The Initial Value Problem
for Ordinary Differential
Equations

In this chapter we begin a study of time-dependent differential equations, beginning with
the initial value problem (IVP) for a time-dependent ordinary differential equation (ODE).
Standard introductory texts are Ascher and Petzold [5). Lambert [59]. {60], and Gear [33).
Henrici [45] gives the details on some theoretical issues, although stiff equations are not
discussed. Butcher [12] and Hairer, Norsett, and Wanner (43, 44) provide more recent
surveys of the field.

The IVP takes the form

u'(t) = f(u().1) fort >t 5.0

with some initial data
u(ro) =n. (5.2)

We will often assume 9 = 0 {or simplicity.
In general, (5.1) may represent a system of ODEs, i.e., & may be a vector with

s components 4y, Uy, and then f(u,t) also represents a veclor with components
Nut), ... fe(u, 1), each of which can be a nonlinear function of af! the components
of ur.

We will consider only the first order equation (5.1), but in fact this is more general
than it appears since we can reduce higher order equations to a system of first order equa-
tions.

Example 5.1, Consider the IVP for the ODE,

v (1) = v'(t)v(r) = 20" (1)) fort > 0.

This third order equation requires three initial conditions, typically specified as

v(0) = n.
v'(0) = na. (5.3)
v’(0) = n.

1

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

We can rewrite this as a system of the form (5.1), (5.2) by introducing the variables

ug(r) = v(r),
war) = v'@).
ua(t) = v"'(1).

Then the equations take the form

u\ (1) = ux(r),
us(t) = usl(r).
u',(l) = uy(ua(t) - 2!u§(l).

which defines the vector function f (w0, r). The initial condition is simply (5.2), where the
three components of 5 come from (5.3). More generally, any single equation of order m
can be reduced to m first order equations by defining 1 (1) = v~ (r), and an mith order
system of s equations can be reduced to a system of s first order equations.

See Section D 3.1 for an example of how this procedurce can be used to determine the
gencral solution of an rth order lincar differential equation

It is also sometimes uscful 10 note that any cxplicit dependence of / on ¢ can be
climinated by introducing a new vanable that is simply cqual to ¢ In the above example
we could define

14(1) {

so that
wy(r) = U and wglle) = 1y

The system then takes the form

w'(t) = flu(r)) (54)
with
2 m
Iy _| "
o s~ ugtl pnd ()= m
l ™

The cquation (5.4) is said to be auronomous since it does not depend explicitly on time. 1t
is often convenient to assume / is of this form since it simplifics notation

5.1 Linear ordinary differential equations
The system of ODEs (5.1) is linear if

Ju. 1) = A + g(1). (5.5

where A(f) € R** and g(¢) € R*. An important special case is the constant coefficient
linear system
w'(ty = Ault) + g(1). (5.6)

2

5.1. Linear ordinary differential equations .

where A € R is a constant matrix. If g(1) = 0, then the equation is homogeneous. The
solution to the homogeneous system u’ = Au with data (5.2) is

u(r) = eA-toly, (5.7)

where the matrix exponential is defined as in Appendix D, In the scalar case we ofien use
Ainplace of A.

5.1.1 Duhamel’s principle

If g(r) is not identically zero, then the solution to the constant coefficient system (5.6) can
be written as

!
u(r) = eAlt-tly +/ At (r)dr. (5.8)

n

This is known as Duhamel's principle. The matrix ¢ 4¢=%) is the solution operator for the
homogencous problem; it maps data at time t to the solution at time ¢ when solving the
homogencous equation. Dubamel’s principle states that the inhomogeneous term g(r) at
any instant t has an effect on the solution at time 7 given by c"‘""g(r). Note that this is
very similar to the idea of a Green's function for the boundary value problem (BVP).

As a special case, il A = 0, then the ODE is simply

u'(1) = g(r) (5.9)

and of course the solution (5.8) reduces to the integral of g:

!
u(ty =n +f g(r)dr. (5.10)

i}

As another special case, suppose A is constant and so is g(r) = g € R*. Then (5.8)
reduces to

!
u(t) = A=ty 4 (/ ‘,,m-:)‘,,) . (5.11)
i

)

This integrat can be compulted, c.g., by expressing ¢ 4= as a Taylor series as in (D.31)
and then integrating term by term. This gives

t
/ e A= o o g (‘,A(:-m) _ ,) (5.12)
[

and so

u(r) = eAt-Mmp 4 4~ (e“'"'"‘ - l) g. (5.13)

This may be familiar in the scalar case and holds also for constant coefficient systems
(provided A is nonsingular). This form of the solution is used explicitly in exponential
time differencing methods; see Section 11.6.

3

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

5.2 Lipschitz continuity

In the last section we considered lincar ODEs, for which there is always a unique solution.
In most applications, however, we are concerned with nonlinear problems for which there
is usually no explicit formula for the solution. The standard theory for the existence of a
solution to the initial valuc problem

W)= f.t), u(0)=n (5.14)

is discussed in many texts, cg.. [15]. To guaranice that there is a unique solution it is
necessary o require a certain amount of smoothness in the function f (i, 1) of (5.14). We
say that the function f(ur. 1) is Lipschitz continuous in 1 over some domain

D={u.t): ju-nlsaty=1=u)
if there exists some constant L > 0 so that
[fQu.1) = fu®*)| < L — u®| (5.15)

for all (u,¢) and (u*,¢) in D. This is slightly stronger than mere comtinuity, which only
requires that | f(u.¢) — f(u*.0)] — O as w ~ u*. Lipschitz continuity requires thit
1S 1) = fu*.)] = O(lu—u*{)asu — u®.

If /(u.1) is differentiable with respect to « in D and this derivative f, = idf/du is
boundcd then we can take

L= max |/, {u,t)|.
(nt)eD

since

Jury = J@® 1)+ fulv.O@ —u®)

for some value v between 1 and 1®

Example 5.2. For the lincar problem #'(f) = Au(r) + g(r). /(1) = A and we can
take L = |A|. This problem of course has a uniquc solution for any initial data 5 given by
(5.8) with A = A

In particular, if A = Othen L = 0. Inthiscase f(u.1) = g(r) is independent of u
The solution is then obtained by simply integrating the function g(7). as in (5.10).

5.2.1 Existence and uniqueness of solutions

The basic existence and uniquencss thecorem states that if / is Lipschitz continuous over
some region D then there is a unique solution to the initial value problem (5.14) at least up
totime 7° = min({). 1 + a/S). where

S = max 1.1)|.
(u.l)e”D'/()

Note that this is the maximum modulus of the slope that the solution i (¢) can attain in this
time interval, so that up to time 1o +a/ S we know that 1(!) remains in the domain D where
{5.15) holds

4

5.2. Lipschitz continuity

Example 5.3. Consider the initial value problem
w'(1) = (u(n)?, u(0) = 5 > 0,

The function f(«) = u? is independent of ¢ and is Lipschitz continuous in u over any
finite interval ju — n| < a with L = 2(n + «), and the maximum slope over this interval
is S = (n + a)*. The theorem guarantees that a unique solution exists at feast up to time
a/(n+a)*. Since a is arbitrary, we can choose a 10 maximize this expression, which yields
u = 1) and so there is a solution at least up to time 1/4n.
In (act this problem can be solved analytically and the unique solution is
1

u(t) = ——rw»

-1
Note that u(t) = oo as ¢ = 1/n. There is no solution beyond time 1/1.

If the function /" is not Lipschitz continuous in any neighborhood of some point then
the initial value problem may fail to have a unique solution over any time interval if this
initial value is imposed.

Example 5.4, Consider the initial value problem

(1) = Vu()

with initial condition
u(0) = 0.

The function f(u) = /u is not Lipschitz continuous near v = 0 since f'(1) =
1/(2/i) = 0o as u — 0. We cannot find a constant L so that the bound (5.15) holds for
all w and u* near 0.
As a result, this initial value problem does not have a unique solution. In fact it has
two distinct solutions:
w(t) =0

and

I,
uil) = —1°.
(1) 3

5.2.2 Systems of equations

For systems of s > | ordinary differential equations, u(t) € R* and f(u.) is a function
mapping R* x R — R’. We say the function /" is Lipschitz continuous in « in some norm
I - |} if there is a constant L such that

ISty = f@* 0 = Lilu—u®| (5.16)

forall (u,1) and (u*,.1) in some domain D = {{(u,1) : lu—n| S a. o <1 <4). By
the equivalence of finite-dimensional norms (Appendix A), if f is Lipschitz continuous in
one norm then it is Lipschitz continuous in any other norm, although the Lipschitz constant
may depend on the norm chosen.

The theorems on existence and uniqueness carry over ta systems of equations.

c

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

Example 5.5. Consider the pendulum problem from Section 2.16,
0"(t) = —sin(6(1)).

which can be rewritten as a first order system of two equations by introducing u(f) = 6'(1):

N dfe v
=1y I dil v | sin(@) |-

Consider the max-norm. We have
lu — u*{|oo = max(|8 — 0°). [v— v*])

and
I /@) = f(u*)loo = max(jv — v®{, |sin(f) — sin(67)])

To bound || f (1) — / (14°)| oo. first notc that jv — v®| < [l — 1*{leo. We also have
| sin(@) —sin(8*)] <180 —8°| < lu — u°||loo
since the derivative of sin() is bounded by |- So we have Lipschitz continuity with L = |

/)~ S)oo < lltt — te*floo

5.2.3 Significance of the Lipschitz constant

The Lipschitz constant measures how much f (. £) changes if we perturb « (at some fixed
time r). Since f(u. 1) = u'(7). the slope of the line tangent to the solution curve through
the value u. this indicates how the sfope of the solution curve will vary if we perturb . The
significance of this is best seen through some examples

Example 5.6. Consider the trivial equation «’(¢) = g(¢). which has Lipschitz con-
stant L = 0 and solutions given by (5 10). Scveral solution curves are sketched in Fig-
ure 5.1. Note that all these curves are “parallel”™; they are simply shifted depending on
the initial data. Tangent lines to the curves at any particular time are all parallel since
S, 1) = g(r) is indcpendent of u.

Example 5.7. Consider #'(1) = Au(t) with A constant and L = |A|. Then u(¢) =
1(0) exp(At). Two situations are shown in Figure 5.2 for ncgative and positive values of A.
Here the slope of the solution curve does vary depending on «. The vanation in the slope
with « (at fixed 1) gives an indication of how rapidly the solution curves arc converging
toward one another (in the casc A < 0) or diverging away from onc another (in the case
A > 0). If the magnitude of A were increased, the convergence or divergence would clearly
be more rapid.

The size of the Lipschitz constant is significant if we intend 10 solve the problem
numerically since our numerical approximation will almost certainly produce a value U”
at time 1, that is not exactly equal to the true value u{r,). Hence we arc on a differcnt
solution curve than the truc solution. The best we can hope for in the future is that we stay
close to the solution curve that we are now on. The size of the Lipschitz constant gives an
indication of whether solution curves that start closc together can be expected 1o stay close
together or might diverge rapidly

5.2. Lipschitz continuity

Figure 5.1. Solution curves for Example 5.6, where L = 0.

e e e — e ———,

} :]

(@5 v w e Ts e (b)

Figure 5.2. Solution curves for Example 5.7 with (a) A Jand (b) & = 3.

5.2.4 Limitations

Actually, the Lipschitz constant is not the perfect tool for this purpose, since it does not
distinguish between rapid divergence and rapid convergence of solution curves. In both
Figure 5.2(a) and Figure 5.2(b) the Lipschitz constant has the same value L = |A] = 3.
But we would expect that rapidly convergent solution curves as in Figure 5.2(a) should be
easicr to handle numerically than rapidly divergent ones. }f we make an error at some stage,
then the effect of this error should decay at later times rather than growing. To some extent
this is true and as a result error bounds based on the Lipschitz constant may be orders of
magnitude too large in this situation.

However, rapidly converging solution curves can also give serious numerical diffi-
culties, which one might not expect at first glance. This is discussed in detail in Chapter 8,
which covers stiff equations.

One should also keep in mind that a small value of the Lipschitz constant does not
necessarily mean that two solution curves starting close together will siay close together
forever.

Example 5.8. Consider two solutions to the pendulum problem from Example 5.5,
one with initial data

6,(0) = m —¢, v (0) =0,

and the other with

+

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

0:(0) = w + €, v2(0) = 0.

The Lipschitz constant is 1 and the data differ by 2e, which can be arbitrarily small. and
yet the solutions eventually diverge dramatically, as Solution 1 lalls toward # = 0, while
in Solution 2 the pendulum falls the other way, toward 6 = 2.

In this casc the VP is very ill conditioned. small changes in the data can lead to order
1 changes in the solution. As always in numerical analysis, the solution of ill-conditioned
problems can be very hard (o compute accurately.

5.3 Some basic numerical methods

We begin by listing a few standard approaches to discretizing (5.1). Note that the IVP
differs from the BVP considered before in that we are given all the data at the initial time
o = 0 and from this we should be able to march forward in limc, computing approxima-
tions at successive limes ;. 72, We will use & to denote the time siep, so 4, = nh for
n > 0, It is convenient to use the symbol A, which is differcnt from the spatial grid size
h, since we will soon study PDEs which involve both spatial and temporal discretizations
Often the symbols Ar and A v are used.
We are given initial data
U=y (517)

and want to compute approximations U', U*. .. satisfying
U = uity)

We will use superscripts to denote the time step index, again anticipating the notation of
PDEs where we will use subscripts for spatial indices

The simplest method is Euler's method (also called forward Euler), based on replac-
ing 1’ (1p) with DLU" = (U"*' — U")/k from (}.1). This gives the method

Un+l un
k

Rather than viewing this as a system of simultancous equations as we did {or the BVP, it is
possible to solve this explicitly for U”*+! in terms of U*:

U, n=0.1, .. (5.18)

Uurtl = U+ kf(U"). (5.19)

From the initial data U° we can compute U, then U2, and so on. This is called a time-
marching method.
The backwand Euler method is similar but is bascd on replacing /' (fp41) with
D_yntt;
Un+l un
R st (5.20)

or
Ut =yt 4 kUt (5.21)

Again we can march forward in time sincc computing U"*! requires only that we know
the previous value U”. In the backward Euler method, however, (5.21) is an cquation that

§

5.4. Truncation errors

must be solved for U”*!, and in general f(u) is a nonlinear function. We can view this as
looking for a zcro of the function

gy =u—kf(u)-U"

which can be approximated using some iterative method such as Newton's method.

Because the backward Euler method gives an equation that must be solved for U"+!,
it is called an implicit method, whereas the forward Euler method (5.19) is an explicit
method.

Another implicit method is the trapezoidal methad, obtained by averaging the two
Euler methods:

Un+l -yn
k

As one might expect, this symmetric approximation is second order accurate, whereas the
Euler methods are only first order accurate.

The above methods are all one-step methods, meaning that U™+ is determined from
U™ alone and previous values of U are not needed. One way to get higher order accuracy
is to use a multistep method that involves other previous values. For example, using the
approximation

1
= 5(/(U") + fUY). (5.22)

u(t +k)—u(t — k)
2k

yiclds the midpoint methad (also called the leapfrog method),

=u'(t) + %kzu"’(l) + O(K3)

yntt Un—l
5 = S (5.23)
or
Ut = Ut 2k S UM, (5.24)
which is a second order accurate explicit 2-step method. The approximation Dau from
(1.11), rewnitten in the form
3u(+ k) —4u(r) +ult = k)
2k

yields a second order implicit 2-step method

=u'(t +k)+ ll—,)kzu’”(l +k)y+.--.

3un+l —4U" + Un—l
2k

This is one of the backward differentiation formula (BDF) methods that will be discussed
further in Chapter 8.

= f(U""), (5.25)

5.4 Truncation errors

The truncation error for these methods is defined in the same way as in Chapter 2. We write
the difference equation in the form that directly models the derivatives (e.g.. in the form

J

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

{5.23) rather than (5.24)) and then insert the true solution to the ODE into the difference
equation. We then use Taylor serics cxpansion and cancel out common terms.

Example 5.9. The local truncation error (LTE) of the midpoint method (5.23) is
defined by

e u(l,.+1)7-k"("'") = J(u(ta))

[u'(m + %k’u"’(r,.) + O(A‘)] u'(ty)
%k’u"’(l,,) + O(k9).

Note that since «(f) is the truc solution of the ODE, u'(1;) = f (1(t4)). The O(k?) term
drops out by symmetry. The truncation error is O(A) and so we say the method is second
onder accurate, although it is not yet clear that the globa) ceror will have this behavior. As
always, we nced some (orm of stability to guarantee that the global error will exhibit the
same rate of convergence as the local truncation error. This will be discussed below

5.5 One-step errors

In much of the literature concerning numerical methods for ODEs, a slightly different def-
inition of the local truncation error is used that is based on the form (5.24), for cxample.
rather than (5.23). Denoting this value by £, we have

L = wllgs1) — ltg—1) = 2K fulty)) (5.26)
= %k’u"'(!,.) + O(k3).

Since £ = 2kt". this local error is O(k*) rather than O(k?). but of course the global
error remains the same and will be O(A). Using this alternative definition, many standard
results in ODE theory say that a pth order accuralc method should have an LTE that is
O(k 7+'). With the notation we arc using, a pth order accurate method has an LTE that is
O(k 7). The notation used here is consistent with the standard practice for PDEs and leads
to a more coherent theory, but once should be aware of this possible source of confusion.

In this book £” will be called the one-step error, since this can be viewed as the crror
that would be introduced in onc tlime step if the past values U”, U1, ... were all taken
to be the exact values from u(r). For example, in the midpoint method (5.24) we suppose
that

U™ = u(ty) and U"' = u(th-y)

and we now use these values to compute U”*!, an approximation (o #(fp41)
+

Ut = u(tp—y) + 2k f (u(tn))
U(ln—y) + 2h1' (1)

Then the error is

W(twst) = U™ = ultngr) = tltn—y) — 2k (1y) = L".

10

5.6. Taylor series methods

From (5.26) we see that in one step the error introduced is O(k?). This is consistent with
second order accuracy in the global error if we think of trying to compute an approximation
to the true solution u(7T') at some fixed time 7 > 0. To compute from time ¢ = O up to
time 7, we need to take 7'/ & time steps of length k. A rough estimate of the error at time
T might be obtained by assuming that a new error of size £" is introduced in the nth time
step and is then simply carried along in later time steps without affecting the size of future
local errors and without growing or diminishing itself. Then we would expect the resulting
global error at time T to be simply the sum of all these local errors. Since each local error
is O(k?) and we are adding up T/ & of them, we end up with a global error that is O(k?).

This viewpoint is in fact exactly right for the simplest ODE (5.9). in which f(u,) =
#(1) 1s independent of # and the solution is simply the integra) of g, but it is a bit too
simplistic for more interesting equations since the error at each time feeds back into the
computation at the next step in the case where /'(u,) depends on «. Nonctheless, it is
essentially right in terms of the expected order of accuracy, provided the method is stable.
In fact, it is useful to think of stabiliry as exactly what is needed to make this naive analysis
correct, by ensuring that the old errors from previous time steps do not grow too rapidly in
future time steps. This will be investigated in detail in the following chapters.

5.6 Taylor series methods

The forward Euler method (5.19) can be derived using a Taylor serics expansion of t1(fp4))
about u(ty):

1 a.n
(th41) = ultn) + ku'(1y) + -’-k'u (tn) + -+ . (5.27)

If we drap all terms of order k2 and higher and use the differential equation to replace
' (1) with f(u(tn). ta). we obtain

Ufnyt) 22 Ultn) + kS (utn). 1n).

This suggests the method (5.19). The t-step error is O(k*) since we dropped terms of this
order.

A Taylor series method of higher accuracy can be derived by keeping more terms in
the Taylor series. If we keep the first p + | terms of the Taylor series expansion

I 1
U(tng1) = u(ly) + ku'(ta) + -_;kzu"(t,,) + ;—'k"u(”)(l,,)

we obtain a pth order accurate method. The problem is that we are given only

w'() = fu(r).i)

and we must compute the higher derivatives by repeated differentiation of this function.
For example. we can compute

w1y = fulu) O’ (1) + fe(u(e).1)
= fuu(t). 1) f(u(r). t) + fi(u(r).).

(5.28)

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

This can resull in very messy expressions that must be worked out for each equation,
and as a result this approach is nol often used in practice. However, it is such an obvious
approach that it is worth mentioning, and in some cases it may be useful. An example
should suffice to illustrate the technique and its limitations.

Example 5.10. Suppose we want to solve the equation

w'(t) = 1* sin(u(r)). (5.29)
Then we can compute

u"(r) = 2rsin(u(r)) + r* cos(u(r)) o’ (1)
= 2 sin(u (1)) + % cos(u (1)) sin(u(r)).

A sccond order method is given by
U™ = UM 4+ k2 sin(U") + ;I\ Pin sin(U™) + 1 cos(U™) sin(U™))

Clcarly higher order derivatives can be computed and used, but this is cumbersome cven for
this simple example. For sysiems of cquitions the method becomes still more complicated

This Taylor series approach does get used in some sitwations, however--for example,
in the derivation of the Lax - Wendroff method for hyperbolic PDEs; sce Scction 10.3. Sce
also Section 1 1.3

5.7 Runge-Kutta methods

Most methods used in practice do not require that the user explicitly calculate higher order
derivatives. Instead a higher order finite difference approximation is designed that typically
modecls these terms automatically

A multistep mcthod of the sort we will study in Scction 5.9 can achieve high accu
racy by using high ordcr polynomial interpolation through several previous vatues of the
solution and/or its derivative. To achicve the same cffect with a 1-step method it is typi-
cally necessary to use a nudtistage method, where intermediate values of the solution and
its derivative are generated and used within a single time step

Example 5.11. A two-stage explicit Runge-Kutta method is given by

ut=y" +-l-kj(U")
Urt' =U"+kf(U*)

(5.30)

In the first stage an intermediate value is generated that approximatces #(fp4.472) via Euler’s

method. In the sccond step the function / is cvaluated at this midpoint to estimate the slope

over the full time step. Since this now looks like a centered approximation to the derivative

we might hope for second order accuracy, as we'll now verily by computing the LTE
Combining the two steps above, we can rewritc the method as

Ut = U Ay (U" + :kj(U")).

.

5.7. Runge-Kutta methods

Viewed this way, this is clearly a 1-step explicit method. The truncation error is

1
" %(U(lm) —u(ty)) = f (u(ln) + 'z'kf(“('n))) . (5.31)
Note that
A (“(‘n) + %kf("(ln))) = f (“(’n)"‘ %k",(fn))

l J 2,07 2 1
=/(u(r,.))+-2-ku'(r,.)/’(u(r,.))+§k'(u ()" S ulta)) 4+

Since f(u(ty)) = u'(1,) and differentiating gives /'(u)u’ = u”, we obtain

I 2
/ (“('n) + ;k/(u(l,.))) =u'(tln) + Sku"(tn) + OK?).

Using this in (5.31) gives
1
k

"=

(ku'(l,.)+ -;-k‘u"(t,.)+ O(k’))

- (u'(!,,) + %ku"(r,.) + O(kz))
= O(k?)

and the method is second order accurate. (Check the O(k2) term 1o sce that this does not
vanish.)

Remark: Anather way to determine the order of accuracy of this simple method is to
apply it to the special test equation u’ = Au, which has solution #(ly4;) = e”‘u(l,,). and
determine the error on this problem. Here we obtain

Ut = U" ki (U" + %kw")

= U™ 4 (kMU" + %(kwu"
=B Un + (k).

The one-step error is O(k?) and hence the LTE is O(k2). Of course we have checked only
that the LTE is O(k?) on onc particular function u (1) = ¢*_not on all smooth solutions,
and for general Runge-Kutta methods for nonautonomous problems this approach gives
only an upper bound on the method’s order of accuracy. Applying a method to this special
equation is also a fundamental tool in stability analysis—sec Chapter 7.

Example 5.12. The Runge-Kutta method (5.30) can be extended to nonautonomous
equations of the form /(1) = f(u(1).1):

Ut =U"+ ékf(u".z,.).

k (5.32)
Ut = U ¢ kf (U‘.r,. + -,-) .

13

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

This is again sccond order accurate, as can be verified by expanding as above, but it is
slightly more complicated since Taylor series in two variables must be used.

Example 5.13. One simplc higher order Runge-Kutta method is the fourth order
four-stage method given by

Y, = u".
1
Y, = U"+;,\j(yi.ln),

I -
Y; = U"+;kj(’2.ln+é).

-

k
Yo = U" +kJ (Y;.t,.+;). (433

Ut — U"+%[/(Y;) +2f (Y2.1n+ é)

+2/ (Y;.l,, +I:}) + f(Yq.in +k)].

Note that if /(. t) = /(1) docs not depend on 1, then this reduces to Simpson's rule for
the integral. This method was particularly popular in the precomputer era, when computa
tions were done by hand, because the cocfiicients arc so simple. Today there is no need 1o
keep the cocfficients simple and other Runge- Kutta methods have advantapes

A general r-stage Runge-Kutta method has the form

r
Vo= UMk) an S+ ¢k),
BT

r
Ys U4k Z(l;,‘j()'l.ln‘i'l‘jl\).

j=\
, (5.34)

Yo = UM+ kY ar (V) tn +csk).
I=1
r

U = UM+ k) b (Y. tn+ cjk)
f=1
Consistency requires
ZHU =y, f=],Q o i
e (5.35)

i
J=1

Y

5.7. Runge-Kutta methods

If these conditions are satisficd, then the method will be at least first order accurate.
The coefficients for a Runge—Kutta method are often displayed in a so-called Butcher
tableau:

Cy adyy N (XY e
Cr u,l oo ”rr (5'36)
by ... b,

For example, the fourth order Runge-Kutta method given in (5.33) has the following
tableau (entries not shown are atl 0):

0
1721 172
1721 0 12

0 0 1

176 113 13 1/6

An important class of Runge-Kutlta methods consists of the explicit methods for
which uy; = 0 for j > i. For an explicit method, the elemenis on and above the diag-
onal in the «;; portion of the Butcher tableau are all equal 1o zero, as, for example, with
the fourth order method displayed above. With an explicit method. each of the ¥; values is
compuled using only the previously computed Y.

Fully implicit Runge-Kutta methods, in which cach Y; depends on all the Y, can be
expensive to implement on systems of ODEs. For a system of s equations (where each Y; is
in R*), a system of sr equations must be solved to compute the r vectors Y; simultaneously.

One subclass of implicit methods that are simpler to implement are the diagonally
implicir Runge-Kutta methods (DIRK methods) in which Y; dependson ¥ for j <i,i.e.,
ujy = 0for j > i. For a sysiem of s equations, DIRK methods require solving a sequence
of r implicit systems, each of size s, rather than a coupled set of sr equations as would
be required in a fully implicit Runge-Kutta method. DIRK methods are so named because
their tableau has zero values above the diagonal but possibly nonzero diagonal elements.

Example 5.14. A sccond order accurate DIRK method is given by

Yi=U"

Yy = U +§[/(Y..r,.) + f(Yz-ln + ’%)]

. . 5.37
YJ=U"+§'[I(YI-’A)+/(YI"n'*‘é)*'f(va'n"'k)]' &3

yrtl =y, = U" +§[/(Y..r,.)+j (Yg.t,,+§—) +j(YJ"n+k)]-

This method is known as the TR-BDF2 method and is derived in a different form in Sec-
tion 8.5. lis tableau is

IS

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

0
121 4 14
I V3 13 13

||/3 13 13

In addition to the conditions (5.35). a Runge-Kutta method is second order accurate
if

r
]

E hjcj = 3 (5.38)

j=t -

as is satisfied for the method (5.37). Third order accuracy requires two additional condi-
tions

L I
Zbl'(.; = =,

=1 3

r r i

Z by = 6

=l j=q

(5.39)

Fourth order accuricy requires an additional four conditions on the coefficients, and higher
order methods require an exponentially growing number of conditions

An r-stage explicit Runge - Kutta method can have order at most r, although [orr > 5
the order is strictly less than the number of stages. Among implicit Runge-Kutta methods,
r-stage methods of order 2r exist. There typically are many ways that the cocfficients «,
and b; can be chosen to achicve a given accuracy. provided the number of stages is suffi
ciently large. Many different classes of Runge- Kutta methods have been developed over
the years with vanous advantages. The order conditions are quite complicated for higher-
order methods and an extensive theory has been developed by Butcher for analyzing these
methods and their stability propentics. For more discussion and details sce, for example.
[13], [43]. [44])

Using more stages to increase the order of a method is an obvious strategy. For some
problems, however, we will also sce that it can be advantageous to use a large number of
stages to increasc the stability of the method while keeping the order ol accuracy relatively
low. This is the idca behind the Runge-Kutta-Chebyshev methods, for example, discussed
in Scction 8 6.

5.7.1 Embedded methods and error estimation

Most practical software for solving ODEs does not use a fixed time step but rather adjusts
the time step during the integration process (o try to achieve some specified error bound
Onc common way to estimate the error in the computation is to compute using two different
methods and compare the results. Knowing something about the error behavior of each
method often allows the possibility of estimating the error in at least one of the two results

A simple way to do this for ODEs is to take a time step with two different methods,
one of order p and one of a different order, say, p + 1. Assuming that the time step is
small enough that the higher order method is really gencrating a belter approximation, then

14

5.7. Runge-Kutta methods

the difference between the two results will be an estimate of the one-step error in the lower
order method. This can be used as the basis for choosing an appropriate time step for the
lower order approximation. Often the time step is chosen in this manner, but then the higher
order solution is used as the actual approximation at this time and as the starting point for
the next time step. This is sometimes called local extrapolation. Once this is done there is
no estimate of the error, but presumably it is even smaller than the error in the lower order
method and so the approximation gencrated will be even better than the required tolerance.
For more about strategies for time step selection, sce, for example, [S]. [43], [78).

Note, however, that the procedure of using two different methads in every time step
could easily double the cost of the computation unless we choose the methods carefully.
Since the main cost in a Runge-Kutta mcthod is often in evaluating the function f (i, 1),
it makes sense to reuse function values as much as possible and look for methods that
provide two approximations to U”*! of different order based on the same set of function
cvaluations, by simply taking different lincar combinations of the /(Y. t, +¢;k) values in
the final stage of the Runge-Kutta method (5.34). So in addition to the value U"+! given
there we would like to also compute a value

r
U = UM+ kY bj f(Y)tn + ¢jh) (5.40)
}=1

that gives an approximation of a different order that can be used for error estimation, These
are called embedded Runge-Kutta methods and are often displayed in a tableau of the form

Cy | an N (T

Cy [T cor Hpp
(541)

b] e br

5] 5'

As a very simple example, the second order Runge-Kutta method (5.32) could be
combined with the first order Euler method:

Y[= U".

Yy = U+ %kf(Yn.tn).
n+1 n - k (542)
U s=U"+kf|Vh.tn + 35

U = U 4 kf(Y). 1)

Note that the computation of U+ reuses the value f(¥).1,) obtained in computing Y»
and is essentially free. Also note that

1

pa

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

(}n+l L yn+! _.-_k(/(yl‘,n) .j'(y..,_,n_*.’;_'))

~ k (U'Un) “'(’n-H/Z)) (543)

I .
= sku" (),

which is approximately the one-step error {or Euler’s method.

Most software based on Runge-Kutta methods uses embedded methods of higher
order. For example, the ode45 routine in MATLAB usces a pair of embedded Runge-Kutta
methods of order 4 and 5 duc to Dormand and Prince [25). Sce Shampine and Reichelt [78]
for implementation details (or typeoded 5 in MATLAB).

5.8 One-step versus multistep methods

Taylor series and Runge-Kutta methods arc one-step methods, the approximation Un+!
depends on U™ but not on previous valucs U™™', U"2, ... In the next section we will
consider a class of multistcp methods where previous valucs are also used (one example is
the midpoint method (5 24))

Onc-step mcthods have several advantages over multistep methods:

e Thc methods arc self starting: from the initial data U° the desired method can be
applied immedhately. Multistep methods require that some other method be used
mtially, as discussed in Section 5.9.3

e The time step & can be changed at any point, based on an crror estimate, for example
The time step can also be changed with a multistep method but more care is required
since the previous values are assumed to be equally spaced in the standard form of
these mcthods given below.

e [f the solution u(r) is not smooth at some isolated poim * (for example, because
/(1. 1) is discontinuous at ¢*), then with a one-step method it is often possible to get
full accuracy simply by ensuring that (* is a grid point. With a multistep method that
uses data from both sides of 7* in approximating derivatives, a loss of accuracy may
occur

On the other hand. one-step methods have some disadvantages. The disadvantage of
Taylor serics methods is that they require differentiating the given equation and are cum-
bersome and often expensive to implement. Runge-Kutta methods only use evaluations of
the function /, but a higher order multistage mcthod requires evaluating / several times
each time step. For simple cquations this may not be a problem, but if function values
are cxpensive to compute, then high order Runge-Kutta methods may be quite expensive
as well. This is particularly true for implicit methods, where an implicit nonlinear system
must be solved in cach stage.

An altemative is to usc a multistep method in which values of / already computed
in previous time steps are reused to obtain higher order accuracy. Typically only one new
/ cvaluation is required in cach time step. The popular class of linear multistep methods
is discussed in the next section.

1§

5.9. Linear multistep methods

5.9 Linear multistep methods

All the methods introduced in Section 5.3 are members of a class of methods called linear
multistep methods (LMMs). In general, an r-step LMM has the form

r r
D Um =k Y B WUty). (5.44)

j=0 j=0

The value U"*" is computed from this equation in terms of the previous values U+ 1,
Untr=2 ... U" and f values at these points (which can be stored and reused if / is
cxpensive 1o evaluate).

Il B, = 0, then the methad (5.44) is explicit; otherwise it is implicit. Note that we
can multiply both sides by any constant and have essentially the same method, although
the coefficients a; and f§; would change. The normalization &, = 1 is often assumed to
fix this scale factor.

There are special classes of methods of this form that are particularly useful and have
distinctive names. These will be written out for the autonomous case where f(i1,1) = f(u)
to simplify the formulas, but each can be used more generally by replacing /(U"*/) with
JWU™ 1z4,) in any of the formulas.

Example 5.15. The Adams methods have the form

R
UmtT =yl Lk Y B S, (5.45)
Jj=0
These methods all have
o =1, dpey ==, anda; =0forj<r-1.

The B; coeflicients are chosen to maximize the order of accuracy. If we require §, = 0
so the method ts explicit, then the r coefficients Bo. By..... Br—1 can be chosen so that
the method has order r. This can be done by using Taylor series expansion of the local
truncation error and then choosing the §; to climinate as many terms as possible. This
gives the explicit Adams-Bashforth methods.

Another way to derive the Adams-Bashforth methods is by writing

Intr
U(lnyr) = Ullysr-1) + [u'(e)dt
",:j”' (5.46)
b "(’n+r-—l)+/ Jw{n)di
Inter-t
and then applying a quadrature rule to this integral to approximate
Ingr r=1
/‘ Sy dt = k Z Bj J(ultng)). (5.47)
n4tr-1]=|

This quadrature rule can be derived by interpolating /(u(r)) by a polynomial p(¢) of degrec
r—1atthe pointsty. fp4q. ... fa4+r—1 and then integrating the interpolating polynomial.
Either approach gives the same r-step explicit method. The first few are given

below.
Y

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

Explicit Adams—Bashforth methods
l-step: U = U" + kf(U") (forward Euler)

2siep: UnH =yt 4 {—;-(-f(U") +3/(U™Y))
Istep: U™ = U2 4 T";(S/(U") 16 (U™ + 237U

4-step: Ut = U 4 ,"—'4(—91(1./") 4 37U — 594 (U2 + 55/ (U™Y))

If we allow f#, 10 be nonzero, then we have one more frec parameter and so we can
climinate an additional term in the LTE. This gives an implicit method of order r + |
called the r-stcp Adams-Moulton. These methods can again be derived by polynomial
interpolation, now using a polynomial p(/) of degree r that interpolates f(u(r)) at the
POIMS In. Ins1. .. .lns+r and then integrating the interpolating polynomial

Implicit Adams-Moulton methods

t-step. U = u” ’;(JW")y + f(U™Y)) (trapezoidal method)
N I8 3
2-st1ep: U™ = U” '+T;(JWU™) 48U +5/(U™?y)
3-5'0[) Un+3 Un+1 + f_“(j(un) Sj(Un+l) + l9/(U"+:)+9/(U"+J))

4-s1cp. U4 U"+’+%(19/ (U™) 4+ 106/ (U™") =264/ (U"*?)

+ 646/ (U"3) 42517 (UH))

Example 5.16. The explicit Nystriim methods have the form

r—1i
U = UM LR Y B S Ut
j=0

with the B, chosen to give order r. The midpoint method (5.23) is a two-sicp explicit
Nystrom method. A two-step implicit Nystrdm method is Simpson's rule,

) 2k 2
Ut =u"+ S Uwn+ 47U + f(UH?)).
This reduces to Simpson’s rule for quadrature if applied to the ODE #/'(t) = / (¢).

5.9.1 Local truncation error

For LMMs it is easy to derive a gencral formula for the LTE. We have

l r r
T(lnsr) = r (Zdﬂl(’nw) k Zﬁjul(‘n+j)) .

j=0 j=0

20

5.9. Linear multistep methods

We have used f(i(fh+j)) = t'(ta+ ;) since u(1) is the exact solution of the ODE. Assum-
ing i is smooth and expanding in Taylor series gives

14 l . 2.
U(tney) = u(ty) + jhu' (15) + ;(]k)'" "(a) + -+,

' . ”n l IR /]
Wtnsj) = ') + jhku"(1n) + ;(}k)'u (tn) 4,

and so
1
t(ln+r) "_'"l: Zaj "(’n)+(Z(]“} ﬂj)u((n

=0 /=0
- l 2 s "

+k Z(ij'aj = Jﬁj)) u”(t)
Jj=0

+ ,.+k‘7‘t i(_l.jq l jQ“'lﬁ.) U(Q)(l YH oo

e I R 1T '

The method is consistent if t — 0 as k& — 0, which requires that at least the first two terms
in this expansion vanish:

r r r
Yoay;=0 and) ja; =) 8. (5.48)

j=0 j=0 j=0

If the first p + 1 terms vanish, then the method will be pth order accurate. Note that
these conditions depend only on the coefficients a; and 8, of the method and not on the
particular differential equation being solved.

5.9.2 Characteristic polynomials

Itis convenient at this point to introduce the so-called characteristic polynomials p(¢) and
a(£) for the LMM:

pPRY=) oyt and o) =) Bt (5.49)
=0 J=0

The first of these is a polynomial of degree r. So is a({) if the method is implicit otherwise
its degree is less than r. Note that p(1) = Y_a; and also that p'(¢) = ¥ jer; /=", so that
the consistency conditions (5.48) can be written quite concisely as conditions on these two
polynomials:

p(l)=0 and p()y=a(l). (5.50)

This, however, is not the main reason for introducing these polynomials. The location of
the roots of certain polynomials related to p and o plays a fundamental role in stability
theory as we will see in the next two chapters.

Z

pd

Chapter 5. The Initial Value Problem for Ordinary Differential Equations

Example 5.17. The two-step Adams—Moulton method
, k .)
Ut = g+t 4 eI+ 8/ (U™) +5/(U?)) (5.51)

has characteristic polynomials

b l]
pEY=¢ -4 ald) = 51+ 80+ 507). (5.52)

5.9.3 Starting values

One difficulty with using LMMs if r > 1 is that we nced the values U°, U', ... U’}
before we can begin to apply the multistep method. The value U® = 5 is known from the
initial data for the problem, but the other valucs are not and typically must be generated by
some other numerical method or methods

Example 5.18. If we want to usc the midpoint method (5.23), then we need to gener-
ate U! by some other method before we begin to apply (5.23) with n = 1. We can obtain
U'! from U® using any one-step method, such as Euler’s methad or the trapezoidal method,
or a higher order Taylor scrics or Runge-Kutta methad. Since the midpoint method is scc-
ond order accurate we necd to make surc that the value U} we generate is sufficiently
accuratc so that this second order accuracy will not be lost. Our first impulse might be
to conclude that we need to use a second order accurale method such as the trapezoidal
method rather than the first order accuraic Euler method, but this is wrong. The overall
method is sccond order in cither case. The reason that we achieve second order accuracy
cven if Euler is uscd in the (irst step is exactly analogous to what was observed cartier (or
boundary valuc problems, where we found that we can often get away with one order of
accuracy lower in the local errar at a single point than what we have elsewhere

In the present context this is casiest to explain in terms of the one-step error. The
midpoint method has a one-step crror that is O(A*) and because this method is applied
in O(T/k) time steps, the global crror is expected to be O(A®) Euler’s method has a
one-step error that is O(A 2). but we are applying this method only once

IfU° = p = u(0). then the error in U' obtained with Euler will be O(k3). If the
midpoint method is stable, then this error will not be magnificd unduly in later steps and
its contribution to the global error will be only O(A?). The overall second order accuracy
will not be affected

More gencrally, with an r-step method of order p, we nced r starting values

(N T AN /b

and we nced to generate these values using a method that has a one-step error that is
O(k?) (corresponding to an LTE that is O(k?~!)). Since the number of times we apply
this method (r — 1) isindependent of A as & — 0, this is sufficicnt to give an O(A?) global
error. Of course somewhat better accuracy (a smaller error constant) may be achieved by
using a pth order accurate method for the starting values, which takes little additional work.

In software for the IVP, multistcp methods gencrally arc implemented in a form that
allows changing the time step during the integration process, as is often required to ef-
ficicntly solve the problem. Typically the order of the method is also allowed to vary,

22

5.9. Linear multistep methods

depending on how the solution is behaving. In such software it is then natural to solve the
starting-value problem by initially taking a small time step with a one-step method and then
ramping up to higher order methods and longer time steps as the integration proceeds and
more past data are available.

5.9.4 Predictor-corrector methods

The idea of comparing results obtained with methods of different order as a way to choose
the time step. discussed in Section 5.7.1 for Runge-Kutta methods, is also used with
LMMs. One approach is to use a predictor-correcior method, in which an explicit Adams—
Bashforth method of some order is used to predict a value U"t! and then the Adams—
Moulton method of the same order is used to “correct” this value. This is done by using
U"*! on the right-hand side of the Adams~Moulton method inside the f evaluation, so
that thc Adams-Moulton formula is no longer implicit. For example, the one-step Adams~
Bashforth (Euler’s method) and the one-step Adams-Moulton method (the trapezoidal
method) could be combined into

0n+l = Url +A/(U").

. (5.53)
Tt = U + %k (SWM + S0,

It can be shown that this method is second order accurate, like the trapezoidal method,
but it also gencrates a lower order approximation and the difference between the two can
be used to estimate the error. The MATLAB routine ode113 uses this approach, with
Adams-Bashforth-Moulton methods of orders 1-12; see [78].

23

24

Chapter 6

Zero-Stability and
Convergence for Initial
Value Problems

6.1 Convergence

To discuss the convergence of a numerical method for the initial value problem. we focus
on a fixed (but arbitrary) time 7 > 0 and consider the ervor in our approximation to u(7T')
computed with the method using time siep A. The method converges on this problem if
this error goes to zero as & — 0. Note that the number of time steps that we need to take
to reach time 7 increases as K — 0. If we use NV to denote this value (N = T/k), then
convergence means that

lim UY = u(T). (6.1)

NhwT
In principle a method might converge on onc problem but not on another, or converge
with onc set of stanting values but not with another set. To speak of a method being
convergent in general, we require that it converges on all problems in a reasonably large
class with all reasonable starting values. For an r-step method we need r starting values.
These values will typically depend on k, and to make this clear we will write them as
UOk), U'(k). U™"Y (k). While these will generally approximate #(f) at the times
=0 4 =k...., lro) = (r = 1)k, respectively, as & — 0, each of these times ap-
proaches f5 = 0. So the weakest condition we might put on our starting values is that they
converge to the correct initial value n as &k — 0:

‘!in:)U"(k)=r) forv=40,1r=1. 6.2)
We can now state the definition of convergence.

Definition 6.1. An r-step method is said 10 be convergent if applying the method to any
ODE (5.1) with f(u, t) Lipschitz continuous in u, and with any set of starting values satis-
Sying (6.2), we obtain convergence in the sense of (6.1) for every fixed time T > 0 at which
the ODE has a unique solution.

To be convergent, a method must be consistent, meaning as before that the local
truncation error (LTE) is n(1) as & — 0, and also zero-stable, as described later in this

2§

pa

Chapter 6. Zero-Stability and Convergence for initial Value Problems

chapter. We will begin to investigate these issues by first proving the convergence of one-
step methods, which turn out to bc zero-stable automatically. We start with Euler’s method
on lincar problems, then consider Euler’s method on general nonlinear problems and finally
extend this 1o a wide class of one-step methods.

6.2 The test problem

Much of the theory presented below is based on examining what happens when a method
is applicd to a simple scalar lincar equation of the form

u'(t) = Au(t) + g) (6.3)

with initial data
u(ly) = 1

The solution is then given by Duhamel’s principle (5.8).

1
u(t) = Mty g f Ay dre. (6.4)
4

H

6.3 One-step methods
6.3.1 Euler's method on linear problems
If we apply Euler’s method to (6 3), we obtain
Ul = U+ k(WU" + glt)
(VAU + kgtn)

(6.5)

The LTE for Euler's method is given by

” (M) — ultn) + 2(tn))

- (u'(l,.) + %ku"(l.) + O(I\'z)) —t'(ty) (6.6)

ku"(ty) + O(k*)

I | =

Rewriling this equation as
U(tner) = (U +ADultn) + Kg(ty) + A"
and subtracting this from (6.5) gives a difference cquation {or the global ercor £7:
E™*' = (1 +hM)E" ~ k1" 6.7

Nate that this has exactly the samc form as (6.5) but with a differcnt nonhomogencous term:
t” in place of g(t,). This is analogous to equation (2.15) in the boundary value thcory

24

6.3. One-step methods

and again gives the relation we need between the local truncation error t” (which is casy
to compute) and the global ervor £” (which we wish to bound). Note again that linearity
plays a critical role in making this connection. We will consider nonlinear problems below.

Because the equation and method we are now considering are both so simple, we
obtain an equation (6.7) that we can explicitly solve for the global error E”. Applying the
recursion (6.7) repeatedly we see what form the solution should take:

E" = (1 + kME"™ — k™!
= (V4+ANA +AN)E™ k") — k!

By induction we can casily confirm that in general

E"= (1 +AMN"E® ~k) (1 +kA)y=mem=t, (6.8)

m=i

(Note that some of the superscripts are powers while others are indices!) This has a form
that is very analogous to the solution (6.4) of the corresponding ordinary differential equa-
tion (ODE), where now (1 + AA)"™" plays the role of the solution operator of the homo-
geneous problem—it transforms data at time ¢, to the solution at time 1,. The expression
(6.8) is sometimes called the discrete form of Duhamel's principle.

We are now ready to prove that Euler’s method converges on (6.3). We need only
observe that

[1 4 kA| < kM (6.9)

and so
(1 +kk)"-m < B(n—m)klll < L,nklll < ‘,IMT' (6.10)

provided that we restrict our attention (o the finite time interval 0 < ¢+ < T, so that f, =
nk < T. lithen follows from (6.8) that

n
|E"| < M7 (|E°l+k) |r'"-'|) (6.11)

m=]

< T LE® 4+ nk max |2™Y)).
I1€msn

Let N = T/k be the number of time steps needed 1o reach time T and set

oo = max "]
eleo = max (e

From (6.6) we expect

Lo
7l = Ekliu le = O(k),

where Jju”|| oo is the maximum value of the function u” over the interval [0. 7). Then for
t =nk £ T.wehave from (6.11) that

1E™" < eMT(|E®| + T|lt]|ao).

Z‘.:?

pa

- Chapter 6. Zero-Stability and Convergence for Initial Value Problems

If (6.2) is satisficd then £E° — 0 as & — 0. In fact for this one-step method we would
generally take U® = 1(0) = n, in which casc £° drops out and we are left with

E" < eMTTtleo = O(K) as k =0 6.12)

and hence the method converges and is in fact first order accurate

Note where stability comes into the picture. The one-step evor £ = A"}
introduced in the mih step contributes the term (1 4 AA)* " L™ ! to the global ecror. The
fact that (1 4 AA)" "} < ¢'MT s uniformly bounded as & — 0 allows us to conclude that
cach contribution to the final error can be bounded in terms of its original size as a one-step
error. Hence the “naive analysis” of Section 5.5 is valid, and the global error has the same
order of magnitude as the local truncation crror

6.3.2 Relation to stability for boundary value problems

To sce how this ties in with the definition of stability used in Chapter 2 for the BVP, it
may be uscful to view Euler's method as giving a lincar system in matrix form. although
this is not the way it is used computationally. If we vicw the equations (6.5) for n = 0,

t, ... N —lasalincarsystem AU = FforU = [U'. U, ..., U¥|T, then
- | B
(1 +4&X) 1
| (l + I\A)]
A
A
(1 +4&d) 1
L (T +AX) 1§
W B g
U (L/k +X2)U% + glro)]
U2 £(n)
vl £(n)
U . F = .
ynN-s g(in-2)
i} O o | gln-1) |

We have divided both sides of (6 5) by A to conform to the notation of Chapter 2. Since
the matrix A is lower triangular, this system is easily solved by forward substitution, which
results in the iterative equation (6.5)

If we now let U be the vector obtained from the true solution as in Chapter 2, then
subtracting AU = F + t from AU = F, we obtain (2.15) (the matrix form of (6.7)) with
solution (6.8). We are then in exuctly the same framework as in Chapter 2. So we have
convergence and a global error with the same magnitude as the local error provided that
the method is stable in the sensc of Definition 2.1, i.c., that the inverse of the matrix A4 is
bounded indcpendent of & for all & sufficicntly small.

The inverse of this matrix is casy to compute. In fact we can see from the solution
(6.8) that

P

-

6.3. One-step methods

_ | :
(1 +kA) 1
= (1 + kX)? (I +4A)]
A7 =Kkl +kA? Q+KRNP (KD
|+ AON=L (kMY (RN (RN L

We easily compute using (A.10a) that

N
B4 oo = & D 100+ kAN

me)

and so
147 oo < kNPT = 7T,

This is uniformly bounded as & — 0 for fixed 7'. Hence the method is stable and | Efl oo <
1A oo 1Tl < Te™T|Itloo, which agrees with the bound (6.12).
6.3.3 Euler’s method on nonlinear problems

So far we have focused entirely on lincar cquations. Practical problems are almost always
nonlinear, but for the initial value problem it turns out that it is not significantly more diffi-
cult 1o handle this case if we assume that /(i) is Lipschilz continuous, which is reasonable
in light of the discussion in Scction 5.2,

Euler’s method on 1’ = /() takes the form

Uttt = U™ + kf(U") (6.13)
and the truncation error is defined by
1
= 7 WUntr) = ulin)) = S (u(tn))

ku"(tg) + Ok*?),

o] —

just as in the linear case. So the true solution satisfics
Uln1) = ultn) + k(W (tn)) + k"
and subtracting this from (6.13) gives
E™ = E" 4 k(f(U") = f(u(ta))y —k1". (6.14)

In the linear case f(U") — f(u(1p)) = AE™ and we get the relation (6.7) for E”. In the
nonlinear case we cannot express f(U") = f(u(ty)) directly in terms of the error E® in
general. However, using the Lipschitz continuity of /" we can get a bound on this in terms
of E™:

/U™ = S| < LWU" = u(ta)| = LIE".

[

-

pa

Chapter 6. Zero-Stability and Convergence for Initial Value Prablems

Using this in (6.14) gives

[E"H' [< |E"| + kLIE"| + k]t") = (1 + kL) E”) + k|2"| (6.15)

From this incquality we can show by induction that

n
IE" < (0 + kL) E® +k) (1 + kL)Y 2"

ms=]
and so, using the same stcps as in obtaining (6.12) (and again assuming E 0 — (). we oblain
[E") < e T Tlit]loo = O(k) as k — 0 (6.16)

for all n with nk < T, proving that the method converges. In the lincar case L = |A] and
this reduces to exactly (6.12)

6.3.4 General one-step methods

A genceral explicit onc-step method 1akes the form
Uttt = U AU 1 k) (6.17)

for some function ¥, which depends on / of course We will assume that W (. £, k) is
continuous in 7 and A and Lipschitz continuous in u, with Lipschitz constant L’ that is
generally related to the Lipschitz constant of f

Example 6.1, For the two-stage Runge- Kutta method of Example 5 11, we have

Wu.t,k) = f (u + -_l,-kj'(u)) X (6.18)

If / is Lipschitz continuous with Lipschitz constant L, then ¥ has Lipschitz constant
L'=L+3kL?
The one-step method (6.17) is consistent if
Y(1,1.0) = f(u,1)
for all &7, 1, and W is continuous in A. The local truncation ceror is

M = ("(fn-l-n) = u(ty)
. k

We can show that any onc-step method satisfying these conditions is convergent. We

) ~ W (ultn) tn. k)

have
U(lnss) = u(ln) + kV(@(ty). 1. k) + k"

and subtracting this from (6.17) gives
E" = E" 4 k(WU tn k) = W(ultn). 1. k) — k2"
Using the Lipschitz condition we obtain
|E**Y < |E"| + kL'|E"| + k|t"|.

This has cxactly the same form as (6.15) and the proof of convergence procceds cxactly as
from there.

30

-

6.4. Zero-stability of linear multistep methods

6.4 Zero-stability of linear multistep methods

The convergence proof of the previous section shows that for one-step methods, each one-
step error k™! has an effect on the global error that is bounded by eL'T [kt™=!). Al-
though the error is possibly amplificd by a factor ¢£'T, this factor is bounded independent
of k as k — 0. Consequently the method is stable: the global error can be bounded in
terms of thc sum of all the one-step errors and hence has the same asympiotic behavior as
the LTE as & = 0. This form of stability is often called zem-stability in ODE theory. to
distinguish it from other forms of stability that are of equal importance in practice. The
fact that a method is zero-stable (and converges as & — 0) is no guarantee that it will give
rcasonable results on the particular grid with & > 0 that we want Lo use in practice. Other
“stability™ issues of a different nature will be taken up in the next chapter.

But first we will invesligate the issue of zero-stability for general LMMs, where the
theory of the previous section does not apply directly. We begin with an example showing
a consistent LMM that is nor convergent. Examining what goes wrong will motivaie our
definition of zero-stability for LMMs.

Example 6.2. The LMM

Ut 33Ut 42U = —k f(UM) (6.19)

has an LTE given by

™= {:[l‘(lwz) = 3 (tns1) + 2u(ln) + k1t (15)] = ék””(’n) + O(kY),

so the method is consistent and “first order accurate” But in fact the global error will not
exhibit first order accuracy, or even convergence, in general. This can be seen even on the
trivial initial-value problem

W) =0 uw(@=0 6.20)

with solution u(¢) = 0. In this problem, equation (6.19) takes the form
Ut —3umt! 420" = 0. (6.21)

We need two starting values U® and U, If we take U® = U = 0, then (6.21) gencrates
U™ = 0 for all n and in this case we certainly converge 1o correct solution, and in fact we
gel the exact solution for any k.

But in general we will not have the exact value U available and will have to approx-
imate this, introducing some error into the computation. Table 6.1 shows results obtained
by applying this method with starting data U® = 0, U! = k. Since U (k) = Oas k — 0,
this is valid starting data in the context of Definition 6.1 of convergence. If the method is
convergent, we should sce that UV, the computed solution at time 7 = 1, converges to
zero as & — 0. Instead it blows up quite dramatically. Similar results would be seen if we
applied this method to an arbitrary equation ' = /(1) and used any one-step method to
compute U'! from U°.

The homogeneous linear difference equation (6.21) can be solved explicitly for U"
in terms of the starting values U? and U, We obtain

Ur=20"-vu' + 27U - UY). (6.22)

2/

Chapter 6. Zero-Stability and Convergence for Initial Value Problems

Table 6.1. Solution UV 10 (6.21) with U® =0, U' = k and various values of k = |/N

N uN
5 6.2
10| 1023
20 | 5.4 x 10

It is easy to verify that this satisfics (6.21) and also the stanting values. (We'll see how to
solve general linear difference equations in the next section)

Since u(r) = 0, the error is £ = U" and we scc that any initial errors in U! or
U? arc magnificd by a factor 2% in the global error (except in the special case U' = U?).
This exponential growth of the error is the instability that leads to nonconvergence To rule
out this sort of growth of errors, we need to be able to solve a general linear difference
cquition

6.4.1 Solving linear difference equations

We bricfly review one solution technigue for lincar difference equations. see Scction D.2.1
for a different approach. Consider the general homogeneous lincar difference cquation

r
Y ajum =0 (6.23)
Jj=0

Evenually we will look for a panticular solution satisfying given inittal conditions
UI) Ul ur 1

but to begin with we will find the gencral solution of the difference equation in terms of r
free parameters. We will hypothicsize that this equation has a solution of the form

Urar (6 24)

for some value of ¢ (here ¢" is the nth power!). Plugging this into (6.23) gives

r
Y aptr =0
=0

and dividing by {" yiclds
r
Y apti =0 (6.25)

We see that (6.24) is a solution of the difference equation if { satisfies (6.25). i.c..if{isa
rool of the polynomial

p@) =Y oyt
j=0

37

|

6.4. Zero-stability of linear multistep methods

Note that this is just the fiest characteristic polynomial of the LMM introduced in (5.49). In
general p(¢) has r roots &y, £2. ..., ¢, and can be factored as

p) =ar(§ = 6N —82) - (E =)

Since the difference equation is linear, any lincar combination of solutions is again a
solution. I &y. §a, & aredistinct (§; # & fori # j), then the r distinct solutions {]'
arc linearly independent and the general solution of (6.23) has the form

U =arfy +ealy +-- + ey, (6.26)

where ¢y, ..., ¢, are arbitrary constants. In this case, every solution of the difference
equation (6.23) has this form. If initial conditions U®, U, U""" are specified, then
the constants ¢;, ..., ¢, can be uniquely determined by solving the r x r linear system

el +ert+e =US,
aly +eabrt o, =U, (6.27)

afi™ FealT g =0
Example 6.3. The characteristic polynomial for the difference equation (6.21) is
pEY =23+ = (-1 -2) (6.28)
withroots {3 = |, {2 = 2. The genecral solution has the form
Ul=c +c1+ 2"

and solving for ¢, and ¢ from U° and U gives the solution (6.22).

This example indicates that if p({) has any roots that are greater than one in modu-
lus, the method will not be convergent. It turns out that the converse is nearly true: if all
the roots have modulus no greater than one, then the method is convergent, with one pro-
viso. There must be no repeated roots with modulus equal to one. The next two examples
illustrate this.

If the roots are not distinct, say, {; = {> for simplicity, then {{ and {3 are not
lincarly independent and the U” given by (6.26), while still a solution, is not the most
general solution. The system (6.27) would be singular in this case. In addition to {{ there
is also a solution of the form n{] and the general solution has the form

Ut =¢8] +eand] + ¢35+ + ¢ L7

If in addition {3 = {), then the third term would be replaced by c;nz{’l'. Similar modifica-
tions are made for any other repeated roots. Note how similar this theory is to the standard
solution technique for an rth order linear ODE.

Example 6.4. Applying the consistent LMM

Uttt Lyt = ;k(f(um-z) - f(U™) (6.29)

2%

pa

Chapter 6. Zero-Stability and Convergence for Initial Value Problems

10 the differential equation 1'(7) = 0 gives the difference equation

unt? Uttt U =0,
The characteristic polynomial is

PR =3 -2+ 1= 1) (6.30)
50§y = {2 = 1. The general solution is
U = ¢ + can.

For particular starting values U% and U the solution is

Ut = U+ W' - U"n.

Again we sce that the solution grows with u, although not as deamaticaliy as in Example 6.2
(the growth is hincar rather than exponential). But this growth is still enough to destroy
convergence. If we take the same starting valucs as before, U? = 0 and U! = &, then
U" = knand so
lim UN kN =T
NA=T
The method converges 1o the function v(r) ¢ rather than to w(f) = 0, and hence the
LMM (6.29) is not convergent
This example shows that if p(¢) has a repeated root of modulus 1, then the method
cannot be convergent
Example 6.5. Now consider the consistent LMM

Uned oy g 2gmer Lyn !l:j(U") (6.31)
4 4 4
Applying this to (6.20) gives
5 |
LRI YL N LA U™ =0
v + 2 3
and the characteristic polynomial is
5 5 1 .
PRy == 22 4 30— 4 = (- DE - 05) (6.3

So &y =1, {a = &3 = 1 /2 and the gencral solution is

U""- . ‘ l n ' n
=0+ 3 + 5)

Here there is a repeated root but with modulus less than . The lincar growth of i is then
overwhelmed by the decay of (1/2)".

For this three-step method we need three starting values U%, U', U? and we can
find ¢y. ¢a. ¢3 in terms of them by solving a linear system similar to (6.27). Each ¢; will

o4

6.4. Zero-stability of linear multistep methods

be a linear combination of U?, U', U? and soif UY(k) — O as k = 0, then ¢j(k) = 0
as k — 0 also. The value UV computed at time T with step size & (where AN = T) has
the form

N~y Ny
uv = (k) + ea(k) (:;) + c¢3(A)N (-2-) . (6.33)
Now we sec that
lim UV =0
k{0
NksT

and so the method (6.31) converges on 1’ = 0 with arbitrary starting values UV (k) satisfy-
ing UY(k) = 0as k = 0. (In facy, this LMM is convergent in general.)

More gencrally, if p(¢) has a root {; that is repeated m times, then UV will involve
terms of the form N*¢{N fors = 0,1, ..., nm — 1. This converges to zero as N — oo
provided |{;| < |. The algebraic growth of N* is overwhelmed by the exponential decay
of Cf’ . This shows that repeated roots are not a problem as long as they have magnitude
strictly less than 1.

With the above examples as motivation, we are ready to state the definition of zero-
stability.

Definition 6.2. An r-step LMM is said to be zero-stable (f the roots of the characteristic
polynomial p({) defined by (5.49) satisfy the following conditions:

il forj=1,2,,....rn

(6.34)
If¢; is a repeated rooy, then |§;| < 1.

If the conditions (6.34) are satisfied for all roots of p, then the polynomial is said to
satisfy the oot condition.
Example 6.6. The Adams methods have the form

Ut = Un+r—l + k Zﬂjf(un.*j)

i=1

and hence
pE)=¢ =yt =1

The rootsare §; = 1 and {3 = --+ = {, = 0. The root condition is clearly satisfied and all
the Adams-Bashforth and Adams-Moulton methods are zero-stable.

The given examples certainly do not prove that zero-stability as defined above is a
sufficient condition for convergence. We looked at only the simplest possible ODE u/(1) =
0 and saw that things could go wrong if the root condition is nor satisfied. It turns out,
however, that the root condition is all that is needed to prove convergence on the general
initial value problem (in the sense of Definition 6.1).

Theorem 6.3 (Dahlquist [22]). For LMMs applied to the initial value problem for u'(1) =
J(u(e). 1),

consistency + cero-stability <¢==> convergence. (6.35)

3¢

- Chapter 6. Zero-Stability and Convergence for Initial Value Problems

This is the analoguc of the statement (2.21) for the BVP. A proof of this result can be
found in [43].

Note: A consistent LMM always has one root equal to 1, say, §; = 1, called the
principal root. This follows from (5.50). Hence a consistent onc-sicp LMM (such as
Euler, backward Euler, trapezoidal) is certainly zero-stable. More generally we have proved
in Scction 6.3 4 that any consistent onc-step method (that is a Lipschitz continuous) is
convergent. Such methods arc automatically “zero-stable” and behave wellas A — 0. We
can think of zero-stability as meaning “stable in the limitas & — 0"

Although a consisient zero-stable method is convergent, it may have other stability
problems that show up if the time step & is chosen too large in an actual computation.
Additional stability considerations are the subject of the next chapter,

36

Chapter 7

Absolute Stability for
Ordinary Differential
Equations

7.1 Unstable computations with a zero-stable method

In the last chapter we investigated zero-stability, the form of stability needed to guarantee
convergence of a numerical method as the grid is refined (K — 0). In practice, however,
we are not able to compute this limit. Instcad we typically perform a single calculation
with some particular nonzero time step k (or some particular sequence of time steps with a
variable step size method). Since the expense of the computation increases as k& decreases,
we generally want to choose the time step as large as possible consistent with our accuracy
requirements. How can we estimate the size of & required?

Recall that if the method is stable in an appropriate sense, then we expect the global
error to be bounded in terms of the local truncation errors at each step, and so we can ofien
use the local truncation ervor to estimate the time step needed, as illustrated below. But the
form of stability now nceded is something stronger than zero-stability. We nced to know
that the error is well behaved for the particular time step we are now using. It is little
help to know that things will converge in the limit “for & sufficiently small.” The potential
difficulties are best illustrated with some examples.

Example 7.1. Consider the initial value problem (IVP)

w' (1) = —sint, u(0) =1

with solution
u(t) = cost.

Supposc we wish to use Euler’s method to solve this problem up to time T = 2. The local
truncation error (LTE) is

() = %ku"(l) + O(k?) (7.0
= —-%k cos(t) + O(k?).

Since the function f(r) = —sint is independent of u, it is Lipschitz continuous with
Lipschitz constant L = 0, and so the error estimate (6.12) shows that

53

pa

Chapter 7. Absolute Stability for Ordinary Differential Equations

|E?| < Tlltlloo = k max_|cost| = k.
0<t<T

Supposc we want 1o compute a solution with [E{ < 1073, Then we should be able to
take & = 107? and obtain a suitable solution after 7/k = 2000 time steps. Indeed,
calculating using & = 107? gives a computced value U2 = —0.415692 with an crror
E2000 . j2000 _ co5(2) =).4548 x 1073,

Example 7.2. Now supposc we modify the above equation 1o

u'(f) = Mu —cost) — sini, (7.2)

where A is some constant. [f we take the same initial data as before, #(0) = 1, then
the solution is also the same as before, u(tr) = cos!/. As a concrete example, let's take
A = —10. Now how small do we nced to take & to get an error that is 107%? Since the
LTE (7.1) depends only on the true solution u(f), which is unchanged from Example 7.1,
we might hope that we could usc the same & as in that example, & = 1073, Solving the
problem using Euler’s method with this step size now gives U300 0.416163 with
an crror £2990 = 0,161 x 1074, We are again successful. In fact, the error is consider-
ably smaller in this case than in the previous example, for rcasons that will become clear
Jater.

Example 7.3. Now constder the problem (7.2) with A = —2100 and the same data
as before. Again the solution is unchanged and so is the LTE. But now if we compute
with the same step size as belore, A 103, we obtain U9 = -0.2453 x 1077 with
an crror of magnitude 1077, The computation behaves in an “unstable™ manner, with an
crror that grows exponentiatly in time. Since the method is zcro-stable and f(u. t) is
Lipschitz continuous in « (with Lipschitz constant L = 2100), we know that the method
is convergent, and indeed with sufficient)ly small time steps we achieve very good results.
Table 7.1 shows the crror at ime 7 = 2 when Euler's method s used with various values
of . Clearly something dramatic happens between the values & = 0.000976 and A
0.000952. For smaller valucs of & we get very good results, whereas for larger values of A
there is no accuracy whatsoever.

The cquation (7.2) is a lincar cquation of the form (6.3) and so the analysis of Scc-
tion 6.3.1 applics dircctly 1o this problem. From (6.7) we sce that the global crror £
satisfics the rccursion relation

EM™U = (1 + kMNE" — k1", (7.3)

where the local error 1 = 1(1,) from (7.1). The expression (7.3) reveals the source of
the exponential growth in the error—in cach time step the previous error is multiplicd by a
factor of (1 + kX). Forthccasc A = —2100and A = 1072, we have 1 + kX 1.1 and
so we expect the local error introduced in step n1 to grow by a factor of (—1.1)"~"" by the
end of n steps (recall (6.8)). Afier 2000 steps we expect the truncation crvor introduced in
the first step to have grown by a factor of roughly (—1.1)2990 = 1082, which is consistent
with the error actually scen

Note that in Example 7.2 with A = —10, we have | 4+ AA = 0.99, causing a decay in
the effect of previous errors in cach step. This explains why we got a reasonable result in
Example 7.2 and in fact a better result than in Example 7.1, where | + AX = 1.

38

7.2. Absolute stability

Table 7.1. Errors in the computed solution using Euler's method for Example 7.3,
Jor different values of the ime step k. Note the dramatic change in behavior of the error
Jor k < 0.000952

k Error

0.001000 | 0.145252E+77
0.000976 | 0.588105E+36
0.000950 | 0.321089E-06
0.000800 | 0.792298E-07
0.000400 | 0.396033E-07

Returning to the case A = —2100, we expect to observe exponential growth in the
error for any value of & greater than 2/2100 = 0.00095238, since for any & larger than
this we have |} + kA] > 1. For smaller time steps |1 + kA| < 1 and the effect of each
local error decays exponentially with time rather than growing. This explains the dramatic
change in the behavior of the ermror that we see as we cross the value & = 0.00095238 in
Table 7.1,

Note that the exponential growth of errors does not contradict zero-stability or con-
vergence of the method in any way. The method does converge as & — 0. [n fact the bound
(6.12),

[E" < eMTTlt))oo = O(k) as k — 0,

that we used to prove convergence allows the possibility of exponential growth with time.
The bound is valid for all &, but since TeMT = 244200 = 101825 while || rfloo = 4k, this
bound does not guarantee any accuracy whatsoever in the solutionuntil A < 107825, This
is a good example of the fact that a mathcmatical convergence proof may be a far cry from
what is needed in practice.

7.2 Absolute stability

To determine whether a numerical method will produce reasonable results with a given
value of & > 0, we need a notion of stability that is difTerent from zero-stability. There are
a wide variety of other forms of “‘stability” that have been studied in various contexts. The
one that is most basic and suggests itself from the above examples is absolute stability. This
notion is based on the linear test equation (6.3), although a study of the absolute stability of
a method yields information that is typically directly useful in determining an appropriate
time step in nonlinear problems as well; see Section 7.4.3.

We can look at the simplest case of the test problem in which g(f) = 0 and we have
simply

u'(t) = Au(t).

Euler's method applicd to this problem gives

Urtt = (1 + k0U"

*4

pa

Chapter 7. Absofute Stability for Ordinary Differential Equations

and we say that this method is absolutely stable when (1 4k A| < |; otherwisc it is unstable
Note that there are two parameters & and A, but only their product = = AX mauers. The
method is stable whenever -2 < = < 0. and we say that the iterval of absolute stability
for Euler’s method is [-2,0].

[t is more common to spcak of the region of absolute stability as a region in the
complex = plane, allowing the possibility that A is complex (of course the time step &
should be real and positive). The region of absolute stability (or simply the stability region)
for Euler's method is the disk of radius 1 centered at the point -1, since within this disk we
have |1 4 AX| < 1 (see Figure 7.1a). Allowing A to be complex comes from the fact that in
practice we arc usually solving a sysicm of ordinary differential cquations (ODEs). In the
linear casc it is the cigenvalues of the coefficient matrix that are important in determining
stability. In the nonlinear case we typically lincarize (see Section 7.4 3) and consider the
eigenvalues of the Jacobian matrix. Hence A represents a typical cigenvalue and ihese
may be complex cven if the matrix is real. For some problems, looking at the cigenvalues
is not sufficient (see Section 10.12.1, for examplc). but cigenanalysis is generally very
revealing

Farward Euler Backward Eutor
2 2
15 15
1 P - 1
0 — 0 -
-05 ~-0.§ U
1 —— -1
15 - 15
(a) 3 -2 1 0 1 (b) 3 0 1 2 3
Trapezoidal Midpoint
2 —— et —_— 2I - l
5 15 {
, | | |
05 05 f
o————— i 0]
085 | -05
-1 ; -1
15 | -18§ l
(c) % a9 o 1 2 (d) % -1 (!) 1 2

Figure 7.1, Stability regions for (a) Euler, (b) backwand Euler, (<) trapezoidal,
and (d) midpoint (a scgment on imaginary axis)

4o

7.3. Stability regions for linear multistep methods

7.3 Stability regions for linear multistep methods

For a general linear multistep method (LMM) of the form (5.44), the region of absolute
stability is found by applying the method to #” = Au, obtaining

ia;U"H =k zr:ﬂ;AU"'”.

J=0 j=0
which can be rewritten as

Y ;=B U™t =0, (14)

J=0

Note again that it is only the product = = kA that is important, not the values of & or A
scparately, and that this is a dimensionless quantity since the decay rate A has dimensions
time™!, while the tlime step has dimensions of time. This makes sense—if we change the
units of time (say, from seconds 1o milliseconds), then the parameter A will decrease by a
factor of 1000 and we may be able to increase the numerical value of & by a factor of 1000
and still be stable. But then we also have to solve out Lo time 10007 instead of to time T,
so we haven't really changed the numerical problem or the number of time steps required.

The recurrence (7.4) is a homogeneous linear difference equation of the same form
considered in Section 6.4.1. The solution has the general form (6.26), where the ¢; are
now the roots of the characteristic polynomial z;=o(a1 — zB;)¢’. This polynomial is
often called the stability polynomial and denoted by w(¢;). It is a polynomial in ¢ but its
coefficients depend on the value of =, The stability polynomial can be expressed in terms
of the characteristic polynomials for the LMM as

n(§:2) = p§) —za(3). (7.5)

The LMM is absolutely stable for a particular value of = if errors introduced in one time
step do not grow in future time steps. According to the theory of Section 6.4.1, this requires
that the polynomial 77{{: =) satisfy the root condition (6.34).

Definition 7.1. The region of absolute stability for the LMM (5.44) is the set of points = in
the complex plane for which the polynomial n(¢:) satisfies the root condition (6.34).

Note that an LMM is zero-stable if and only if the origin = = 0 lies in the stability

region.
Example 7.4. For Euler’s method,

n(§:zy=¢ -1 +2)
with the single root §; = | + =. We have already seen that the stability region is the disk
in Figure 7.1(a).
Example 7.5. For the backward Euler method (5.21),

r§:)=(1-2)¢~-1

4l

pa

Chapter 7. Absolute Stability for Ordinary Differential Equations

withroot ¢, = (I —=)~'. We have
(1 =2)7Y <1 &= |I-2 2]

so the stability region is the exterior of the disk of radius | centered at = = 1, as shown in
Figurc 7.1(b).
Example 7.6. For the trapezoidal method (5.22),

nigia) = (1-32) ¢- (14 52)

with root

This is a lincar fractional transformation and it can be shown 1hat
611 <1 & Re(z) 20.

where Re(:) is the rcal part. So the stability region is the left half-plance as shown in
Figure 7.1 (c)
Example 7.7. For thc midpoint method (5.23).

r(Giz)=¢2 -2z —~1.

The roots are §y 2 = = &= /=% + 1. It can be shown that if = is a pure imaginary number
of the form = = ia with |a| < L. then [§)] = [&a| = Tand & # §a. and hence the root
condition is satisfied. For any other = the root condition is not satisfied. In particular, if
s = Zi,then {; = {2 is a repeated root of modulus 1. So the stability region consists only
of the open interval from —i to/ on the imaginary axis, as shown in Figure 7.1(d).

Since & is always rcal, this means the midpoint method is useful only on the test
problem o’ = Aw if A is purc imaginary. The method is not very uscful for scalar problems
where A 1s typically real, but the method is of great interest in some applications with
systems ol equations. For example, if the matrix is real but skew symmetric (AT = - A),
then the cigenvalues arc purc imaginary. This situation arises naturally in the discretization
of hyperbolic partial differential equations (PDEs), as discussed in Chapier 10.

Example 7.8. Figures 7.2 and 7.3 show the stability rcgions for the r-step Adams-
Bashforth and Adams-Moulton methods for various valucs of r. For an r-step method the
polynomial m({. =) has degree r and there are r roots. Determining the values of - for
which the root condition is satisfied does not appear stimple. However, there is a simple
techniquc called the boundary locus method that makes it possible to determine the regions
shown in the figures. This is briefly described in Section 7.6.1.

Note that for many methods the shape of the stability region near the origin = = Qs
directly related to the accuracy of the method. Recall that the stability polynomial p(¢) for
a consistent LMM always has a principal root §; = 1. it can be shown that for = ncar 0 the
polynomial = (¢; =) has a corresponding principal root with behavior

L(z) =¢ + O@E=PY) asz -0 (7.6)

Y2

7.3. Stability regions for linear multistep methods

Staniity region cf Adams-Bashorth 2 -step method Stabilty region of Adams-Basidorth 3-step melhod
2 = =

B

|
o: /\ o:! /K
Y3 \/ -os|,

-1 -1

-5 15
@% = C O T T e B S
Subility region of Adams-Bastdonth 4-step meihod) Stabkiy 1egion of Adams-Baghforth S-step d
2

05 05

/\

p c |
. Kb . —
N

PADN

-t -1

=15 -15

() = 2 -t 0 1 @ = 2 A

o
-

Figuve 7.2. Stability regions for some Adams-Bashforth methods. The shaded
region just to the left of the origin is the region of absolute stability. See Section 7.6.1 fora
discussion of the other loops seen in figures (c) and (d).

if the method is pth order accurate. We can sce this in the examples above for one-step
methods, e.g., for Euler's method §i(2) = 1 + 2 = ¢¥ + O(z*). It is this root that is
giving the appropriate behavior U"*+! & ¢*U™ over a time step. Since this root is on the
unit circle at the origin - = 0, and since |{¢*| < 1 only when Re(-) < 0, we expect the
principal root to move inside the unit circle for small - with Re(z) < 0 and outside the
unit circle for small - with Re(z) > 0. This suggests that if we draw a small ciccle around
the origin, then the left half of this circle will lie inside the stability region (unless some
other root moves outside, as happens for the midpoint method), while the right half of the
circle will lie outside the stability region. Looking at the stability regions in Figure 7.1
we see that this is indeed true for all the methods except the midpoint method. Moreover,
the higher the order of accuracy in general, the larger a circle around the origin where this
will approximately hold. and so the boundary of the stability region tends to align with the
imaginary axis farther and farther from the origin as the order of the method increases, as
observed in Figures 7.2 and 7.3. (The trapezoidal method is a bit of an anomaly, as its
stability region exactly agrees with that of ¢* for all -.)

42

pa

Chapter 7. Absolute Stability for Ordinary Differential Equations

Siabitity reglon of Adams -Moultton 2- slep method ftability ragion of Adams - Moultoh 3-step methad
- = : 3 : 4 — ~ G -
- {
a e S | I 1
‘/"' ..
2 | 2 -
1]
oL - E——. o e e | [l
li 1 /
| ~— -
2 -2 5
NG
3l i L 3
-4 - . - - IS A - oy - - - -
(a) -8 -5 -4 -3 -2 = 0 1 (b ¢ -5 4 -3 -2 § 0 1
Stabilty region ol Agams - Moutton 4-gtep method Statility region of Adams -Moulton 5-step mathod
Y Pe— p— R 4 e L _ = v
|
3 3 | |
|
2 2 |
1 1 ; 1
o}~ = o (Y 1
-1 1 . ' |
Fy ?
J J
B e J 4 - L -
{¢c) -8 -8 4 3 2 4 B 1 (d) © 5 4 3 2 -1 0 1

Figure 7.3. Stability regions for some Adams-Moulton methods

Sce Scction 7 6 for a discussion of ways in which stability regions can be determined
and ploticd.

7.4 Systems of ordinary differential equations

So lar we have examined stability theory only in the context of a scalar differential equa

ton #’(t) = f(u{r)) for a scalar function u{r). In this section we will look at how this
stability theory carrics over to systems of m differential equations where u(r) € R™. For
a linear system u’ = Au, where A is an m x m matrix, the solution can be written as
1(1) = ¢4 u(0) and the behavior is largely governed by the cigenvalues of A. A necessary
condition for stability is that kA be in the stability rcgion for each eigenvalue A of A. For
gencral nonlinear systems 1’ = f(u), the theory is more complicated, but a good rule of
thumb is that A should be in the stability region for cach eigenvalue A of the Jacobian
matrix ‘(). This may not be truc if the Jacobian is rapidly changing with time, or even
for constant coefficient lincar problems in some highly nonnormal cases (see [47] and Sec-
tion 10.12.1 for an example), but most of the time cigenanalysis is surprisingly eflcctive

4y

Chapter 7. Absolute Stability for Ordinary Differential Equations

7.6 Plotting stability regions

7.6.1 The boundary locus method for linear multistep methods

A point = € C is in the stability region S of an LMM if the stability polynomial n(¢: =)
salisfies the root condition for this value of =. It follows that if = is on the boundary of the
stability region, then x({: =) must have at least one root ¢; with magnitude exactly equal

to 1. This {; is of the form
]

§=¢
for some value of 8 in the interval (0, 2x]. (Beware of the two different uses of mr.) Since
{; is aroot of 7 ({; 2), we have

x(@®)=0

for this particular combination of = and 6. Recalling the definition of x, this gives
pe®)y = za(e®) =0 (7.12)
and hence)
_ P’
- "(‘,IG) "
If we know 8, then we can find = {rom this.

Since every point = on the boundary of S must be of this form for some value of 9 in
[0, 27, we can simply plot the parametrized curve

ple®)
‘,(ew)

20) = (7.13)
for0 < @ < 2 to find the locus of all points which are potentially on the boundary of S.
For simple methods this yields the region S directly.

Example 7.13. For Euler’s method we have p(§) = ¢ — 1 and o ({) = 1, and so

20) =e'f —1.

This function maps [0, 2] to the unit circle centered at = = ~1, which is exactly the
boundary of S as shown in Figure 7.1(a).

To determine which side of this curve is the interior of S, we need only evaluate the
roots of w({: =) at some random point = on one side or the other and see if the polynomial
satisfies the root condition.

Alternatively, as noted on page 155, most methods are stable just to the left of the
origin on the negative real axis and unstable just to the right of the origin on the positive rea)
axis. This is often enough information to determine where the stability region lies relative
1o the boundary locus.

For some methods the boundary locus may cross itself. In this case we typically find
that at most one of the regions cut out of the plane corresponds to the stability region. We
can determine which region is S by evaluating the roots at some convenient point - within
cach region.

Example 7.14. The five-step Adams-Bashforth method gives the boundary locus
seen in Figure 7.2(d). The stability region is the small semicircular region to the left of the

&<

pa

Chapter 7. Absolute Stability for Ordinary Differential Equations

From the definition of absolute stability given at the beginning of this chapter, we sce
that the region of absolute stability for a one-step method is simply

S={ce C:|RC) =1} (7.20)

This follows from the fact that iterating a one-step method on /' = Au gives (U =
|R(=}"|U°] and this will be uniformly bounded in # if = lies in S.

One way to attempt to compute S would be to compute the boundary locus as de-
scribed in Section 7.6.1 by setting R(z) = ¢'% and solving for = as 6 varies. This would
give the set of = for which |R(z)] = |, the boundary of S. Therc's a problem with this,
however: when R(z) is a higher order polynomial or rational function there will be several
solutions = for each 8 and it is not clear how to connect these to generate the proper curve.

Another approach can be taken graphically that is mare brute force, but effective. If
we have a reasonable idea of what region of the complex =-plane contains the boundary of
S, we can sample | R(z)| on a fine grid of points in this region and approximate the level
set where this function has the value 1 and plot this as the boundary of S. This is easily
done with a contour plotter, for example, using the contour command in MATLAB. Or
we can simply color each point depending on whether it is inside S or outside

For example, Figure 7.5 shows the stability regions for the Taylor series methods of
orders 2 and 4, for which

I 2

5-

Rz)=1+4z+
| | | (7.20)
R =144 <2+ =23 4 =24,

(=) e RS BT 55
respectively. These are also the stability regions of the second order Runge-Kutta method
(5.30) and the fourth order accurate Runge-Kutta method (5.33), which arc easily seen to

have the same stability functions.

Note that for a one-step method of order p, the rational function R(z) must agree
with ¢% to O(=P*"). As for LMMs, we thus expect that points very close to the origin will
lic in the stability region S for Re(z) < 0 and outside of S for Re(z) > 0.

7.7 Relative stability regions and order stars

Recall that for a one-step method the stability region S (more properly called the region of
absolute stability) is the region S = {z € € : |R(z)| < 1}, where U™t = R(z)U" isthe
relation between U™ and U™! when the method is applied to the test problem v’ = A,
For - = Ak in the stability region the numerical solution docs not grow, and hence the
method is absolutely stable in the sense that past errors will not grow in later time steps.

On the other hand, the true solution to this problem, u(/) = eMu(0). is itsell expo-
nentially growing or decaying. One might argue that if u(¢) is itself decaying, then it isn't
good enough to simply have the past errors decaying. too—they should be decaying at a
faster rate. Or conversely, if the true solution is growing exponentially, then perhaps it is
fine for the error also to be growing, as long as it is not growing faster.

This suggests defining the region of relative stability as the set of = € C for which
|R(z)] < le|. In fact this idea has not proved to be particularly useful in terms of judging

g

pa

