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Chapter 1

Finite difference approximations

Our goal is to approximate solutions to differential equations, i.e., to find a funciion (or some discrete
approximation to this function) which satisfies a given relationship between various of its derivatives on
some given region of space and/or time, along with some boundary conditions along the edges of this
domain. In general this is a difficult problem and only rarely can an analytic formula be found for the
solution. A finite difference methiod proceeds by replacing the derivatives in the differential equations
by finite difference approximations. This gives a large algebraic system of equations to be solved in
place of the differential equation, something that is easily solved on a computer.

Before tackling this problem, we first consider the more basic question of how we can approximate
the derivatives of a known function by finite difference formulas based ouly on values of the function
itself at discrete points. Besides providing a basis for the later development of finite diffecence methods
for solving differential equations, this allows us to investigate several key concepts such as the onder of
eccuracy of an approximation in the simplest possible setting.

Let u(z) represent a function of one variable that, unless otherwise stated, will always be assumed
to be stnooth, meaning that we can differentiate the function several times and each derivative is a
well-defined bounded function over an interval coutaining a particular point of interest .

Suppose we want to approximate u'(Z) by a finite difference approximation based ounly on values of
u at a finite number of points near Z. One obvious choice would be to use

Dyu(z) = ﬁ“h’)l——u(z) (L1)

for some small value of k. This is motivated by the standard definition of the derivative as the limiting
value of this expression as & — 0. Note that D, u(Z) is the slope of the line interpolating u ot the
points ¥ and % + h (see Figure 1.1).

The expression (1.1) is a one-sided approximation to u’ since u is evaluated only at values of z > Z.
Another one-sided approximation would be

D_u(z) = 1‘@-:—;‘}5:-1'-) (1.2)

Each of these formulas gives a first order accurate approximation to u'(x), meaning that the size of the
error is roughly proportional to h itself.
Another possibility is to use the cenlered approximation

u(Z + h) - u{Z - h)
2h
This is the slope of the line interpolating u at  — h and & + h, and is simply the average of the two

one-sided approximations defined above. From Figure 1.1 it should be clear that we would expect
Dyu(Z) to give a better approximation than either of the one-sided approximations. In fact this gives a

D()u(i) =

- -%(D.,.u(:r) +D_u(#)). (1.3)
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Figure 1.1: Various approximations 1o u’(x) interpreted as the slope of secant lines

Table 1.1: Errors in various finite difference approximations to u'(z).

h D+ D- DO D3

1.0000e-01 -4.2939e-02 4.1138e-02 -9.0005e-04 6.8207e-05
5.0000e-02 -2.1257e-02 2.0807e¢-02 -2.2510e-04 8.6491e-06
1.0000e-02 -4.2163e-03 4.1983e-03 -~9.0050e-06 6.9941e-08
5.0000e-03 -2.1059e-03 2.1014e-03 -2.2513e-06 8.7540e-09
1.00000-03 -4.2083e-04 4.2065e-04 -9.0050e-08 6.9979e-11

second order accurale approximation — the error is proportional to 2% and hence is much smaller than
the error in a first order approximation when /i is small.
Other approximations are also possible, for example

Du(z) = -(;’-l[Qu(f: + h) + 3u(Z) — 6u(E — h) + u(z - 2h)). (1.1)

It may not be clear where this came from or why it should approximate u’ at all, but in fact it turns
out to be a third order accurate approximation — the error is proportional to h* when h is small,

Our first goal is to develop systematic ways to derive such formulas and to analyze their accuracy
and relative worth. First we will look at a typical example of how the errors in these forinulas compare

Example 1.1. Let u{z) = sin(z) and £ = 1, so we are trying to approximate u’(l) = cos(1) -
0.5103023. Table 1.1 shows the error Du(Z) = u'(Z) for various values of : for each of the formulas
above

We see that Dy u and D_u behave similarly though one exhibits an error that is roughly the negative
of the other. This is reasonable from Figure 1.1 and explains why Dyu, the average of the two, has an
error that is much smaller than either.

We see that

D,u(z) -u'(T) =~ -0.42h
Dyu(Z) - u'(Z) =~ -0.000°
Dju(%) - '(Z) =~ 0.007A"

@
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Figure 1.2: The errors in Du(z) from ‘lable 1.1 plotted ngainst h on a log-log scale.

confirming that these methods are first order, second order, and third order, respectively.
Figure 1.2 shows these errors plotted against h on a log-log scale. 'T'his is a good way to plot errors
when we expect them to behave like some power of i, since if the error E(h) behaves like

E(h) = Ch?
then
log |E(h)| = log|C| + plogh

So on a log-log scale the error hehaves linearly with a slope that is equal to p, the order of accuracy.

1.1 Truncation errors

The standard approach to analyzing the error in a finite difference approximation is to expand each of
the function values of u in a Taylor series about the point %, e.g.,

bl

wZ+h) = u(@)+h(@)+ %h'u"(i‘) + %h'u"'(:i:) + O(hY) (1.50)
u(E-h) = u(z)-h'(3)+ %h"’u"(a‘:) - %h‘u”’(z) + 0O (1.5b)

These expansions are valid provided that u is sufficiently smooth. Readers unfamiliar with the “big-oh”
notation O(h*) are advised to read Section A1.2 of Appendix Al at this point since this notation will
be heavily used and n proper understanding of its use is critical.

Using (1.5a) allows us to compute that

u(Z +h) —u() _
— =

Recall that z is a fixed poiat so that u”(Z), u'”(Z), etc., are fixed constants independent of & ‘I'hey
depend on u of course, but the function is also fixed as we vary h.

For 4 sufficiently small, the error will be dominated by the first term %hu”(z) and all the other
terms will be negligible compared to this term, so we expect the error to behave roughly like a constant
times /i, where the constant lias the value %u"(:‘:).

Note that in Example 1.1, where u(z) = sinz, we have Lu”(1) = ~0.4207355 which agrees with the

behavior seen in Table 1.1.

Diu(z) = u'(Z) + éhu"(i} + éh"’u"'(z) +O(h').
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Similarly, from (1.5b) we can compute that the error in D_u(Z) is
D_u(z) - u'(z) = —;l-)-hu"(:i') + zli-h"’u'"(i;) + 04"

which also agrees with our expectatious.
Combining (1.5a) and (1.5b) shows that

u(z + h) — u(z — h) = 2hu'(z) + %h"u'"(z’:) +0(h")
so that .
Dyu(z) — u'(z) = Ehzu"'(i) +O(ht). (1.6)

T'his confirms the second order accuracy of this approximation and again agrees with what is seeu in
‘Table 1.1, since in the context of Example 1.1 we have

%u"'(z) = écos(l) = —0.09005038.

Note that all of the odd order terms drop out of the Taylor series expansion (1.6) for Dyu(E). This is
typical with centered npproximations and typically leads to a higher order approximation.
[n order to analyze Dyu we need to also expand u{ — 2h) as

u(z ~ 2h) = u(z) - 2hu'(2) + ,-l)-(‘.’h)zu"(:i) - é('.’h)"u"'(:i:) + O(hY). (1.7)
Combining this with (1.5a) and (1.5b) shows that

Dau(z) = u'(z) + l—l,;h"u””(i) +O(H). (1.8)

1.2 Deriving finite difference approximations

Suppose we want to derive a finite difference approximation to u’(Z) based on some given set of points.
We can use "laylor series to derive an appropriate formula, using the method of undetermined coefficients.
Example 1.2. Suppose we want a one-sided approximation to u'(Z) based on u(Z), u(Z — h) and

u(x — 2h), of the form
Dau(z) = au(x) + bu(d — h) + cu(E ~ 2h). (1.9)

We can determine the coeflicients a, b, and c to give the best possible accuracy by expanding in ‘Taylor
series and collecting terms. Using (1.5b) and (1.7) in (1.9) gives

Dau(@) = (a-+b+)u(z) - (b+2)hu'(3) + 3(b+ du"(2)
- %(b + 8" () 4 -

If this is going to agree with u'(%) to high order then we need

a+b+e = 0
b+2 = —=1/h (1.10)
b+dc = 0

We might like to require that higher order coefficients be zero as well, but siuce there are only three
unknowns a, b, and ¢ we cannot in general hope to satisfy more than three such conditions. Solving
the linear system (1.10) gives

=3/2h b= -2/h c=1/2h

®
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so that the formula is i
Dau(z) = ﬁ[iiu(i) ~4u(Z — h) + u(® - 2h)| (1.11)

The error in this approximation is clearly

Dau(x) - u'(z)

]

-%(b + By (F) + -

1 20 H
ﬁh u"(z) + O(h*).

1.3 Polynomial interpolation

There are other ways to derive the same finite difference approximations. One way is to approximate
the function u(x) by some polynomial p(z) and then use p’(Z) as an approximation to u'(z). If we
determine the polynomial by interpolating u at an appropriate set of points, then we obtain the same
finite difference methods as above.

Example 1.3. "To derive the method of Example 1.2 in this way, let p(z) be the quadratic polynotnial
that interpolates u at Z, £ - h and 2 — 2h and then compute p’(Z). The result is exactly (1.11),

1.4 Second order derivatives

Approximations to the second derivative u”(z) can be obtained in an analogous manner., ‘I'lie standard
second order centered npproximation is given by

D*u(z)

,—:alu(f ~ h) = 2u(Z) + u(z + h)]

4"(3) + 3K (3) + O(hY).

Again, since this is a synunetric centered approximation all of the odd order terms drop out. This
approximation can also be obtained by the method of undetermined coefficients, or alternatively by
computing the second derivative of the quadratic polynomial interpolating u(z) at z - h, z and  + h.

Another way to derive approximations to higher order derivatives is by repeatedly applying first
order differences. Just as the second derivative is the derivative of u’, we can view D?u(z) as being a
difference of first differences. In fact,

D*u(%) = Dy D_u(z)
Sice
D4 (D-u(z)) ,l' D_u(Z + h) ~ D_u(z))

- 71; [(u(n‘:-!-hz - u(i)) _ (u(i) - ;t(i:—h))]
= Du(3).

Alternatively, D*(z) = D_ D,u(z) or we can also view it as a centered difference of centered differences,
if we use a step size h/2 in each centered approximation to the first derivative. If we define

Dyulz) = ;—l(u(:c +h/2) - u(z - h/2))

then we find that

Do( Do) = 1 ((u(a‘:-l- hy - u(i)) B (u(i:) - u(% h))) - Du(d).

h I h
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1.5 Higher order derivatives

Finite difference approximations to higher order derivatives can also be obtained using any of the
approaches outlined above. Repeatedly differencing approximations to lower order derivatives is a
particularly simple way.

Example 1.4. As an exawmple, here are two different approximations to v’ (£). The first one is
uncentered and first order accurate:

D, D*u(z) = I—'l_.—|(u(:1: + 2h) = 3ufz + h) + 3u(z) — u(z - h))
W"(E) + Shu (&) + O(h?).

The next approximation is centered and second order accurate:

1

bl

u"(Z) + 1111%"'"(5) +O(hY).

DoDyD _u(z) = (u(z + 2h) - 2u(Z + h) + 2u(Z - h) - u(z - 2h))

Finite difference approximations of the sort derived above are the busic building blocks of finite
difference methods for solving differential equations

1.6 Exercises

Exercise 1.1 Consider the nonuniform grid:

’l) hz hy
- —- - -
- ot . +
x Ia Iy Iy

1. Use polynomual inlerpolation lo derive a fimle difference apprommation for u”(za2) thel s as
accurate as possible for smooth functions u, bused on the four values U, = u(x)), ..., Uy = u(zy).
Gwe an ezpression for the domminant term n the error.

2. Very your expression for the error by testing your formula wnth a specific function and various
values Of’lh hg, hy.

3. Can you define an “order of accuracy” for your method in terms of h = max(hy, ha, )7 To
get a better feel for how the error behaves as the grid gels finer, do the follounng. Take a large
number (say 500) of different values of H spanmng two or three orders of magmitude, choose
hy, ha, and hy as random numbers wn the wnterval [0, H| and compute the error in the resulting
approrimalion. Plot these values against H on a loy-log plot lo get a scatter plot of the behauvior as
H — 0. (Note: 1n matlab the convnand h = H » rand(1) will produce a single random number
uniformly distributed in the mnge [0,H]).) Of course these errors will not he eractly on a straight
line since the values of hy may vary quite a lot even for H's thal are nearby. but you might expect
the upper limit of the error to behave reasonably.

4. Estimale the “order of accuracy” by doing a least squares fil of the form

log(E(H)) = K + plog(H)
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The eigenvalues of
tridiagonal matrices
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Tridiagonal matrices are often found in connection with finite differences.

Tridiagonal matrices are easy to deal with since there exists efficient numericalmethods both
for solving their linear systems of equations and eigenvalue problem. Here we consider the
eigenvalue problem for a general tridiagonal matrix of the form

"0 b -
c a b
A= a “@m € R™™,
a b
e c a -
We solve the eigenvalue problem
Az = Az,

where A € R and z = [z1,...,2Zm|T # 0. We write out the eigenvalue problem for A to obtain
the difference equation

czj_1 + axj + bzjy = Azj, i=1...,m

To = Tm41 =0
which is equivalent to

C:L‘j..1+(a—/\):l:j+b$j+1=0, i=1...,m

To = ZTm+1 =0

You may remember from earlier exercises that the solution of such an equation can be expressed
in terms of the roots of the characteristic polynomial, which in this case is

p(r) =br* +(a - \)r+c

So assume that the roots of p are given as r1 and r2. Then the solution of the difference
equation is

zj = ar] + fr}

for j =0,...,m+ 1. We determine the unknown coefficients by using the initial condition:
r=a+p=0< f=—-a,

which gives
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Furthermore we have

Tmal = oz(1erl 'r;nH) =0.

Since = # 0 we need a # 0, so we find that
r m+1
AR (—1> =1.
T2
We can eliminate ro from this equation through the identity

( {a—/\)+\/a— N2 - 4bc> (—(a—/\)— (a—/\)2—4bc)
2

b

mry =

(a— N2 - ((a— /\)2 — 4be)
4b?

g
b
Thus

L\ m+l 2 m+1 2~ m+1
" _ (i A S T
2 ToTy 3

The roots of a quadratic polynomial are in general complex, so the above equation can b
written in the form

Ll )

r (o
= 2w, s=1,...,m.

Q‘Iﬁ'

We immediately sce that the possible roots are

C if 2
Tis — \/ge’”{ mit)
CC
b

where s = 1,...,m. For every s = 1,...,m there is thus an eigenvalue A; given by the
equation

m{l
)

72,8

T1,s + T2 = A,b—_a

)
VR o) = de
)
2\/_(:05(m+1
)
As =a+ 2\/—Ecos(m+1

The corresponding eigenvector z, ; is then

Tsj a(r{,s_*_ré,s)
- o (g)]/2 (em(mH) 7rz(m+l))

= 2« (b) 6 sin (nji—sl) s

September 11, 2009 Page 2 of 4
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EXAMPLE: Cousider the eigenvalues of the matrix
A=I+7rD,
where
D= e R™",
SO
1 -2
Set A;(A) = 1+ 7X4(D) for s = 1,...,n, from the discussion above we then have

As(D) = =2+ 2cos <n7fl> = —4sin? (2(?:_7_ 1)) .

Therefore,

As(A4) =1 - 4rsin® (ﬁ>

fors=1,...,n.
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