Finite Difference Methods for Conservation Laws

The canonical form for the 1D conservation law is

u + f{u) =0, (5.34)



and one famous benchmark problem is the Burger's equation

e + (“7) =0, (5.35)
X

in which f{u) = u?/2. The term (i) is often called the flux. This equation can
be written in the nonconservative form

 + e =0, (5.36)

and the solution likely develops shock(s) where the solution is discontinuous,
even if the initial condition is arbitrarily differentiable, i.e., up(x) = sin x.

We can use the upwind scheme to solve the Burger’s equation. From the
nonconservative form, we obtain
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If the solution is smooth, both methods work well (first-order accurate), How-
ever, if shocks develop the conservative form gives much better results than that
of the nonconservative form.

We can derive the Lax-Wendroff scheme using the modified equation of the
nonconservative form. Since «, = —uu,
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so the leading term of the modified equation for the first-order method is
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! There is no classical solution to the PDE when shocks develop because ¢, 15 not well defined We need to
look for weak solutions



and the nonconservative Lax-Wendroff scheme for Burger’s equation is
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Conservative FD Methods for Conservation Laws
Consider the conservation law
u, + f(ur), =0,

and let us seek a numerical scheme of the form
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is called the numerical flux, satisfying
gluyuy. o u)=f(u). (5.39)

Such a scheme is called conservative. For example, we have g(u) =12 /2 for the
Burger’s equation.
We can derive general criteria that g should satisfy, as follows.
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2. Integrate the equation above with respect to ¢ from 1% to 1**! to get
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Define the average of u{x, 1) as
g
ik = ;7 / 1 (e, %)d, (5.40)
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which is the cell average of #(x, r) over the cell (xj__ 1.%;,.1) at the time level &,
The expression that we derived earlier can therefore be rewritten as
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Different conservative schemes can be obtained, if different approximations are
used to evaluate the integral.

- Some Commonly Used Numerical Scheme for Conservation Laws

Some commonly used schemes are:
e Lux-Friedrichs scheme
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where A}_,_% Dj(u(xH% + 1)) is the Jacobian matrix of f{«) at "(xl*"." 7).



- Numerical Algorithms for the Wave Equation

Let us now develop some basic numerical solution techniques for the second-order wave
equation. As above, although we are in possession of the explicit d'Alembert solution
formula (2.82), the lessons learned in designing viable schemes here will carry over to more
complicated situations, including inhonogeneous media and higher-dimensional problems,
for which analytic solution formulas may no longer be readily available.

Consider the wave equation

Fu 5 0
77 = 5

on a bounded interval of length ¢ with constant wave speed ¢ > 0. For specificity, we
impose (possibly time-dependent) Dirichlet boundary conditions

u(t,0) = aft), u(t, £) = B(t), t>0, (5.53)

S

0<r<( t>0, (5.52)



along with the usual initial conditions

u(0,2) = £(x), % (0.0 = giz), 0<z<t (5.54)

As usual, we adopt a uniforinly spaced mesh
t; =JAt, x,, =maur, where Ar = =,

Discretization is implemented by replacing the second-order derivatives in the wave equa-
tion by their standard finite difference approximations (5.5):

2 t 4 -2 ti m FINTE ™m 2
‘a"—.-,li(t_,,-'l:'m) ~ u( J+1 :rm) u(] ': )+u'(_1 e + O((At)"'),
o A2 -_
9%u N u(tj, Tppy) = 2u(tj,:rm) + u(tj,n:m 1) " "
'a?;’g' (t_;i"rm) ~ (AT)Q + 0((AJ’) )

Since the error terins are both of second order, we anticipate being able to choose the
space and tine step sizes to have comparable magnitudes: At =~ Axr. Substituting the
finite difference formulas (5.55) into the partial differential equation (5.52) and rearranging
terms, we are led to the iterative system
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m=1,...,n-1,

for the numerical approximations u
parameter

m = u(t;,r,,) to the solution values at the nodes. The

c At

depends on the wave speed and the ratio of space and time step sizes. The boundary
conditions (5.53) require that

u; 0= a; = aft;), u;, = B; = B(t;), i=0,1,2,.... (5.58)

This allows us to rewrite the iterative system in vectorial forin

w7t = gt - gli-b 4 b(j), (5.59)
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The entries of u'?’ € R*~! are, as in (5.18), the numerical approximations to the solution
values at the interior nodes. Note that (5.59) describes a second-order iterative scheme,
since computing the subsequent iterate u+") requires knowing the values of the preceding
two: u/? and u-b,

The one subtlety is how to get the method started. We know u'®, since its entries
tpm = fm = f(z,,) are determined by the initial position. However, we also need u!
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in order to launch the iteration and compute u(®,u®, ... . Its entries u, ,, ~ u(At,z,,)
approximate the solution at time ¢, = At, whereas the initial velocity u,(0,.r) = g(z)
prescribes the derivatives u,(0,x,,) = g,, = g(z,,,) at the initial time ¢, = 0. To resolve
this difficulty, a first thought might be to use the finite difference approximation

Au u(At,z, ) -u(0,z,,) o, - S .
O = 20 (0,7,) = U2 T =20 %0) T~ T (5.61)

to compute the required values u, ., = f,, + g,, At. However, the approximation (5.61) is
accurate ouly to order At, whereas the rest of the scheme has errors proportional to (At)2.
The effect would be to introduce an unacceptably large error at the initial step, and the
resulting solution would fail to conform to the desired order of accuracy.

To construct an initial approximation to u!) with error on the order of (At)?, we need
to analyze the error in the approximation (5.61) in more depth. Note that, by Taylor's
Theorem,
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where the last line, which employs the finite difference approximation (5.5) to the sec-
ond derivative, can be used if the explicit formula for f”(z) is either not known or too
complicated to evaluate directly. Therefore, we initiate the scheme by setting

R fo+ 0, 0L+

Uy = %a‘lfm+l + (1 = Gz)fm * %aefm—l + 9 At’ (5'62)

ul® = f, u'V =4Bu® +gAt+ Lb®, (5.63)
where £ = (f, fay-- s froy )T, g = (91190181 )T, are the sampled values of the

initial data. This serves to maintain the desired second-order accuracy of the scheme.

Example 5.6. Consider the particular initial value problemn

u(0,x) = e~ 1@y (0,2) =0, 0<z <,

My =t
- u(t,0) = u(t, 1) = 0, t>0,

subject to homogeneous Dirichlet boundary counditions on the interval [0,1]. The initial
data is a fairly concentrated hump centered at & = .3. As time progresses, we expect the
initial hump to split into two half-sized humps, which then collide with the ends of the
interval, reversing direction and orientation.
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Figure 5.9. Nuwmerically stable waves. tl-J
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For our numerical approximation, let us use a space discretization consisting of 90
equally spaced points, and so Az = 515 = .0111.... If we choose a time step of At = .01.
whereby ¢ = .9, then we obtain a reasonably accurate solution over a fairly long time
range, as plotted in Figure 5.9. On the other hand, if we double the time step, setting
At = .02, 50 0 = 1.8, then, as shown in Figure 5.10, we induce an instability that eventually

Figure 5.10.
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Numnerically unstable waves. L—i—J



Stable Unstable
Figure 5.11. The CFL condition for the wave equation.

overwhelms the numerical solution. Thus, the preceding numerical scheme appears to be
only conditionally stable.

Stability analysis proceeds along the same lines as in the first-order case. The CFL
condition requires that the characteristics enanating from a node (t; x,,) remain, for times
0<t<t j» in its numerical domain of dependence, which, for our particular numerical
scheme, is the same triangle

Tiyemy = {(02) | 0SSty 1y~ t 4t ST <a, +8, - £},

now plotted in Figure 5.11. Since the characteristics arc the lines of slope 4 ¢, the CFL
condition is the same as in (5.48):

cAt Ar
=< i < —. 3
o= ——3% 1, or, equivalently, D<e< N (5.64)

The resulting stability criterion explains the observed difference between the numerically
stable and unstable cases.

However, as we noted above, the CFL condition is, in general, only necessary for stabil-
ity of the numerical scheme; sufficiency requires that we perform a von Neumann stability
analysis. To this end. we specialize the calculation to a single complex exponential e'*=.
Alfter one time step, the scheme will have the effect of multiplying it by the magnification
factor N = \(k), after another time step by A%, and so on. To determine ), we substitute
the relevant sampled exponential values
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into the scheme (5.56). After canceling the common exponential, we find that the magni-
fication factor satisfies the following quadratic equation:

A= (2-40%sin?(JkAr) )N -1,
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whence
A=atvVa?-1, where a=1-20sin*({kAx). (5.66)

Thus, there are two different magnification factors associated with each complex expo-
nential - which is, in fact, a cousequence of the scheme being of second order. Stability
requires that beth be <€ 1 in modulus. Now, if the CFL condition (5.64) holds, then
|a| € 1, which implies that both magnification factors (5.66) are complex numbers of
modulus | A| = 1, and thus the numerical scheme satisfies the stability criterion (5.26).
On the other hand, if ¢ > 1, then a < --1 over a range of values of &, which implies that
the two magnification factors (5.66) are both real and one of them is < —1, thus violating
the stability criterion. Consequently, the CFL condition (5.64) does indeed distinguish
between the stable and unstable finite difference schemes for the wave equation.
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