaining hive

opposite sigu then (12) is said to be of hyperbolic type.

EXAMPLE 2.

1. Vig= Uret gy + =2 = 0. Inthis case, A, = 1 > 0 for all i = 1,2, 3. Tt is an elliptic
PDE since all eigenvalues are of oue sign.

2. It is an easy excrcise to check that u, -~ V24 = 0 is of parabaolic type.
3. The equation uy — V= 0 is of hyperbolic type.
EXAMPLE 3. Classify upyr o+ 200 + era)ug,., = 0.
To sytunetrize, write it ns
Ugzy + (L cra)ur,g, + (1 + cxajuy,; = 0

ic., DIAE)_, - cd;, =0, where

Lt o 0 O,
A ] 0 1+ crg & 7
0 1+ cz 0 Oz,

Bigenvalues are Ay = 1, Aa = 1 + ez, Ay = =(1 + crs) and norualized eigenvectors

1 0 0
o) 01 o2=|1/V2 | o3 1/v2
0 1/V2 1/V2
So -
1 0 0
R=]0 V2 1v2
0 1/V2 -1//2
Note that B~ RT = R\,
1 ] 0
RTAR 0 1+cry 0 D
U 0 (1 + (_‘.172)
Equation is parabolic if zy = 1 (c # 0), hyperbolic if z; > tandzy < - L Fore=o,

Ay = Ao = land Ay 1, it is hyperbolic type.

Y



Linear First-Order PDEs

The most general first-order linear PDE has the form
a(z,y)zz + b{z, y)zy + olz,y)z = d{z, p), (1)
where a, b, ¢, and d are given functions of x and y. These functions are assumed to be
continuously differentiable. Rewriting {1) as
a(x, y)zz + bz, y)sy = ~c(z,y)z + d(z,y), (2)
we observe that the left hand side of (2), i.e.,
ez, y)zz + bz, )z, = V- (a,b)

is (essentially) a directional derivative of z{z, y) in the direction of the vector (a,b}, wlere
(a,b) is defined mid nouzero. When a and b are constants, the vector (a,b) hnd a fixed
direction and magnitude, but now the vector can change as its base point (z,y) varies.
Thus, (a, b} is a vector ficld on the plane.

The equations

dz dy .
E G(I, y)a dt b(I, y)l (“l)

determine a family of curves 7 = x{t), ¥ = y(t) whose tangent vector (%, ‘;‘#) coincides
with the direction of the vector (¢,b). Therefore, the derivative of z(z,y) along these

curves becoimes

dz d Ozdr  Ozdy
PR TR G OOV I oedl T oy dt

= zx(x(t), y{tha(z(t), y(t)) + z,(z(t), y(€))b{z(2), y(t))
e(xz(t), y(£))z(z(e), y(t)) + diz(t), y(t))
—c(#)z(t) + d(1),

where we have used the chain rule and (1). Thus, along these curves, =(t) = z(z(t}), y(t))
satisfies the ODE

(&) + e(t)=(2) = d(t). {4)

Let u(t) = exp [fot r:(-r)dr] be an integrating factor for (4). Then, the solution is given by
1 3

() = == | [ utridcrsar + z00). (%)



The appronch described nbove to solve (1) by using the solutions of (3)-{4) is called the
method of characteristics. It is based on the geometric interpretation of the partial
differentinl equation (1).

NOTE: (i) The ODEs (3) is known as the characteristics equation for the PDE (1). The
solution curves of the characteristic equation are the characteristics curves for (1).

(i7) Observe that u(t) and d(i) depend only on the values of c{z, y) and d{z, y) along
the characteristics curve z = z{t), y = y(t). Thus, equation (5) shows that the values z(¢)
of the solution z along the entire chiaracteristics curve are completely deternined, once
the value 2(0) = z(x(0),y(0)) is prescribed.

(iif) Assuming certain sinootlmess conditions on the functious a, b, ¢, and d, the exis-
tence and uniqueness theory for ODEs guarantees a unique solutiou curve (z(t), y(t), z(¢)}
of (3)-{4) (i.e., a characteristic curve) passes through a given point (o, yo. 20) in (z, ¥, z)-

space.

1 The method of characteristics for solving linear first-order IVP

-

In practice we are not interested in determining a general solution of the partial differential
equation (1) but rather a specific solution z = z{x,y) that passes through or contnins a
given curve C. This probletn is known as the initial value problem for (1). The method

of clinracteristics for solving the initinl value problem for (1) proceeds as follows.

Let the initial curve C be given parunetrically as:
x = x(s), y=yls), == z(s) (6)

for n given range of values of the parmneter s. The curve may be of finite or infinite extent

and is required to hiave a continuous tmgent vector at each point,

Every value of s fixes n point on € through which a unique characteristic curve passes
(see, Fig. 2.1). The family of characteristic curves deterinined by the points of C may be

paraineterized as

x=x(s,t), y=yat), z=z(st)

witli ¢ = @ corresponding to the initinl curve C. That is, we have
z(s,0) = z(s), u(s,0) = p(s), (5,0} = z(s).

In other words, we have the following:



Figure 2.1: Chlaracteristic curves and counstruction of the integral surface

The functious x(s,f) and y(s, t) are the solutions of the characteristics

systemn (for each fixed s)

L(s,0) = ale(s, 0,405, 1), T9ls,1) = zls, 8905, 1) )

with given initial values x(s,0) aud y(s,0).

Suppose that
s(a(s,0). y(5.0)) = gls). (8)

where g(s) is n given function. We obtain z{z(s,t), y(s,t)) as follows: Let

2(s,t) = z(x(s, £), p(s, 1)), c(s,8) = clz(s, 1), y(s,8)), ds,t) = d(z(s, ), y(s,t})) (9)

aud .
H(s, t) = exp [/ (s, t)dt] . (10}
0
Analogous to fornula (5}, for ench fixed s, we obtain
l 14 3
s, t) = [ o8, (s, t)dt + g(s) | . il
(5,) “(S,t)[u;( Y. )t +(s) (

z(s,t) is the value of z at the poiut (z(s,t), y(s,t)). Thus, as s and ¢ vary, the point

(z.y, 2), in Ty=-space, given by

| z=w(s.t), y=ulst), s=z(s1), | (12)




traces out the surface of the graph of the solution z of the PDE (1) which meets the
initial curve (8). The equations (12) constitute the parametric forin of the solution of (1)
satisfyiug the initial condition (8) |i.e., a surface in (r, y, z)-space that contains the initial

curve

NOTE: If the Jacobian J(s,t) = z,y ~ 7y, # 0, then the equations = z(s, 1) and
y = y{s,t) cau be inverted to give s and ¢ as (sinooth) functions of = and y i.e., s = s(z, y)
and t = t(x, y). The resulting function = = 3{x, y) = 2(s{x, ¥), tlc, y)) satisfies the PDE
{1} in a ucighborhood of the curve C (in view of (4) and the initial condition {(G)) and is
the unique solution of the IVP.

ExAnMPLE 1. Determne the solution the follounng [VP:

dz o=
— 4= =0, z(x,0 ),

ay * or (£,0) = f(x)

where f(z) is a gwen function und ¢ s ¢ constanl.

Solution. A step by step procedure for the finding solution is given below.

Step 1.(Finding characteristic enrves)

To apply the method of chiaracteristics, parameterize the initial curve C as follows: as

follows:

z=3 y=0, z= f(s). (13)
The frnily of chiaracteristics curves £((s, ¢}, ¥(9,1)) nre deterinined by solving the ODEs
d d
EI(H, t)= ¢, o s, 8) =1
The solution of the system is
z(s,t) = ct +er(s) and y(st) =t + cas)

Step 2. (Applyiug IC)
Using the initial conditions
x(s,0) = s, y(s,0) =0

we find that
cils) = s, eafa) =10,

and hence

g,y = ct+ 3 e yls t) =1,



Step 3. (Writing the parametric form of the solution)
Comparing with (1), we have e(z, y) = 0 and d(r, y) = 0. Therefore, using (10) and (11),
we find that

dis,t) =0, plst)=1.
Since z(z(s,0),y(5,0)) = 2(5,0) = g(s) = f(s), we obtain 2(s,1} = f(s). Thus, the
parametric fonn of the solution of the problem is given by

z(s,t) =ct+s, ylst)=1t, z(st) = fls).

Step 4. (Expressiug z(s,t) in terms of z(z,y)) Expressing s and ¢ as s = s{z,y) and
t = t(x,y), we have

s=x-cy, L=y

We now write the solution in the explicit forin as

z(z,y) = =(slz, y), y(z,¥)) = fle - cy).

Clearly, if f(x) is differentinble, the solution z{z,y) = f(x - cy) satisfies given PDE as
well as the initial condition.

NOTE: Example 1 characterizes unidirectional wave motion with velacity ¢. If we con-
sider the initial function 2(z,0) = f(z) to represent a waveform, the solution z(z,y) =
flz — cy) shows that a point z for which z ~ cy = constant, will always oceupy the sane
position on the wave form. If ¢ > 0, the entire initial wave form f{x) woves to the right
without changiug its shape with speed ¢ (if ¢ < 0, the direction of motian is reversed).

EXAMPLE 2. Find the purametric form of the solution of the problem
Y2+ xzy =0
with the condilion given by
2(9,5%) =353, (s>0).
Solution. To find the solution, let’s proceed as follows.

Step 1. (Finding characteristic curves)

The family of characteristics curves (z(s, t), y{s,¢)) are deterinined by solving

d . d | )
‘Hxlsgt) == _y(5| t)v Eyl-slt) 2 .B(S,f)
with initial conditious

z(9,0) = 5, yls,0) = 5"



The general solution of the system is
wfs, ) = ci{s)cos(E) + rals)sinf(t) and y(s,t) = cy(s)sin(t) - ca(s}cos(t).

Step 2. (Applying IC)

Usiug ICs, we find that

(s8] = 8, cafs) s,

and lience
z{s,t) = scos(t) — s2sin(t) and y(s, b} = ssin(t) + s° cos(t).

Step 3. {(Writing the parauetric forin of the solution)

Comparing with (1), we uote that ¢(z, y) = 0 and d{z, y) = 0. Therefore, using (10)
and (11), it follows that
dls,t) =0, pu(s,t)=1

In view of the given condition curve and = = z{s, 1), we obtain
t(w(s,0), y(,0)) = (s, 8%) = g(s) = &°, 2(s.t) = &°.
Thus, the parauuetric form of the solution of the problem is giveu by

£ls,t) = scos{t) — s2sin(t), (s, t) = ssin(t) + s° cos(t), z(s,t) = s°.

Step 4. (Expressing z(s,t) in tenns of z(x, y})

Writing 8 aud ¢ ns a function of « and g, it is an casy exercise to show that

z(z,y) % [ I+ /14 4(:::2+y'-’)]3 2.

o



@ Canonical Form

By a suitable change of the independent vnrinbles we shall show that any equation of the
form

where A, B, C, D, F, F and & nre functions of the variables z and g, can be reduced to a
canonical form or normal form. The transformed equation assumes a simple form so that
the subsequent analysis of solving the equation will be become ensy.

Consider the transformation of the indpendent variables from (z, y) to (£, 7) given by

§=&xy), n=n(=zy). (2)
Here, the functions £ and n are continuously differentiable and the Jacobian
&, ) & &
J=s o = - 0 3
a(z, y) _— (€ny Eyn:) # ( )

in the dornain where (1) holds.

Using chain rule, we notice that

ur = ugls + ugn:

uy = ugfy +ugmy
Uy, = usfﬁ + 2ugn by + u,,,,nf + tglpr + UyNes
ury = ugelaly + ugnlbatly + §yne) + ungtizty + uglay + g1y
ny = ugey + 2ugbymy + Uty + ey + Uytlyy

Substituting these expression into (1), we obtain

A(frrfy)“& + B(f::fy;”lx- ?ly)ufq +C'('h:r7hr)“vm = F(f, N u(&a’]‘): U{(Er 77):":1('5: ), (‘”

where
A6z &) = A&+ BELy +CEl
B(Exuéy? Nz, ny) = 2ALn:+ B(E:"h} + Ey'?r) + chyﬂy
Cluzmy) = A2+ Baeny + C'n;".

An easy calculation shows that

B? ~ 4AC = (£zny - &n:)"(B? - 44C). (5)

i



The equation (5) shows that the transformation of the independent varinbles does not
modify the type of PDE.

We shall determine £ and 7 so that (4) takes the sitnplest possible form. We now
consider the following cases:
Case I: B> —4AC >0  (Hyperbolic type)
Case II: B2 —4AC =0 (Parabolic type)
Case III: B2 —4AC <0 (Elliptic type)
Case I: Note that B* = 4AC > 0 implies the cquation Aa® + Ba + C = 0 has two real

and distinct roots, say Ay and Az. Now, choose £ and 7 such that
a . o dn n

Then the cocfficients of uge and uy, will be zero because

(6)

A= Ag2 + Btk + CEL = (AN} + BA + O)E2 = 0,
C= An;‘: + Bremy + Cr;ﬁ = (AXS + BXo + C')qg =0,
Thus, (5) reduces to
B’ = (B‘l = AC}(‘E:’]}; - Eu"h:)." >0

as B? - 4AC > 0. Note that (6) is n first-order linear PDE in £ and 7 whose characteristics

curves are satisfy the first-order ODEs

dy
4 )
dt +A;(.’I.', y) 0l t lr"' (7)
Let, the family of curves determined by the solution of (7) for t = 1 and i = 2 be
Nz,y) = e and fofz,y) = e (8)

respectively. These family of curves are called characteristics curves of PDE (5). With
this choice, divide (4) throughout by B (as B > 0} and use (7)-(8) to obtain

a'.'
afaun = é(E! i, u, ug, uu]r (Q)

which is the canonical form of hyperbolic equation.
ExXAMPLE 1. Reduce the equation up, = xu,, to us canonical form.
Solution. Comparing with (1) we find that A =1, B=0, C = —z*.

The roots of the equations Aa® 4 Ba + C = 0 i.e., a? + 2% = 0 are given by A, - +x.

The differential equations for the fanily of characteristics curves are

12
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ur = ugly + UpMz,

H

u&'&i + 2“5’]5:’]: + u'mq.g + uglzg + UnpTzz

ugfa:z - 2u5,,:z:2 + u,,,,:r:2 + g — uy,

]

ufEEE + 2u£u£y'ly + u:;rﬂ']ﬁ + UEEyy -+ Un Ty,
Uge + 2!15,, + Uy

Substituting these expression in the equation 1wy, = Tuyy yields

4:::2115,, = (ug ~ uy)
1
or  4(€ - nug, = m(u; —uy)

or Ugy = )(“5 — uy)

1
4€~n
which is the required canonical form.

CASE II: B2 - 4AC = 0 == the equation Aa? + Ba + C = Q has two equal roots, say

A1 = Az = A Let fi(z,y) = ¢ be the solution of ‘a’g + Az, ¥) = 0. Take £ = f(zx, y) and
1) to be the any function of 2 and y which is independent of £

As before, fi({,,fl,) = 0 and hence from equation (5), we obtain B = 0. Note that
Cnz mly) # 0, otherwise 7 would be a function of €. Dividing (4) by €, the canonical form
of (2) is

Uy = (&, 0, u, ug, uy). (10)
which is the canonical form of parabolic equation.
EXAMPLE 2. Reduce the equation ug, + 2uzy + uyy, = 0 to canonicul form.

Solution. In this case, A = 1, B = 2, C = 1. The equation a2 +2a +1 = 0 has equal
roots A = —1. The solution ofgg ~1=0isz-y=c Take £ = z -y Cloose n=x+y.
proceed as in Example 1 to obtain uy, = 0 which is the canonical form of the given PDE,

CASE III: When B? - 44AC < 0, tle roots of 4o® + Ba +C = 0 are complex. Following
the procedure as in CASE I, we find that

ugy = $1(&, 1, ug, uy). (11)
The variables £, 5 nre infact complex conjugates. To get a real canonical form use the
transformation A !
o= 5E+m, B=a(E-n)
to obtain .
ugy = 7(taa + ugp), (12)
which follows from the following calculation:
1 1
ug Ugog +ugfy = Stat Eu,g
1 1
Ugy = E(uunan + uaﬁﬂn) + E-t:(uﬁna" + u.!1=]q)

;(“no + ugg).
The desired canonical form is
Yaa + tpg = Y@, B,u(a, B), ua(a, B), ugle, B)). (13)
EXAMPLE 3. Reduce the equation ugg + z?uy, = 0 to cunonicul form.

Solution. In this case, A = 1, B = 0, C = 2% The roots are A, ix, Ag iz.
Take € = iy + 322, 9 = ~iy + 3z%. Then a = 32 B = Yaaman e caaene s

13
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Method of Separation of Variables

Separation of variables is one of the oldest technique for solving initial-boundary value
problems (IBVP) and applies to problems, where

» PDE is linear and homogeneous (not necessarily constant coefficients) and

o BC are linear and homnogeneous.

Basic Idea: To seek a solution of the form
u(z, t) = X{z)T(t),

where X {z) is some function of z and T'(¢) in some function of t. The solutions are sitnple
because miy temperature u(z,£) of this fornn will retain its basic "shape” for different
values of time ¢. The separation of variables reduced the problemn of solving the PDE
to solving the two ODEs: One second order ODE involving the independent variable =
and one first order ODE involving t. These ODEs are then solved using giveu initinl and
boundary conditions.

To illustrate this method, let us apply to a specific problem. Consider the following
[BVP:

PDE: u = aury;, 0<z<L, 0<t< o0, (1)
BC: #0,t) =0 w(Ll,t} =0, 0<t<oo, (2
IC: u(z,®) = f(z), 0<z< L. {3)

Step 1:(Reducing to the ODEs) Assume that equation (1) has solutions of the forin

| ulz,) = X(2)T(), |

where X is a funtction of z alone aud T is a function of ¢ alone. Note that
= X(z)T'(t) and uge = X'(2)T(0).
Now, substituting these expression into u; = a?uz; and separating variables, we obtain

X(z)T'(t) = 2 X"(z)T(2)

() _ X'(=z)
a?T(t) X(z)°

Is



Since a function of ¢t can equal a function of = only when both functions are coustant.
Thus,

T(t) X"(z)
a?T(t)  X(z)

for soine constant ¢. This leads to the following two QDEs:
T'(t) - a*cT(t) = 0, (4)
X"x) - eX(z) = 0. (5)

Thus, the problem of solving the PDE (1) is now reduced to solving the two ODEs.
Step 2:{Applying BCs)
Since the product solutions u(zx, t) = X{(z)T(t) are to satisfy the BC (2), we have

u(0,1) = X(O)T(t) =0 and X(L)T(t) =0, t>0.

Thus, either T{t) = 0 for all ¢ > 0, which inplies that u(z,t) = 0, or X(0) = X(L) = 0.
Ignoriug the trivial solution u(z,t) = 0, we combine the boundary conditions X {0} =
X{(L) = 0 with the differential equation for X in (5) to obtain the BVP:

X'z) - eX(z) =0, X(0)=X(L)=0. (6)

There are three eases: ¢ < 0, ¢ > 0, ¢ = 0 which will be discussed below. It is convenient
to set ¢ A% when ¢ < 0 and ¢ = A? when ¢ > 0, for some constant A > 0.

Cuse I. (c = A* > O for some A > 0). In this case, a general solution to the differential
equation {5) is

X(-.r) Cle"‘ + C‘gc )‘:,

where € and Ca are arbitrary constants. To detennine C) and Cp, we use the BC
X({0)=0, X(£L)=01t0have

X(0)=Cy+Ca =0, {7)
X(L) = Cie* + Coe A = 0. (8)
From the first equation, it follows that Cs C;. The secoud equation leads to

Cl(c.\L e J\L) - 0,
= Cl. (BZ\L l) 0’
= Cl 0.
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2AL

sitce (e 1) > 0 as A > 0. Therefore, we liave Cy = 0 and hence C; = 0. Cousequently

X(x) = 0 and this implies u(x,t} = 0 i.e., there is no noutrivial solution to (5) for the
case ¢ > 0.

Cuse 2. (when ¢=0)
The general solution solution to (5) is given by

X(x) = (3 + Cyz.

Applying BC yields C3 = C) = 0 and hence X(z) = 0. Again, u(z,t) = X(z)T(t) = 0.
Thus, there is no nontrivial solution to (5) for ¢ = 0.

Cuse 3. (When ¢ A? < 0 for some A > 0)

The general solution to () is
X(z) = Cscos(Az) + Cy sin{Az).
This the the BC X(0) = 0, X{(L) = 0 gives the system

Cs 0,
Cscos(AL) + Cgsin(AL) = 0.

As G5 = 0, the system reduces to solving Cgsin(AL) = 0. Hence, cither sin(AL) = 0 or
Cg = 0. Now
sin(AL) =0 == AL=nm n=0=+1,2£2,....

Therefore, (5) has n nontrivial solution (Cg # 0) wlen
AM.=nam or A= %, n=1,23,...

Here, we exclude n = 0, since it makes ¢ = 0. Therefore, the nontrivial solutions (eigen-

functions) X, corresponding to the eigenvalue ¢ = - A? are given by

nmw

Xn(z) = ansin(~75), 9)

wlere a,’s are arbitrary constants.
Step 3:(Applyiug IC)

Let us consider solving equation (4). The general solution to (4) with ¢ = ~A? = (5%)?

Ta(t) = be™2"EPL,

3



Combing this with (9), the product solution u(c, £) = X(2)T{t) becomnes

un(2,8) = Xn(2)Talt) = an sin(nz'r)b,,c -aP(BE P

modpnead, |, JNEE
= cue= (7F) tsm(T), n=123...,
where ¢, is an arbitrary constant,

Since the problem (9) is linear and howmogeneous, an application of superposition

principle gives

oo oo
u(r, i) = Z up(z, t) = Z PPRLRG i sin{%), (10)
n=l n=i

which will be a solution to (1)-(3}, provided the infinite series hins the proper convergence
behavior.
Since the solution (10} is to satisfy IC (3), we wust have

o

u(x,0) = ch sin ("—?) =f(z), 0<z< L.

na)
Thus, if f{z) hns an expansion of the forn
— nnx
f(;r):ng:lcnsm(—L—-) ) (11}

which is called a Fourier sine series (FSS) with ¢,’s nre given by the forinula

L nnc
= %j{; f(z) sin(T)d.c. (12)

Then the infinite series {10) with the coefficients ¢, given by (12) is a solution to the
problem (1)-(3).
EXAMPLE 1. Find the solution to the Jollowing IBVP:

u By, 0<x<m, 0<t <00, (13)
u{0, £) u(m,t) =0, 0<t<oo, {14)
u(z,0) 3sinlr — 6sindr, 0<r < (15)

Solution. Comparing (13) with (1), we notice that a® = 3 and L = #. Usiug formula
(10}, we write a solution u{z,t) as

o
u(z, t) - Zc,,e 3“?‘sill[nz).
ne]

To determine ¢,'s, we use IC (15) to have

i 9
u(x,0) = 3sin2z - Gsindz = Zcﬂsin(nm).

n=}

Comparing the coefficients of like tenns, we obtain
ca=3 aud c3 6,
and the remaining ¢,’s are zero. Hence, the solution to the problem (13)-(15) is

u(z, t) = eoe 3'2-'3'5511(2::)+csc'3(5)2'siu(5x)

3e ' sin(2r) - 6e ™ sin(5z).
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Ve shall study some applications of the Fourier transfonin in solving the
e
heat flow problems where the spatial doinain is infinite or semi-infinite.

1 Heat flow problem in an infinite rod

Consider the heat flow in an infinite rod where the initinl temperature is u(z,0) = f(z).
We shall prove that if the function f(z) is continuwous and cither absolutely integrable i.e.,

j:lf(:c)d:c<oo

or bounded (i.e.,, |f{z) < A ¥z}, then the following IVP problem has a solution u(z,t)
which is continuous throughout the half-plane ¢t > 0, —0co < z < c0.

PDE:  w(z,t) = auslx,t), -00< I <00, L>0, (1)
IC:  u(z,0) = f(z), <z <00 (2)
with u(z,t), uz(z,2) 2 0asz — +oo, t> 0.
The stepwise solution procedure is given below.

Step 1. (Transforming the problem to an IVP in ODE)
We apply FT F to the PDE (1) and IC (2) and use the properties of FT to reduce the
given Cauchy problem to an IVP for an ODE. Let

Flu] = aw,t) Flf(=)] = flw).

Taking the FT of both sides of the PDE (1) and IC (2) with respect to the z variable, we
obtain

Flue = 02-}-;“1:]
Flu(z,0)] = F{f(=)].

Using the properties of the FT

Flug = -‘%ﬁ(w, t), Flugel = —wli{w, t)

we hiave
%ﬁ(u,t) = —atwli(w,t), (3)
a(w,0) = f(w). (4)
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Step 2. (Solving the transformed problem)
Note that (3) is a first-order IVP for au ODE iu ¢ for each fixed w. The solution to this

problem is given by
i, ) = flw)e™". (5)

Step 3. {Finding the inverse trunsform)
To find the solution u(x,t}, we take inverse transforin, with t fixed, to obtain

FHa(w, )]
F flw)emo®™),

ulx, £)

Step 4. (Using convolution properly of the inverse FT)

Using the convolution property of F~!, we write

]:—l[j(w)c—aac.ﬂt]
= }-—l[f(w)] m)'-"'llc-“!”n‘]

u(ae, t)

I

2
_ —(—*-.-:]
3 )= [ Am*e
Jtz) [\/20'-’1
1 ” ~e g
_— e . =i d N
W “mf(w)f' 4 5

REMARK 1.

e Note that integrand is mnde up of two terms i.e., the initid temperature f(z) and

the function
l __J.I

e !-:uc .
2vVant

The function G(ic, t) is called Green's function or impulse-response function which

Gz, t) =

is the temperature respouse to an initial temperature impulse at z = w.
e The ajor drawback of the FT inethod is that all functions ean not be transformed.
Only functions that dunp to zero suffictently fast as = -+ oo have FTs.
2 Heat flow problem in a semi-infinite rod

Consider the heat flow in a semi-infinite region with the teinperature prescribed as a

function of time at £ = 0.
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ExXAMPLE 2. Solve the problem

PDE:  u(z,t) = aluzz(x,t), O0<z<o00, >0 (6)
BC:  u(0,t)=b t>0, (7)
IC:  u(z,0) =0, -oo0<z<o0, (8)

with u(z, t), v (z,t) = 0 as x — oo,
Since 0 < < 00, we mnny wish to use a transform. Since u is specified at = = 0, we

should try to use Fourier sine transform (and not the Fourier cosine transforin). We solve

this problemn with the following steps.
Step 1. (Trunsforming the problem)

Notice that u is specified at z = 0. Let Fyu] = d,(w, £). Now taking FST of both sides of
{6) and noting the following properties of FST

ﬁ/ﬂm ue(z, t) sin(wz)dr
= gi l\/g [0 = (o, i) siu(w.z:)d:c]

d
= 5l
d

-— "‘_&3(w, t).

di

.Fs[lu]

and

Faluzz] = —wFylu]+ \/gwu(ﬂ,t)

= —wlig(w,t) + ‘/gwu(o, t)

Ugl—‘a(“-"s t) F nguw,

where in the last step we have used BC u(0,1} = by, we arrive at the ODE

%ﬁs(hh t) = o? ( wig(w, t) + \/gbou) :

Next, taking FST of the IC (8), we obatin
Fslu(z,0)] = Fl0] — ti5(w, 0) = 0.
Thus, we transform the original problem (6)-(8) to an IVP in ODE:

d ; 2 4
Eua(w! t) + 02“)2"8(“: t) = J;O'bow,
ity(w,0) = 0.

21



Step 2.(Selviny the trunsformed problem)
Using the standard method of solving ODE, the solution is given by

y(w, ) = \/-?-;u ewialt), (9)

Step 3. (Finding the Inverse Transform)
Applying the inverse FST to both sides of (9}, we find that

Fi [‘/g%(l - e"wzn?l)}

_ %’JO/U Sin((:JI) (1- e_anwzl)dw

bo [f(—\/%)] .

where erfc(y) is the cotuplementary ervor function given by

er fc(y) \/gfxv “dr.
TSy

Hence, the solution of the hent conduction problem is

u(z, t) = Fy g (w, 0)]

T
2

u(z,t) = boerfe (ﬁ) .
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