outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	O	00	0000	O

Lecture 4

Paul Andries Zegeling

Department of Mathematics, Utrecht University

Numerical Methods for PDEs

Department of Mathematics, Utrecht University

(日)

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
●	00000000	0000	○	○○	0000	O

Outline of Lecture 4

- H exercises of Lecture 3
- FTCS for the heat equation
- T Von Neumann stability
- A Conditional consistency and unconditional instability
- \oplus The heat equation in 2D
- outlook to Lecture 5

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	●0000000	0000	○	○○		O

FTCS for heat equation [1]

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	○●○○○○○○	0000	○	○○		O

FTCS for heat equation [2]

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00●00000	0000	○	00		O

FTCS for heat equation [3]

$$\frac{\mathsf{E} \times \operatorname{ownple}: \left\{ \begin{array}{l} h \ v = v_{t} - k \ v_{xx} \quad (hedt aquation) \\ L_{h}v = \frac{v_{t}^{n-1} - v_{t}^{n}}{\Delta t} - k \cdot \frac{v_{tn}^{m} - 2v_{t}^{m} + v_{tr}^{m}}{(\Delta x)^{2}} \quad (\mathsf{FTCS}) \\ \end{array} \right\} \\ \xrightarrow{\mathsf{T}} \begin{array}{l} r_{t}^{m} = \left[\left(v_{t} \right)_{t}^{n} - \frac{v_{t-1}^{m-1} - v_{t}^{n}}{\Delta t} \right] - k \cdot \left[\left(v_{xx} \right)_{t}^{n} - \frac{v_{tn}^{m} - 2v_{t}^{m} + v_{tr}^{m}}{(\Delta x)^{2}} \right] \\ \xrightarrow{\mathsf{v}} \begin{array}{l} v_{t}^{m} = \left[\left(v_{t} \right)_{t}^{n} - \frac{v_{t-1}^{m-1} + v_{t}^{n}}{\Delta t} \right] - k \cdot \left[\left(v_{xx} \right)_{t}^{n} - \frac{v_{tn}^{m} - 2v_{t}^{m} + v_{tr}^{m}}{(\Delta x)^{2}} \right] \\ \xrightarrow{\mathsf{v}} \begin{array}{l} v_{t}^{m} = \left[\left(v_{t} \right)_{t}^{n} + \frac{v_{t}^{m} + v_{t}^{n}}{\Delta t} \right] - k \cdot \left[\left(v_{xx} \right)_{t}^{n} + \frac{v_{tn}^{m} - 2v_{t}^{m} + v_{tr}^{m}}{(\Delta x)^{2}} \right] \\ \xrightarrow{\mathsf{v}} \begin{array}{l} v_{t}^{m} = \left[\left(v_{t} \right)_{t}^{n} + \frac{v_{t}^{m} + v_{t}^{m}}{\Delta t} \right] \\ \xrightarrow{\mathsf{v}} \left[\left(v_{xx} \right)_{t}^{n} + \frac{v_{tn}^{m} - v_{t}^{m} + v_{tr}^{m}}{(\Delta x)^{2}} \right] \\ \xrightarrow{\mathsf{v}} \begin{array}{l} v_{t}^{m} = \left(v_{t} \right)_{t}^{n} + \frac{v_{t}^{m} + v_{t}^{m} + v_{t}^{m} + v_{t}^{m} + v_{tr}^{m} + v_{tr}^{m} + v_{t}^{m} +$$

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	000●0000	0000	○	○○		O

FTCS for heat equation [4]

FTCS for the heat equation can be re-written as:

$$\frac{\overline{U} = L_{\Delta} \overline{U}^{n}}{u_{1}^{n}} = L_{\Delta} \overline{U}^{n}$$
where $\overline{U}^{n} dut_{\alpha} \left(u_{1}^{n} \right)^{n}$ and $L_{\Delta} = \begin{pmatrix} n_{-2\pi} n & 0 \\ 2 & n_{-2\pi} n & 0 \\ 0 & n_{-2\pi} n \end{pmatrix}$, $\overline{z} = K \cdot \frac{\Delta t}{(\Delta x)^{2}}$
Computational of encil of FTCS (heat eq.):

$$\frac{\overline{U} = L_{\Delta} \overline{U}^{n}}{(\Delta x)^{2}} = \frac{1}{1 \cdot 2\pi} + 2\pi$$
Note: $\|L_{\Delta}\|_{\infty} = |1 - 2\pi| + 2\pi$
and $1 \cdot 2\pi \ge 0$ and $\|L_{\Delta}\|_{\infty} = 1$

Paul Andries Zegeling

outline	FTCS 0000●000	Neum 0000	Lax ○	OtherEx ○○	heat2d	outlook O

FTCS for heat equation [5]

Def.:
$$\overline{u}^{n} = \begin{pmatrix} u_{1} \\ u_{1} \\ u_{2} \end{pmatrix}^{n} \quad \stackrel{"exact"}{\overset{values}{ualues}}$$

 \overline{ualues} at grid points
 \overline{ualues} at grid points
 \overline{ualues} at grid points
 \overline{ualues} at grid points
 \overline{ualues} at \overline{ualues} to the solution of a PDE
on the interval $o \leq t^{n} \leq T$, $\overline{at t = t^{n}}$, $\overline{if} ||\overline{u}^{n} - \overline{u}^{n}|| \to o$
 $\int a_{X \neq 0} \int a$

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000●00	0000	○	○○		O

FTCS for heat equation [6]

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	000000●0	0000	○	00		O

FTCS for heat equation [7]

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	0000000●	0000	○	○○		O

FTCS for heat equation [8]

Special case ("supra-convegace"):
FTCS
$$T_{L}^{\eta} = \left(-\frac{1}{2} \Delta t \kappa^{2} + \frac{\kappa}{12} (\Delta x)^{2}\right) u_{X,XXX} + O((\Delta t)^{2}) + O((\Delta x)^{4})$$

Reat eq. $T_{L}^{\eta} = \left(-\frac{1}{2} \Delta t \kappa^{2} + \frac{\kappa}{12} (\Delta x)^{2}\right) u_{X,XXX} + O((\Delta t)^{2}) + O((\Delta x)^{4})$
 $u_{L} = \kappa (u_{XX})_{L} = \kappa (\kappa u_{L})_{KX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (\kappa u_{L})_{KX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (\kappa u_{L})_{KX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (\kappa u_{L})_{KX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (\kappa u_{L})_{KX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (\kappa u_{L})_{KX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{L} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{X,XXX}$
 $U_{H} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{XXXX}$
 $U_{H} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{XXXX}$
 $U_{H} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})_{LXX} = \frac{\kappa}{2} u_{XXXX}$
 $U_{H} = \kappa (u_{XX})_{LXX} = \kappa (u_{XX})$

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	●000	o	00	0000	O

Von Neumann stability [1]

Define:
$$A = analytical solution of the PDE
D = exact solution of the FD equation
N = numerical solution using a computer with finik accuracy
=) disvetization even = A - D
round-off even 44 e = N-D and N=D+e
for FTCS applied to the heat equation with K=1:
$$\frac{D_i^{n+1} \in i^{n+1}}{at} - D_i^n - \varepsilon_i^n = \frac{D_{in}^n + \varepsilon_{it+1}^n - 2D_i^n - 2\varepsilon_i^n + D_{in}^n + \varepsilon_{it}^n}{(A \times 1)^n}$$
(we have added a nound-off even to each term in the exact FD equation)
D 'must' solve the FTCS equation exactly =) $\frac{\varepsilon_i^{n+1} - \varepsilon_i^n}{A\varepsilon} = \frac{\varepsilon_{it+1}^n - \varepsilon_{it}^n + \varepsilon_{it+1}^n}{(A \times 1)^n}$
(or in solve the FTCS equation exactly =) $\frac{\varepsilon_i^{n+1} - \varepsilon_i^n}{A\varepsilon} = \frac{\varepsilon_{it+1}^n - \varepsilon_{it+1}^n}{(A \times 1)^n}$
(or any consider a linear PDE)$$

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	○●○○	o	○○		O

Von Neumann stability [2]

$$\frac{\text{Stability}: \text{ the } \mathbb{P}_{i}^{t} \text{ s do not grow from step } \text{ to step } \text{ n tr}}{(in He time objection)}$$

$$\stackrel{(in He time objection)}{\stackrel{(in He time objection)}{\stackrel{(i$$

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	○○●○	○	○○		O

Von Neumann stability [3]

duride by
$$e^{at}e^{i\frac{h}{h}mx}$$
: $\frac{e^{abt}}{bt} = \frac{e^{i\frac{h}{h}mdx}}{(\Delta x)^2}$
or $e^{abt} = 1 + \frac{\Delta t}{(\Delta x)^n} \left[e^{i\frac{h}{h}\Delta x} + e^{-i\frac{h}{h}mdx} - 2 \right]$
 $200(hm^{2}) \frac{e^{i\frac{h}{h}}e^{i\frac{h}{h}mx}}{e^{i\frac{h}{h}}} = 1 + \frac{2\Delta t}{(\Delta x)^n} \left[\cos\left(\frac{h}{h}m\Delta x\right) - 4 \right]$
 $200(hm^{2}) \frac{e^{i\frac{h}{h}}e^{i\frac{h}{h}mx}}{e^{i\frac{h}{h}}} = 1 - \frac{4\Delta t}{(\Delta x)^n} \left[\cos\left(\frac{h}{h}m\Delta x\right) - 4 \right]$
 $200(hm^{2}) \frac{e^{i\frac{h}{h}}e^{i\frac{h}{h}}}{e^{i\frac{h}{h}}} = 1 - \frac{4\Delta t}{(\Delta x)^n} \left[\cos\left(\frac{h}{h}m\Delta x\right) - 4 \right]$
 $200(hm^{2}) \frac{e^{i\frac{h}{h}}e^{i\frac{h}{h}}}{e^{i\frac{h}{h}}} \int tom i on previous page (shopping "Hem):$
 $\frac{e^{i\frac{h}{h}}e^{i\frac{h}{h}}}{e^{i\frac{h}{h}}} = \left| e^{a\frac{h}{h}} \right| = \left| 1 - \frac{4\Delta t}{(\Delta x)^n} e^{i\frac{h}{h}}e^{i\frac{h}{h}} \right|$
 $(a \in C)$

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS 00000000	Neum ○○○●	Lax o	OtherEx ○○	heat2d	outlook O

Von Neumann stability [4]

$$G = |e^{abt}| \text{ is called the amplification factor}$$

$$fability for FT(S/heat if G \leq 1$$

$$(=) -1 \leq 1 - \frac{4bt}{(\delta x_1^2} \int \frac{1}{\delta t_1} \int \frac{1}{(\delta x_1^2 - \delta t_1)^2} \int \frac{1}{$$

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS 00000000	Neum 0000	Lax ●	OtherEx ○○	heat2d	outlook O

Lax equivalence theorem

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	○	●○	0000	O

Conditional consistency

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	o	○●	0000	O

Unconditional instability

Leap prog scheme for the heat equation ("having-out")

$$\frac{u_{i}^{n+1} - u_{i}^{n-1}}{2 \Delta t} = \frac{k}{(\Delta x_{i})^{n}} \left(\begin{array}{c} u_{i}^{n} + u_{irr}^{n} \\ (\Delta x_{i})^{n} - 2u_{i}^{n} + u_{irr}^{n} + u_{ir$$

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	○	○○	●○○○	O

The heat equation in 2d [1]

Department of Mathematics, Utrecht University

Paul Andries Zegeling

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	o	00	○●○○	

The heat equation in 2d [2]

$$\frac{\text{Teme - integrahim :}}{(htrice 1 (EF) u_{ijj}^{mH} = u_{ijj}^{m} + \frac{k \cdot \delta t}{h^{n}} \left[u_{ijj}^{m} + u_{ijj}^{m} + u_{ijj}^{m} - 4u_{ij}^{m} \right] \\ \text{LTE : } O(h^{2}) + O(\Delta t) \\ \text{Stability : Substitute (Von Neuman stability) } u_{ij}^{m} = e^{\Delta t} e^{i\xi \times t} e^{i\eta \cdot t} \\ \xrightarrow{\delta tability : Substitute (Von Neuman stability) } u_{ij}^{m} = e^{\Delta t} e^{i\xi \times t} e^{i\eta \cdot t} \\ \xrightarrow{\delta tability : Substitute (Von Neuman stability) } u_{ij}^{m} = e^{\Delta t} e^{i\xi \times t} e^{i\eta \cdot t} \\ \xrightarrow{\delta t} follow that G \leq 1, if o \leq \frac{k \cdot \Delta t}{h^{2}} \leq \frac{1}{4} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} follow that G \leq 1, if o \leq \frac{k \cdot \Delta t}{h^{2}} \leq \frac{1}{4} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} \\ \xrightarrow{\delta t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot t} e^{i\theta \cdot$$

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	○	○○	○○●○	O

The heat equation in 2d [3]

Paul Andries Zegeling

Department of Mathematics, Utrecht University

outline	FTCS	Neum	Lax	OtherEx	heat2d	outlook
O	00000000	0000	o	00	○○○●	O

The heat equation in 2d [4]

i)
$$\begin{array}{l} \underbrace{u_{1j}}_{ij} \underbrace{u_{ij}}_{ij} = \underbrace{k}_{(\Delta x)^2} \Delta_x^2 u_{ij}^{m_{e_1}^2} + \underbrace{k}_{(\Delta y)^2} \Delta_y^2 u_{ij}^n \\ \underbrace{hall trime resp}_{ij} \quad solve trick agood system (conditionally stable $\frac{12}{2} u_{ij}^{-M_{e_2}^2} \leq \frac{1}{2}) \\ ii) take another hall trime step : \\ \underbrace{u_{ij}^{n_1} - u_{ij}^{n_1^2}}_{ij} = \underbrace{k}_x \Delta_x^2 u_{ij}^{n_1^2} + \underbrace{k}_{(\Delta y)^2} \Delta_y^2 u_{ij}^{n_1^2} \\ solve trick agood system (stability ashrictish: k. \frac{\delta h_2}{\delta_x} \leq \frac{1}{2}) \\ \text{However, the combined method of i) and ii] (full trime step): \\ \underbrace{1}_x (\Delta_x^2 + \Delta_y^2) (u_{ij}^{n_1^2} + u_{ij}^n) = \underbrace{u_{ij}^{n_1^2} - u_{ij}^n}_{\Delta t} + \underbrace{\Delta_x^2} \Delta_y^2 (u_{ij}^{n_1^2} - u_{ij}^n) \\ \underbrace{1}_x (\Delta_x^2 + \Delta_y^2) (u_{ij}^{n_1^2} + u_{ij}^n) = \underbrace{u_{ij}^{n_1^2} - u_{ij}^n}_{\Delta t} + \underbrace{\Delta_x^2} \Delta_y^2 (u_{ij}^{n_1^2} - u_{ij}^n) \\ \underbrace{1}_x (\Delta_x^2 + \Delta_y^2) (u_{ij}^{n_1^2} + u_{ij}^n) = \underbrace{u_{ij}^{n_1^2} - u_{ij}^n}_{\Delta t} + \underbrace{\Delta_x^2} \Delta_y^2 (u_{ij}^{n_1^2} - u_{ij}^n) \\ \underbrace{1}_x (\Delta_x^2 + \Delta_y^2) (U_{ij}^{n_1^2} + u_{ij}^n) = \underbrace{u_{ij}^{n_1^2} - u_{ij}^n}_{\Delta t} + \underbrace{\Delta_x^2} \Delta_y^2 (u_{ij}^{n_1^2} - u_{ij}^n) \\ \underbrace{1}_x (\Delta_x^2 + \Delta_y^2) (U_{ij}^{n_1^2} + u_{ij}^n) = \underbrace{1}_x (stee literature) \\ ettal : O((\Delta t_i^2) + O((\Delta y_i^2) + O((\Delta y_i^2)) \\ effictureg : two tridiagood systems to be ordered \\ \end{aligned}$$$

Department of Mathematics, Utrecht University

Image: Image:

Paul Andries Zegeling

outline O	FTCS 0000000	Neum 0000	Lax ○	OtherEx ○○	heat2d 0000	outlook •

Outlook to Lecture 5

- prepare exercises of Lecture 4 (see webpage!)
- \uparrow the advection equation
- Ϋ́ FTCS
- upwind, downwind
- ≢ Lax-Friedrichs
- Υ Lax-Wendroff

Department of Mathematics, Utrecht University